1
|
Wang Y, Zhang Q, Huang M, Ai G, Liu X, Zhang Y, Li R, Wu J. A colorimetric and SERS-based LFIA for sensitive and simultaneous detection of three stroke biomarkers: An ultra-fast and sensitive point-of-care testing platform. Talanta 2024; 283:127166. [PMID: 39509900 DOI: 10.1016/j.talanta.2024.127166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Stroke ranks as the second leading cause of disability and mortality globally. Biomarker detection represents a promising avenue for predicting disease severity and prognosis. The expression levels of metalloproteinase-9 (MMP-9), neuron-specific enolase (NSE), and N-terminal pro-brain natriuretic peptide (NT-pro BNP) in blood correlate with stroke severity. Hence, monitoring these biomarkers is crucial for stroke diagnosis and management. Point-of-care testing (POCT) offers on-site diagnostic capabilities, with lateral flow immunoassay (LFIA) being the most widely used method currently. However, traditional LFIA sensitivity requires enhancement. This study introduces an ultra-sensitive surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of the three stroke biomarkers using SERS immune tags. Bimetallic core-shell structured SERS immune tags leverage the advantages of two metals, ensuring stability and enhancing Raman signals through plasmon resonance. This development of a POCT based on SERS-based LFIA strips offers rapid, sensitive, and multiplex detection of stroke biomarkers. The limits of detection (LODs) for MMP-9, NSE, and NT-pro BNP were 0.00020 ng mL-1, 0.00016 ng mL-1, and 0.00012 ng mL-1, respectively. Furthermore, enzyme-linked immunosorbent assay (ELISA) validated the accuracy of SERS-based LFIA. Clinical sample analysis demonstrated consistency between outcomes obtained by SERS-based LFIA and ELISA. Thus, SERS-based LFIA presents a novel POCT approach for stroke diagnosis.
Collapse
Affiliation(s)
- Yutong Wang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Qianchun Zhang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qianxinan, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Mengping Huang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Ganggang Ai
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Xiaofeng Liu
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise, 533000, China
| | - Yuqi Zhang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China.
| | - Ran Li
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China.
| | - Jie Wu
- School of Public Health, Shenyang Medical College, Liaoning Medical Functional Food Professional Technology Innovation Center, Shenyang, 110034, China.
| |
Collapse
|
2
|
Chen J, Yang D, Zhu G, Zhang R, Wang B, Chang Z, Dai J, Wu W, Rotenberg MY, Fang Y. Automated and ultrasensitive point-of-care glycoprotein detection using boronate-affinity enhanced organic electrochemical transistor patch. Biosens Bioelectron 2024; 255:116229. [PMID: 38554574 DOI: 10.1016/j.bios.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
Quantifying trace glycoproteins in biofluids requires ultrasensitive components, but feedback is not available in the current portable platforms of point-of-care (POC) diagnosis technologies. A compact and ultrasensitive bioelectrochemical patch was based on boronate-affinity amplified organic electrochemical transistors (BAAOECTs) for POC use was developed to overcome this dilemma. Benefit from the cascading signal enhancement deriving from boronate-affinity targeting multiple regions of glycoprotein and OECTs' inherent signal amplification capability, the BAAOECTs achieved a detection limit of 300 aM within 25 min, displaying about 3 orders of magnitude improvement in sensitivity compared with the commercial electrochemical luminescence (ECL) kit. By using a microfluidic chip, a microcontroller module, and a wireless sensing system, the testing workflows of the above patch was automated, allowing for running the sample-to-answer pipeline even in a resource-limited environment. The reliability of such portable biosensing platform is well recognized in clinical diagnostic applications of heart failure. Overall, the remarkable enhanced sensitivity and automated workflow of BAAOECTs biosensing platform provide a prospective and generalized design policy for expanding the POC diagnosis capabilities of glycoproteins.
Collapse
Affiliation(s)
- Jing Chen
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Deqi Yang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Guoqi Zhu
- Tongji Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Ru Zhang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Bingfang Wang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Jing Dai
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yin Fang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, PR China.
| |
Collapse
|
3
|
Tesoro L, Hernandez I, Saura M, Badimón L, Zaragoza C. Novel cutting edge nano-strategies to address old long-standing complications in cardiovascular diseases. A comprehensive review. Eur J Clin Invest 2024; 54:e14208. [PMID: 38622800 DOI: 10.1111/eci.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVD) impact a substantial portion of the global population and represent a significant threat to experiencing life-threatening outcomes, such as atherosclerosis, myocardial infarction, stroke and heart failure. Despite remarkable progress in pharmacology and medical interventions, CVD persists as a major public health concern, and now ranks as the primary global cause of death and the highest consumer of global budgets. Ongoing research endeavours persist in seeking novel therapeutic avenues and interventions to deepen our understanding of CVD, enhance prevention measures, and refine treatment strategies. METHODS Nanotechnology applied to the development of new molecular probes with diagnostic and theranostic properties represents one of the greatest technological challenges in preclinical and clinical research. RESULTS The application of nanotechnology in cardiovascular medicine holds great promise for advancing our understanding of CVDs and revolutionizing their diagnosis and treatment strategies, ultimately improving patient care and outcomes. In addition, the capacity of drug encapsulation in nanoparticles has significantly bolstered their biological safety, bioavailability and solubility. In combination with imaging technologies, molecular imaging has emerged as a pivotal therapeutic tool, offering insight into the molecular events underlying disease and facilitating targeted treatment approaches. CONCLUSION Here, we present a comprehensive overview of the recent advancements in targeted nanoparticle approaches for diagnosing CVDs, encompassing molecular imaging techniques, underscoring the significant progress in theranostic, as a novel and promising therapeutic strategy.
Collapse
Affiliation(s)
- Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Ignacio Hernandez
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Lina Badimón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular-Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
4
|
Lee YY, Sriram B, Wang SF, Kogularasu S, Chang-Chien GP. Advanced Nanomaterial-Based Biosensors for N-Terminal Pro-Brain Natriuretic Peptide Biomarker Detection: Progress and Future Challenges in Cardiovascular Disease Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:153. [PMID: 38251118 PMCID: PMC10820909 DOI: 10.3390/nano14020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant challenge in global health, demanding advancements in diagnostic modalities. This review delineates the progressive and restrictive facets of nanomaterial-based biosensors in the context of detecting N-terminal pro-B-type natriuretic peptide (NT-proBNP), an indispensable biomarker for CVD prognosis. It scrutinizes the escalation in diagnostic sensitivity and specificity attributable to the incorporation of novel nanomaterials such as graphene derivatives, quantum dots, and metallic nanoparticles, and how these enhancements contribute to reducing detection thresholds and augmenting diagnostic fidelity in heart failure (HF). Despite these technological strides, the review articulates pivotal challenges impeding the clinical translation of these biosensors, including the attainment of clinical-grade sensitivity, the substantial costs associated with synthesizing and functionalizing nanomaterials, and their pragmatic deployment across varied healthcare settings. The necessity for intensified research into the synthesis and functionalization of nanomaterials, strategies to economize production, and amelioration of biosensor durability and ease of use is accentuated. Regulatory hurdles in clinical integration are also contemplated. In summation, the review accentuates the transformative potential of nanomaterial-based biosensors in HF diagnostics and emphasizes critical avenues of research requisite to surmount current impediments and harness the full spectrum of these avant-garde diagnostic instruments.
Collapse
Affiliation(s)
- Yen-Yi Lee
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sakthivel Kogularasu
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| |
Collapse
|
5
|
Sousa MP, Bettencourt P, Brás-Silva C, Pereira C. Biosensors for natriuretic peptides in cardiovascular diseases. A review. Curr Probl Cardiol 2024; 49:102180. [PMID: 37907188 DOI: 10.1016/j.cpcardiol.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with high rates of morbidity and mortality. Over the years, it has been crucial to find accurate biomarkers capable of doing a precise monitor of HF and provide an early diagnosis. Of these, it has been established an important role of natriuretic peptides in HF assessment. Moreover, the development of biosensors has been garnering interest as new diagnostic medical tools. In this review we first provide a general overview of HF, its pathogenesis, and diagnostic features. We then discuss the role of natriuretic peptides in heart failure by characterizing them and point out their potential as biomarkers. Finally, we adress the evolution of biosensors development and the available natriuretic peptides biosensors for disease monitoring.
Collapse
Affiliation(s)
- Mariana P Sousa
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto 4200-135, Portugal
| | - Paulo Bettencourt
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Claudia Pereira
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, Porto 4249-004, Portugal; HE-FP-Hospital Fernando Pessoa, CECLIN, Center of Clinical Studies, 4420-096 Gondomar, Portugal; FCS-Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
6
|
Jiang C, Lai X, Han F, Gao Z, Yang H, Zhao X, Pang H, Qiao B, Pei H, Wu Q. Shape dependency of gold nanorods through TMB 2+-mediated etching for the visual detection of NT-proBNP. RSC Adv 2023; 13:10503-10507. [PMID: 37021096 PMCID: PMC10068753 DOI: 10.1039/d3ra00280b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Heart failure (HF) is a major public health problem triggered by heart circulation disorders. Early detection and diagnosis are conducive to the prevention and treatment of HF. Hence, it is necessary to establish a simple and sensitive method to monitor the diagnostic biomarkers of HF. The N-terminal B-type natriuretic peptide precursor (NT-proBNP) is acknowledged as a sensitive biomarker. In this study, a visual detection method for NT-proBNP was developed based on the oxidized 3,3',5,5'-tetramethylbenzidine (TMB2+)-mediated etching of gold nanorods (AuNRs) and double-antibody-sandwich ELISA. The etching color for different amounts of NT-proBNP was obvious and significant differences could be ascertained based on the blue-shift of the longitudinal localized surface plasmon resonance (LLSPR) of the AuNRs. The results could be observed by the naked eye. The constructed system showed a concentration range from 6 to 100 ng mL-1 and a low detection limit of 6 ng mL-1. This method exhibited negligible cross-reactivity toward other proteins, and the recoveries of the samples ranged from 79.99% to 88.99%. These results demonstrated that the established method is suitable for the simple and convenient detection of NT-proBNP.
Collapse
Affiliation(s)
- Chenlong Jiang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Xiangde Lai
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Feng Han
- Department of Clinical Laboratory of the First Affiliated Hospital, Hainan Medical University Haikou 570102 China
| | - Zhijun Gao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Haixia Yang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Xuan Zhao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Huajie Pang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Bin Qiao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Hua Pei
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Qiang Wu
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| |
Collapse
|
7
|
Ji Y, He S, Chen Y, Zhang P, Sun J, Li Y, Kuang K, Jia N. A sensitive dual-signal electrochemiluminescence immunosensor based on Ru(bpy) 32+@HKUST-1 and Ce 2Sn 2O 7 for detecting the heart failure biomarker NT-proBNP. J Mater Chem B 2023; 11:2754-2761. [PMID: 36880334 DOI: 10.1039/d2tb02555h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
A sensitive dual-signal electrochemiluminescence (ECL) immunosensor was proposed based on Ru(bpy)32+@HKUST-1/TPA and Ce2Sn2O7/K2S2O8 probes for detecting the NT-proBNP biomarker of heart failure. HKUST-1 with a high specific surface area facilitates the loading of more Ru(bpy)32+, effectively improving the anodic signal intensity, while the emerging Ce2Sn2O7 emitter displays a potential-matching cathodic emission with moderate intensity. Two ECL probes were characterized with field emission scanning electron microscopy, X-ray diffraction, XPS, FT-IR spectroscopy and UV-Vis diffuse reflectance spectroscopy. This dual-signal immunosensor has a wide linear range (5 × 10-4-1 × 104 ng mL-1) and a low quantitative detection limit, simultaneously showing high sensitivity, stability and reproducibility, as well as the detection capability of actual serum samples. This dual signal-calibrated immunoassay platform not only reduces the false positive rate of detection results but also provides a promising method for the early diagnosis of heart failure.
Collapse
Affiliation(s)
- Yu Ji
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Shuang He
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Yang Chen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Pei Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Jing Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Ya Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Kaida Kuang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Chang F, Ren K, Li S, Su Q, Peng J, Tan J. A voltammetric sensor for bisphenol A using gold nanochains and carbon nanotubes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114588. [PMID: 36724711 DOI: 10.1016/j.ecoenv.2023.114588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Gold nanochains (AuNCs) were prepared, and this novel material was combined with carboxylated multi-walled carbon nanotubes (cMWCNTs) to be a nanocomposite for the first time. The transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and UV-Vis spectra were used to characterize the successful preparation of AuNCs and AuNC-cMWCNT composite. Based on this hybrid material, a voltammetric sensor of bisphenol A (BPA) was established. The proposed sensor displayed excellent performance for the measurement of BPA by obvious decreased anodic peak potential and enlarged peak current. Using the optimized conditions, BPA was detected using linear sweep voltammetry, and the linear range showed as wide as 0.5 μM to 2000 μM with the detection limit estimated to be 12 nM (S/N = 3). The as-proposed sensor also exhibited satisfactory performance in determining BPA of actual plastic samples.
Collapse
Affiliation(s)
- Fengxia Chang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China.
| | - Kai Ren
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Sijing Li
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Qianqian Su
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Jiangping Peng
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Jiong Tan
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| |
Collapse
|
9
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Liu HL, Tseng YT, Lai MC, Chau LK. Ultrasensitive and Rapid Detection of N-Terminal Pro-B-Type Natriuretic Peptide (NT-proBNP) Using Fiber Optic Nanogold-Linked Immunosorbent Assay. BIOSENSORS 2022; 12:bios12090746. [PMID: 36140131 PMCID: PMC9496248 DOI: 10.3390/bios12090746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
The N-terminal pro-brain natriuretic peptide (NT-proBNP) is considered an important blood biomarker for heart failure. Herein, we report about a fiber optic nanogold-linked immunosorbent assay (FONLISA) method for the rapid, sensitive, and low-cost detection of NT-proBNP. The method is based on a sandwich immunoassay approach that uses two monoclonal NT-proBNP antibodies, a capture antibody (AbC), and a detection antibody (AbD). AbD is conjugated to a free gold nanoparticle (AuNP) to form the free AuNP@AbD conjugate, and AbC is immobilized on an unclad segment of an optical fiber. The detection of analyte (A), in this case NT-proBNP, is based on the signal change due to the formation of an AuNP@AbD–A–AbC complex on the fiber core surface, where a green light transmitted through the optical fiber will decrease in intensity due to light absorption by AuNPs via the localized surface plasmon resonance effect. This method provides a wide linear dynamic range of 0.50~5000 pg·mL−1 and a limit of detection of 0.058 pg·mL−1 for NT-proBNP. Finally, the method exhibits good correlation (r = 0.979) with the commercial central laboratory-based electrochemiluminescent immunoassay method that uses a Roche Cobas e411 instrument. Hence, our method is potentially a suitable tool for point-of-care testing.
Collapse
Affiliation(s)
- Han-Long Liu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621301, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Yen-Ta Tseng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621301, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Mei-Chu Lai
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 621301, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621301, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi 621301, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Ben Halima H, Bellagambi FG, Hangouët M, Alcacer A, Pfeiffer N, Heuberger A, Zine N, Bausells J, Elaissari A, Errachid A. A novel electrochemical strategy for NT-proBNP detection using IMFET for monitoring heart failure by saliva analysis. Talanta 2022; 251:123759. [DOI: 10.1016/j.talanta.2022.123759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
12
|
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim Acta 2022; 189:142. [PMID: 35279780 PMCID: PMC8917829 DOI: 10.1007/s00604-022-05186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Determination of specific cardiac biomarkers (CBs) during the diagnosis and management of adverse cardiovascular events such as acute myocardial infarction (AMI) has become commonplace in emergency department (ED), cardiology and many other ward settings. Cardiac troponins (cTnT and cTnI) and natriuretic peptides (BNP and NT-pro-BNP) are the preferred biomarkers in clinical practice for the diagnostic workup of AMI, acute coronary syndrome (ACS) and other types of myocardial ischaemia and heart failure (HF), while the roles and possible clinical applications of several other potential biomarkers continue to be evaluated and are the subject of several comprehensive reviews. The requirement for rapid, repeated testing of a small number of CBs in ED and cardiology patients has led to the development of point-of-care (PoC) technology to circumvent the need for remote and lengthy testing procedures in the hospital pathology laboratories. Electroanalytical sensing platforms have the potential to meet these requirements. This review aims firstly to reflect on the potential benefits of rapid CB testing in critically ill patients, a very distinct cohort of patients with deranged baseline levels of CBs. We summarise their source and clinical relevance and are the first to report the required analytical ranges for such technology to be of value in this patient cohort. Secondly, we review the current electrochemical approaches, including its sub-variants such as photoelectrochemical and electrochemiluminescence, for the determination of important CBs highlighting the various strategies used, namely the use of micro- and nanomaterials, to maximise the sensitivities and selectivities of such approaches. Finally, we consider the challenges that must be overcome to allow for the commercialisation of this technology and transition into intensive care medicine.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina C Dempsey
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot, L35 5DR, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
13
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
14
|
Hu J, Ding L, Chen J, Fu J, Zhu K, Guo Q, Huang X, Xiong Y. Ultrasensitive dynamic light scattering immunosensing platform for NT-proBNP detection using boronate affinity amplification. J Nanobiotechnology 2022; 20:21. [PMID: 34991601 PMCID: PMC8740487 DOI: 10.1186/s12951-021-01224-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Herein, we reported a new dynamic light scattering (DLS) immunosensing technology for the rapid and sensitive detection of glycoprotein N-terminal pro-brain natriuretic peptide (NT-proBNP). In this design, the boronate affinity recognition based on the interaction of boronic acid ligands and cis-diols was introduced to amplify the nanoparticle aggregation to enable highly sensitive DLS transduction, thereby lowering the limit of detection (LOD) of the methodology. After covalently coupling with antibodies, magnetic nanoparticles (MNPs) were employed as the nanoprobes to selectively capture trace amount of NT-proBNP from complex samples and facilitate DLS signal transduction. Meanwhile, silica nanoparticles modified with phenylboronic acid (SiO2@PBA) were designed as the crosslinking agent to bridge the aggregation of MNPs in the presence of target NT-proBNP. Owing to the multivalent and fast affinity recognition between NT-proBNP containing cis-diols and SiO2@PBA, the developed DLS immunosensor exhibited charming advantages over traditional immunoassays, including ultrahigh sensitivity with an LOD of 7.4 fg mL−1, fast response time (< 20 min), and small sample consumption (1 μL). The DLS immunosensor was further characterized with good selectivity, accuracy, precision, reproducibility, and practicability. Collectively, this work demonstrated the promising application of the designed boronate affinity amplified-DLS immunosensor for field or point-of-care testing of cis-diol-containing molecules. ![]()
We developed a new DLS immunosensing technology for the rapid and sensitive detection of glycoprotein NT-proBNP. The boronate affinity recognition amplified nanoparticle aggregation was designed to enable highly sensitive DLS transduction. The fabricated DLS immunosensor exhibited ultrahigh sensitivity with an LOD of 7.4 fg mL−1, fast response time (< 20 min), and small sample consumption (1 μL). This boronate affinity amplified-DLS immunosensor has broad prospects for field or point-of-care testing of cis-diol-containing molecules.
Collapse
Affiliation(s)
- Jiaqi Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Lu Ding
- Hypertension Research Institute of Jiangxi Province, Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Jinhua Fu
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, People's Republic of China
| | - Kang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Qian Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China. .,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| |
Collapse
|
15
|
Gachpazan M, Mohammadinejad A, Saeidinia A, Rahimi HR, Ghayour-Mobarhan M, Vakilian F, Rezayi M. A review of biosensors for the detection of B-type natriuretic peptide as an important cardiovascular biomarker. Anal Bioanal Chem 2021; 413:5949-5967. [PMID: 34396470 DOI: 10.1007/s00216-021-03490-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022]
Abstract
Heart disease, as the most serious threat to human health globally, is responsible for rising mortality rates, largely due to lifestyle and diet. Unfortunately, the main problem for patients at high risk of heart disease is the validation of prognostic tests. To this end, the detection of cardiovascular biomarkers has been employed to obtain pathological and physiological information in order to improve prognosis and early-stage diagnosis of chronic heart failure. Short-term changes in B-type natriuretic peptide are known as a standard and important biomarker for diagnosis of heart failure. The most important problem for detection is low concentration and short half-life in the blood. The normal concentration of BNP in blood is less than 7 nM (25 pg/mL), which increases significantly to more than 80 pg/mL. Therefore, the development of new biosensors with better sensitivity, detection limit, and dynamic range than current commercial kits is urgently needed. This review classifies the biosensors designed for detection of BNP into electrochemical, optical, microfluidic, and lateral-flow immunoassay techniques. The review clearly demonstrates that a variety of immunoassay, aptasensor, enzymatic and catalytic nanomaterials, and fluorophores have been successfully employed for detection of BNP at low attomolar ranges. Dtection of B-type natriuretic peptide with biosensors.
Collapse
Affiliation(s)
- Meysam Gachpazan
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Amin Saeidinia
- Pediatric Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, 9196773117, Iran
| | - Hamid Reza Rahimi
- Vascular and Endovascular Surgery Research Center, Alavi Hospital, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Farveh Vakilian
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9176699199, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran. .,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran. .,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
16
|
Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Mikrochim Acta 2021; 188:26. [DOI: 10.1007/s00604-020-04667-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
|
17
|
Chen YY, Li SL, Lin HL, Li WD, Zhu XZ, Zhang HL. A chemiluminescence immunoassay for the detection of NT-proBNP. Anal Biochem 2020; 611:113950. [PMID: 32919941 DOI: 10.1016/j.ab.2020.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The aim of the study was to assess the analytical performance of the HISCL NT-proBNP assay, a newly developed chemiluminescence immunoassay, for the detection of NT-proBNP. METHODS The within-run and total imprecision of the NT-proBNP assay were determined with HISCL cardiac marker controls. The linear ranges of the NT-proBNP assays were evaluated based on the CLSI EP6-A document using selected serum samples. Two hundred serum samples were evaluated to compare the HISCL NT-proBNP and Elecsys NT-proBNP assays. Five additional high NT-proBNP concentrations serum samples were evaluated to assess if there was high-dose hook effect in the HISCL NT-proBNP assay. RESULTS The total and within-run imprecision values of the HISCL NT-proBNP assay were 5.85%, 0.81%, 2.56% and 0.54% and 6.07%, 0.73%, 2.61% and 0.59% at 6.1, 129.83, 3732.84and39737.33 pg/ml, respectively. The assay was verified to be linear for NT-proBNP levels ranging between 6.1 and 39737.33 pg/ml. The assay comparison showed that HISCL NT-proBNP = 0.9803 × Elecsys NT-proBNP -4.383. The sensitivity of HISCL NT-proBNP was 87.23%, and the specificity was 85.61%. The AUC of HISCL NT-proBNP (0.90 (95% CI, 0.86-0.93)) did not differ from that of Elecsys NT-proBNP(0.89 (95% CI, 0.85-0.93)) (P = 0.638). The results of five high NT-proBNP concentrations samples (44448, 54206, 55634, 55728 and 109406 pg/ml, measured with the Elecsys NT-proBNP assay) tested with HISCL NT-proBNP assay were all displayed with ">40000 pg/ml". CONCLUSIONS The HISCL NT-proBNP chemiluminescence immunoassay showed good analytical and diagnostic performance for the detection of NT-proBNP and could be used in routine clinical practice.
Collapse
Affiliation(s)
| | - Shu-Lian Li
- Department of Gynaecology and Obstetrics, Xiamen Huli District Maternity and Child Care Hospital, Xiamen, 361000, China
| | - Hui-Ling Lin
- Department of Gynaecology and Obstetrics, Xiamen Huli District Maternity and Child Care Hospital, Xiamen, 361000, China
| | - Wen-Dong Li
- Department of Gynaecology and Obstetrics, Xiamen Huli District Maternity and Child Care Hospital, Xiamen, 361000, China
| | - Xiao-Zhen Zhu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
18
|
Piguillem SV, Gamella M, García de Frutos P, Batlle M, Yáñez‐Sedeño P, Messina GA, Fernández‐Baldo MA, Campuzano S, Pedrero M, Pingarrón JM. Easily Multiplexable Immunoplatform to Assist Heart Failure Diagnosis through Amperometric Determination of Galectin‐3. ELECTROANAL 2020. [DOI: 10.1002/elan.202060323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sofía V. Piguillem
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
- INQUISAL, Departamento de Química. Universidad Nacional de San Luis, CONICET. Chacabuco 917. D5700BWS. San Luis Argentina
| | - Maria Gamella
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| | | | - Montserrat Batlle
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS) and The Cardiovascular Clinic Institute Hospital Clínic de Barcelona Spain
| | - Paloma Yáñez‐Sedeño
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| | - Germán A. Messina
- INQUISAL, Departamento de Química. Universidad Nacional de San Luis, CONICET. Chacabuco 917. D5700BWS. San Luis Argentina
| | - Martín A. Fernández‐Baldo
- INQUISAL, Departamento de Química. Universidad Nacional de San Luis, CONICET. Chacabuco 917. D5700BWS. San Luis Argentina
| | - Susana Campuzano
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| | - María Pedrero
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| | - José M. Pingarrón
- Analytical Chemistry Dept. Faculty of Chemistry Complutense University of Madrid. E-28040 Madrid Spain
| |
Collapse
|
19
|
Yousefi F, Movahedpour A, Shabaninejad Z, Ghasemi Y, Rabbani S, Sobnani-Nasab A, Mohammadi S, Hajimoradi B, Rezaei S, Savardashtaki A, Mazoochi M, Mirzaei H. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. Curr Med Chem 2020; 27:2550-2575. [DOI: 10.2174/0929867326666191024114207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
One of the major reasons for mortality throughout the world is cardiovascular diseases.
Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure.
Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective,
portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for
detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins,
lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis
factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular
illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious
and need costly apparatus. Current researches designed various bio-sensors for resolving the respective
issues. Electrochemical instruments and the proposed bio-sensors are preferred over other
methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively
dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sobnani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Hajimoradi
- Cardiology Department of Shohaday-e-Tajrish Hospital Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mazoochi
- Department of Cardiology, Cardiac Electrophysiology Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Electrochemiluminescence behaviour of m-CNNS quenched by CeO2@PDA composites for sensitive detection of BNP. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Dong X, Zhao G, Li X, Miao J, Fang J, Wei Q, Cao W. Electrochemiluminescence immunoassay for the N-terminal pro-B-type natriuretic peptide based on resonance energy transfer between a self-enhanced luminophore composed of silver nanocubes on gold nanoparticles and a metal-organic framework of type MIL-125. Mikrochim Acta 2019; 186:811. [PMID: 31745662 DOI: 10.1007/s00604-019-3969-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
The N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a marker of heart failure. A novel sandwich type electrochemiluminescence (ECL) immunoassay is described for the NT-proBNP. The method is based on ECL resonance energy transfer (RET) between silver nanocubes that were covered with semicarbazide-modified gold nanoparticles (AgNC-sem@AuNPs) as the donor, and a Ti(IV)-based metal-organic framework of type MIL-125 as the acceptor. The ECL signal was strongly amplified by increasing the luminous efficiency. ECL-RET occurs due to the partial overlap between the ECL emission of the AgNC-sem@AuNPs (emission wavelength at 470 nm to 900 nm) and the visible absorption spectrum of MIL-125 (absorption wavelength at 406 nm to 900 nm). This results in the quenching of ECL. The AgNC-sem@AuNPs were placed on the electrode. The antibody was immobilized on AgNC-sem@AuNPs via Au-NH2 bond, and MIL-125 was utilized as a label for the secondary antibody. The assay works in the 0.25 pg mL-1 to 100 ng mL-1 concentration range and has a 0.11 pg mL-1 lower detection limit (at S/N = 3). Graphical abstract Schematic representation of self-enhanced luminescence mechanism (semicarbazide (Sem) as co-reaction accelerator) and Electrochemiluminescence resonance energy transfer (ECL-RET): silver nanocubes (AgNCs) as the energy donor and MIL-125 as the energy acceptor.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xuan Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - JunCong Miao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
22
|
Li L, Zhao Y, Li X, Ma H, Wei Q. Label-free electrochemiluminescence immunosensor based on Ce-MOF@g-C3N4/Au nanocomposite for detection of N-terminal pro-B-type natriuretic peptide. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Szunerits S, Mishyn V, Grabowska I, Boukherroub R. Electrochemical cardiovascular platforms: Current state of the art and beyond. Biosens Bioelectron 2019; 131:287-298. [PMID: 30851492 DOI: 10.1016/j.bios.2019.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023]
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death within industrialized nations as well as an increasing cause of mortality and morbidity in many developing countries. Smoking, alcohol consumption and increased level of blood cholesterol are the main CVD risk factors. Other factors, such as the prevalence of overweight/obesity and diabetes, have increased considerably in recent decades and are indirect causes of CVD. Among CVDs, the acute coronary syndrome (ACS) represents the most common cause of emergency hospital admission. Since the prognosis of ACS is directly associated with timely initiation of revascularization, missed, misdiagnosis or late diagnosis have unfavorable medical implications. Early ACS diagnosis can reduce complications and risk of recurrence, finally decreasing the economic burden posed on the health care system as a whole. To decrease the risk of ACS and related CVDs and to reduce associated costs to healthcare systems, a fast management of patients with chest pain has become crucial and urgent. Despite great efforts, biochemical diagnostic approaches of CVDs remain difficult and controversial medical challenges as cardiac biomarkers should be rapidly released into the blood at the time of ischemia and persistent for a sufficient length of time to allow diagnostics, with tests that should be rapid, easy to perform and relatively inexpensive. Early biomarker assessments have involved testing for the total enzyme activity of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine kinase (CK), which cardiac troponins being the main accepted biomarkers for diagnosing myocardial injury and acute myocardial infarction (AMI). To allow rapid diagnosis, it is necessary to replace the traditional biochemical assays by cardiac biosensor platforms. Among the numerous of possibilities existing today, electrochemical biosensors are important players as they have many of the required characteristics for point-of-care tests. Electrochemical based cardiac biosensors are highly adapted for monitoring the onset and progress of cardiovascular diseases in a fast and accurate manner, while being cheap and scalable devices. This review outlines the state of the art in the development of cardiac electrochemical sensors for the detection of different cardiac biomarkers ranging from troponin to BNP, N-terminal proBNP, and others.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France.
| | - Vladyslav Mishyn
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
24
|
Wilkins MD, Turner BL, Rivera KR, Menegatti S, Daniele M. Quantum dot enabled lateral flow immunoassay for detection of cardiac biomarker NT-proBNP. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Munief WM, Lu X, Teucke T, Wilhelm J, Britz A, Hempel F, Lanche R, Schwartz M, Law JKY, Grandthyll S, Müller F, Neurohr JU, Jacobs K, Schmitt M, Pachauri V, Hempelmann R, Ingebrandt S. Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range. Biosens Bioelectron 2018; 126:136-142. [PMID: 30399515 DOI: 10.1016/j.bios.2018.09.102] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/22/2018] [Accepted: 09/29/2018] [Indexed: 11/28/2022]
Abstract
Reduced graphene oxide (rGO) thin films can be exploited as highly sensitive transducer layers and integrated in interdigital micro-electrode systems for biosensing processes. The distinctive bipolar characterisitics of rGO thin films can be modulated by a very low external electric field due to the electrostatic charges of biomolecules. These charges lead to a fast response in the readout signals of rGO based ion sensitive field-effect transistors (ISFETs). The characterisitc changes of rGO ISFETs enable a fast, accurate and reproducible detection of biomolecules. The biosensing mechanism offers a fast and label-free approach for analyte detection in contrast to the classical ELISA method. In this contribution, we introduce a reproducible fabrication process of rGO based field-effect transistors on wafer level. The sensors are functionalized as biosensors to measure N-terminal pro-brain natriuretic peptide (NT-proBNP) in human serum within its clinical range. Our optimized rGO sensor shows very promising electrical properties and can be considered as a proof of concept study for the detection of various analytes. The easy and cost-effective fabrication as well as the versatile usability make this new technological platform an auspicious tool for different sensing applications in future.
Collapse
Affiliation(s)
- Walid-Madhat Munief
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany; Department of Physical Chemistry, Saarland University, 66123 Saarbruecken, Germany; RAM Group DE GmbH, Research and Development Center, 66482 Zweibruecken, Germany
| | - Xiaoling Lu
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany; Department of Electrical Engineering and Information Technology, IWE 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Tobias Teucke
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany
| | - Jannick Wilhelm
- RAM Group DE GmbH, Research and Development Center, 66482 Zweibruecken, Germany
| | - Anette Britz
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany
| | - Felix Hempel
- RAM Group DE GmbH, Research and Development Center, 66482 Zweibruecken, Germany
| | - Ruben Lanche
- RAM Group DE GmbH, Research and Development Center, 66482 Zweibruecken, Germany
| | - Miriam Schwartz
- RAM Group DE GmbH, Research and Development Center, 66482 Zweibruecken, Germany
| | - Jessica Ka Yan Law
- RAM Group DE GmbH, Research and Development Center, 66482 Zweibruecken, Germany
| | - Samuel Grandthyll
- Department of Experimental Physics, Saarland University, Campus E2.9, 66123 Saarbruecken, Germany
| | - Frank Müller
- Department of Experimental Physics, Saarland University, Campus E2.9, 66123 Saarbruecken, Germany
| | - Jens-Uwe Neurohr
- Department of Experimental Physics, Saarland University, Campus E2.9, 66123 Saarbruecken, Germany
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, Campus E2.9, 66123 Saarbruecken, Germany
| | - Michael Schmitt
- Institute for Coatings and Surface Technology, University of Applied Sciences Niederrhein, 47805 Krefeld, Germany
| | - Vivek Pachauri
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany; Department of Electrical Engineering and Information Technology, IWE 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Rolf Hempelmann
- Department of Physical Chemistry, Saarland University, 66123 Saarbruecken, Germany; Korean Institute of Science and Technology, 66123 Saarbruecken, Germany
| | - Sven Ingebrandt
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany; Department of Electrical Engineering and Information Technology, IWE 1, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
26
|
Label-free photoelectrochemical immunosensor for NT-proBNP detection based on La-CdS/3D ZnIn2S4/Au@ZnO sensitization structure. Biosens Bioelectron 2018; 117:773-780. [DOI: 10.1016/j.bios.2018.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
|
27
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
28
|
Li X, Lu P, Wu B, Wang Y, Wang H, Du B, Pang X, Wei Q. Electrochemiluminescence quenching of luminol by CuS in situ grown on reduced graphene oxide for detection of N-terminal pro-brain natriuretic peptide. Biosens Bioelectron 2018; 112:40-47. [DOI: 10.1016/j.bios.2018.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023]
|
29
|
Sinawang PD, Harpaz D, Fajs L, Seet RCS, Tok AIY, Marks RS. Electrochemical impedimetric detection of stroke biomarker NT-proBNP using disposable screen-printed gold electrodes. EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/02.09] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Stroke is the second top leading cause of death globally. It is caused by an abrupt interruption of blood flow to the brain. In that course, brain natriuretic peptide (BNP) and its derivative N-terminal pro b-type natriuretic peptide (NT-proBNP), neurohormones produced mainly by the heart ventricles in response to excessive stretching of cardiomyocytes (heart muscle cells), are proven to be good biomarkers for heart failure diagnosis. Moreover, there is growing clinical interest of the use of NT-proBNP for stroke diagnosis and prognosis because it is significantly associated with cardioembolic stroke and secondary stroke reoccurrence, with sensitivity >90% and specificity >80%. However, in diagnostic settings, there is still a need to address the encountered analytical problems, particularly assay specificity and set up. In this study, a novel approach for NT-proBNP detection is demonstrated using an electrochemical immunoassay method. A label-free impedimetry immunosensor for stroke biomarker was developed using modified disposable screen-printed gold electrodes (SPGE) hosting specific anti-NT-proBNP capture antibody. The performance of our immunosensor was studied in the presence of NT-proBNP in both buffered and mock (porcine) plasma samples. A linear relation between the relative total resistance (ΔRtot) responses and the NT-proBNP concentrations in buffer was observed in a range from 0.1 to 5 ng mL-1 with a correlation coefficient (R2) of 0.94656. Overall, the biosensor has demonstrated the capability to quantitate NT-proBNP and differentiate such concentrations in a low concentration range, especially among 0, 0.1, 0.5, 1, and 3 ng mL-1 in plasma samples within 25 min. This range is valuable not only for classifying cardioembolic stroke (higher or equal to 0.5 ng mL-1), but also predicting the risk of secondary stroke reoccurrence (higher than 0.255 ng mL-1). Our biosensor has the potential to be used as an easy-to-use point-of-care test that is both accurate and affordable.
Collapse
Affiliation(s)
- Prima Dewi Sinawang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Biosensorix Pte. Ltd., 1 Raffles Place, Singapore 048616, Singapore
| | - Dorin Harpaz
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev , Israel
- Institute for Sports Research, Nanyang Technological University, Singapore
| | - Luka Fajs
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Biosensorix Pte. Ltd., 1 Raffles Place, Singapore 048616, Singapore
| | - Raymond Chee Seong Seet
- Division of Neurology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Institute for Sports Research, Nanyang Technological University, Singapore
| | - Robert S. Marks
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev , Israel
- The National Institute for Biotechnology, The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev , Israel
| |
Collapse
|
30
|
Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S. Nanomaterials for Electrochemical Immunosensing. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1041. [PMID: 28475158 PMCID: PMC5469646 DOI: 10.3390/s17051041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023]
Abstract
Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Ying Gu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Yaguang Yun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Min Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Xincui Jin
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| |
Collapse
|
31
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers. Diagnostics (Basel) 2016; 7:E2. [PMID: 28035946 PMCID: PMC5373011 DOI: 10.3390/diagnostics7010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/02/2022] Open
Abstract
Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selectivity and in a simple and rapid way. The unique advantages offered by electrochemical sensors together with the availability of high affinity and specific bioreceptors and their great capabilities in terms of sensitivity and stability imparted by nanostructuring the electrode surface with different carbon nanomaterials have led to the development of new electrochemical biosensing strategies that have flourished as interesting alternatives to conventional methodologies for clinical diagnostics. This paper briefly reviews the advantages of using carbon nanostructures and their hybrid nanocomposites as electrode modifiers to construct efficient electrochemical sensing platforms for diagnosis. The review provides an updated overview of some selected examples involving attractive amplification and biosensing approaches which have been applied to the determination of relevant genetic and protein diagnostics biomarkers.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
32
|
Justino CI, Duarte AC, Rocha-Santos TA. Critical overview on the application of sensors and biosensors for clinical analysis. Trends Analyt Chem 2016; 85:36-60. [PMID: 32287540 PMCID: PMC7112812 DOI: 10.1016/j.trac.2016.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sensors and biosensors have been increasingly used for clinical analysis due to their miniaturization and portability, allowing the construction of diagnostic devices for point-of-care testing. This paper presents an up-to-date overview and comparison of the analytical performance of sensors and biosensors recently used in clinical analysis. This includes cancer and cardiac biomarkers, hormones, biomolecules, neurotransmitters, bacteria, virus and cancer cells, along with related significant advances since 2011. Some methods of enhancing the analytical performance of sensors and biosensors through their figures of merit are also discussed.
Collapse
Affiliation(s)
- Celine I.L. Justino
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, 3515-776 Lordosa, Viseu, Portugal
| | - Armando C. Duarte
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa A.P. Rocha-Santos
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
34
|
He Y, Wang Y, Yang X, Xie S, Yuan R, Chai Y. Metal Organic Frameworks Combining CoFe2O4 Magnetic Nanoparticles as Highly Efficient SERS Sensing Platform for Ultrasensitive Detection of N-Terminal Pro-Brain Natriuretic Peptide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7683-7690. [PMID: 26953735 DOI: 10.1021/acsami.6b01112] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
N-terminal pro-brain natriuretic peptide (NT-proBNP) has been demonstrated to be a sensitive and specific biomarker for heart failure (HF). Surface-enhanced Raman spectroscopy (SERS) technology can be used to accurately detect NT-proBNP at an early stage for its advantages of high sensitivity, less wastage and time consumption. In this work, we have demonstrated a new SERS-based immunosensor for ultrasensitive analysis of NT-proBNP by using metal-organic frameworks (MOFs)@Au tetrapods (AuTPs) immobilized toluidine blue as SERS tag. Here, MOFs@AuTPs complexes were utilized to immobilize antibody and Raman probe for their excellent characteristics of high porosity, large surface area, and good biocompatibility which can obviously enhance the fixing amount of biomolecule. To simplify the experimental operation and improve the uniformity of the substrate, Au nanoparticles functionalized CoFe2O4 magnetic nanospheres (CoFe2O4@AuNPs) were further prepared to assemble primary antibody. Through sandwiched antibody-antigen interactions, the immunosensor can produce a strong SERS signal to detect NT-proBNP fast and effectively. With such design, the proposed immunosensor can achieve a large dynamic range of 6 orders of magnitude from 1 fg mL(-1) to 1 ng mL(-1) with a detection limit of 0.75 fg mL(-1). And this newly designed amplification strategy holds high probability for ultrasensitive immunoassay of NT-proBNP.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Yue Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Xia Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Shunbi Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| |
Collapse
|
35
|
Abstract
The application of simple, cost-effective, rapid, and accurate diagnostic technologies for detection and identification of cardiac and cancer biomarkers has been a central point in the clinical area. Biosensors have been recognized as efficient alternatives for the diagnostics of various diseases due to their specificity and potential for application on real samples. The role of nanotechnology in the construction of immunological biosensors, that is, immunosensors, has contributed to the improvement of sensitivity, since they are based in the affinity between antibody and antigen. Other analytes than biomarkers such as hormones, pathogenic bacteria, and virus have also been detected by immunosensors for clinical point-of-care applications. In this chapter, we first introduced the various types of immunosensors and discussed their applications in clinical diagnostics over the recent 6 years, mainly as point-of-care technologies for the determination of cardiac and cancer biomarkers, hormones, pathogenic bacteria, and virus. The future perspectives of these devices in the field of clinical diagnostics are also evaluated.
Collapse
|
36
|
Xiong CY, Wang HJ, Liang WB, Yuan YL, Yuan R, Chai YQ. Luminescence-Functionalized Metal-Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors. Chemistry 2015; 21:9825-32. [DOI: 10.1002/chem.201500909] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 01/11/2023]
|
37
|
Zhang H, Han Z, Wang X, Li F, Cui H, Yang D, Bian Z. Sensitive immunosensor for N-terminal pro-brain natriuretic peptide based on N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanodots/multiwalled carbon nanotube electrochemiluminescence nanointerface. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7599-7604. [PMID: 25801201 DOI: 10.1021/am509094p] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel electrochemiluminescence (ECL) immunosensor was developed for the determination of N-terminal pro-brain natriuretic peptide (NT-proBNP) by using N-(aminobutyl)-N-(ethylisoluminol) (ABEI)-functionalized gold nanodots/chitosan/multiwalled carbon nanotubes (ABEI/GNDs/chitosan/COOH-MWCNTs) hybrid as nanointerface. First, ABEI/GNDs/chitosan/COOH-MWCNTs hybrid nanomaterials were grafted onto the surface of ITO electrode via the film-forming property of hybrid nanomaterials. The anti-NT-proBNP antibody was connected to the surface of modified electrode by virtue of amide reaction via glutaraldehyde. The obtained sensing platform showed strong and stable ECL signal. When NT-proBNP was captured by its antibody immobilized on the sensing platform via immunoreaction, the ECL intensity decreased. Direct ECL signal changes were used for the determination of NT-proBNP. The present ECL immunosensor demonstrated a quite wide linear range of 0.01-100 pg/mL. The achieved low detection limit of 3.86 fg/mL was about 3 orders of magnitude lower than that obtained with electrochemistry method reported previously. Because of the simple and fast analysis, high sensitivity and selectivity, and stable and reliable response, the present immunosensor has been successfully applied to quantify NT-proBNP in practical plasma samples. The success of the sensor in this work also confirms that ABEI/GNDs/chitosan/COOH-MWCNTs hybrid is an ideal nanointerface to fabricate a sensing platform. Furthermore, the proposed strategy could be applied in the detection of other clinically important biomarkers.
Collapse
Affiliation(s)
- Hongli Zhang
- †CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- ‡Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, P. R. China
| | - Zhili Han
- †CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xu Wang
- †CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fang Li
- †CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- †CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Di Yang
- §Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Zhiping Bian
- §Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| |
Collapse
|
38
|
Das R, Upadhyay S, Sharma MK, Shaik M, Rao VK, Srivastava DN. Controllable gold nanoparticle deposition on carbon nanotubes and their application in immunosensing. RSC Adv 2015. [DOI: 10.1039/c5ra07990j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A CNT–AuNPs hybrid nanocomposite platform was prepared from nanodisperse AuNPs in N-[3-(trimethoxysilyl)propyl]ethylenediamine (EDAS) sol–gel matrices with purified MWCNT.
Collapse
Affiliation(s)
- Ritu Das
- Defence Research and Development Establishment
- Gwalior-474002
- India
| | - Sanjay Upadhyay
- Defence Research and Development Establishment
- Gwalior-474002
- India
| | - Mukesh K. Sharma
- Defence Research and Development Establishment
- Gwalior-474002
- India
| | - M. Shaik
- Defence Research and Development Establishment
- Gwalior-474002
- India
| | - V. K. Rao
- Defence Research and Development Establishment
- Gwalior-474002
- India
| | - Divesh N. Srivastava
- Analytical Discipline & Centralized Instrument Facility
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364021
- India
| |
Collapse
|
39
|
Zhong Z, Li M, Qing Y, Dai N, Guan W, Liang W, Wang D. Signal-on electrochemical immunoassay for APE1 using ionic liquid doped Au nanoparticle/graphene as a nanocarrier and alkaline phosphatase as enhancer. Analyst 2014; 139:6563-8. [DOI: 10.1039/c4an01712a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Guo Z, Du S, Chen B, Sha Y, Qiu B, Jiang X, Wang S, Li X. A sandwich-type label-free electrochemiluminescence immunosensor for neurotensin based on sombrero model with graphene-hyaluronate-luminol composite. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Altintas Z, Fakanya WM, Tothill IE. Cardiovascular disease detection using bio-sensing techniques. Talanta 2014; 128:177-86. [PMID: 25059146 DOI: 10.1016/j.talanta.2014.04.060] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 12/14/2022]
Abstract
Universally, cardiovascular disease (CVD) is recognised as the prime cause of death with estimates exceeding 20 million by 2015 due to heart disease and stroke. Facts regarding the disease, its classification and diagnosis are still lacking. Hence, understanding the issues involved in its initiation, its symptoms and early detection will reduce the high risk of sudden death associated with it. Biosensors developed to be used as rapid screening tools to detect disease biomarkers at the earliest stage and able to classify the condition are revolutionising CVD diagnosis and prognosis. Advances in interdisciplinary research areas have made biosensors faster, highly accurate, portable and environmentally friendly diagnostic devices. The recent advances in microfluidics and the advent of nanotechnology have resulted in the development of improved diagnostics through reduction of analysis time and integration of several clinical assays into a single, portable device as lab-on-a-chip (LOC). The development of such affinity based systems is a major drive of the rapidly growing nanotechnology industry which involves a multidisciplinary research effort encompassing nanofluidics, microelectronics and analytical chemistry. This review summarised the classification of CVD, the biomarkers used for its diagnosis, biosensors and their application including the latest developments in the field of heart-disease detection.
Collapse
Affiliation(s)
- Zeynep Altintas
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Wellington M Fakanya
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK; Atlas Genetics, White Horse Business Park, Wiltshire BA14 0XG, UK
| | - Ibtisam E Tothill
- Advanced Diagnostics and Sensors Group, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
42
|
Pedrero M, Campuzano S, Pingarrón JM. Electrochemical Biosensors for the Determination of Cardiovascular Markers: a Review. ELECTROANAL 2014. [DOI: 10.1002/elan.201300597] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
de Ávila BEF, Escamilla-Gómez V, Lanzone V, Campuzano S, Pedrero M, Compagnone D, Pingarrón JM. Multiplexed Determination of Amino-Terminal Pro-B-Type Natriuretic Peptide and C-Reactive Protein Cardiac Biomarkers in Human Serum at a Disposable Electrochemical Magnetoimmunosensor. ELECTROANAL 2013. [DOI: 10.1002/elan.201300479] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Hasanzadeh M, Shadjou N, Eskandani M, de la Guardia M, Omidinia E. Electrochemical nano-immunosensing of effective cardiac biomarkers for acute myocardial infarction. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Esteban-Fernández de Ávila B, Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM. Disposable amperometric magnetoimmunosensor for the sensitive detection of the cardiac biomarker amino-terminal pro-B-type natriuretic peptide in human serum. Anal Chim Acta 2013; 784:18-24. [DOI: 10.1016/j.aca.2013.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/26/2022]
|
46
|
Advances in the detection and quantification of candidate and established biomarkers in heart failure. REV ROMANA MED LAB 2013. [DOI: 10.2478/rrlm-2013-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Zhao C, Lin D, Wu J, Ding L, Ju H, Yan F. Nanogold-Enriched Carbon Nanohorn Label for Sensitive Electrochemical Detection of Biomarker on a Disposable Immunosensor. ELECTROANAL 2012. [DOI: 10.1002/elan.201200423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
A sandwich HIV p24 amperometric immunosensor based on a direct gold electroplating-modified electrode. Molecules 2012; 17:5988-6000. [PMID: 22609788 PMCID: PMC6268828 DOI: 10.3390/molecules17055988] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/25/2012] [Accepted: 05/09/2012] [Indexed: 11/16/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is a severe communicable immune deficiency disease caused by the human immune deficiency virus (HIV). The analysis laboratory diagnosis of HIV infection is a crucial aspect of controlling AIDS. The p24 antigen, the HIV-1 capsid protein, is of considerable diagnostic interest because it is detectable several days earlier than host-generated HIV antibodies following HIV exposure. We present herein a new sandwich HIV p24 immunosensor based on directly electroplating an electrode surface with gold nanoparticles using chronoamperometry, which greatly increased the conductivity and reversibility of the electrode. Under optimum conditions, the electrochemical signal showed a linear relationship with the concentration of p24, ranging from 0.01 ng/mL to 100 ng/mL (R > 0.99), and the detection limit was 0.008 ng/mL. Compared with ELISA, this method increased the sensitivity by more than two orders of magnitude (the sensitivity of ELISA for p24 is about 1 ng/mL). This immunosensor may be broadly applied to clinical samples, being distinguished by its ease of use, mild reaction conditions, guaranteed reproducibility, and good anti-interference ability.
Collapse
|
49
|
Lai G, Wang L, Wu J, Ju H, Yan F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Anal Chim Acta 2012; 721:1-6. [DOI: 10.1016/j.aca.2012.01.048] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/20/2012] [Accepted: 01/25/2012] [Indexed: 01/08/2023]
|
50
|
Bryan T, Luo X, Forsgren L, Morozova-Roche LA, Davis JJ. The robust electrochemical detection of a Parkinson's disease marker in whole blood sera. Chem Sci 2012. [DOI: 10.1039/c2sc21221h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|