1
|
de Godoy HA, Faria AM, Roza NAV, Bach-Toledo L, Simabuco FM, Scharlack NK, de Oliveira RB, Antunes AEC, Arthur R, Mazon T. Point-of-Care Electrochemical Immunosensor Applied against Nosocomial Infection: Staphylococcus aureus Detection in Human Hand Skin. ACS Infect Dis 2024; 10:1949-1957. [PMID: 38741263 DOI: 10.1021/acsinfecdis.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Staphylococcus aureus is an important pathogen that causes nosocomial infections, resulting in unacceptable morbidity and mortality rates. In this work, we proposed the construction of a nanostructured ZnO-based electrochemical immunosensor for qualitative and semiquantitative detection of S. aureus using simple methods for growing zinc oxide nanorods (ZnO NRs) on a sensor board and immobilizing the anti-S. aureus antibody on ZnO NRs through cystamine and glutaraldehyde. The immunosensor detected S. aureus in the 103-107 colony-forming unit (CFU) mL-1 range and showed a limit of detection (LoD) around 0.792 × 103 CFU mL-1. Beyond a satisfactory LoD, the developed immunosensor presented other advantages, such as high versatility for point-of-care assays and a suitable selective factor that admits the detection of the S. aureus concentration range in human hand skin after washing. Moreover, the immunosensor showed the potential to be an excellent device to control nosocomial infection by detecting the presence of S. aureus in human hand skin.
Collapse
Affiliation(s)
- Henri Alves de Godoy
- School of Technology, State University of Campinas (UNICAMP), 13484-332 Limeira, SP, Brazil
| | - Aline Macedo Faria
- Centro de Tecnologia da Informação Renato Archer, CTI, 13069-901 Campinas, SP, Brazil
| | | | - Larissa Bach-Toledo
- Centro de Tecnologia da Informação Renato Archer, CTI, 13069-901 Campinas, SP, Brazil
| | | | - Nayara Kastem Scharlack
- School of Applied Sciences, State University of Campinas (UNICAMP), 13484-350 Limeira, SP, Brazil
| | | | | | - Rangel Arthur
- School of Technology, State University of Campinas (UNICAMP), 13484-332 Limeira, SP, Brazil
| | - Talita Mazon
- Centro de Tecnologia da Informação Renato Archer, CTI, 13069-901 Campinas, SP, Brazil
| |
Collapse
|
2
|
Gupta R, Singh V, Sarawagi N, Kaur G, Kaur R, Priyadarshi N, Rishi V, Goyal B, Mishra PP, Singhal NK. Salmonella typhimurium detection and ablation using OmpD specific aptamer with non-magnetic and magnetic graphene oxide. Biosens Bioelectron 2023; 234:115354. [PMID: 37126873 DOI: 10.1016/j.bios.2023.115354] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Foodborne diseases have increased in the last few years due to the increased consumption of packaged and contaminated food. Major foodborne bacteria cause diseases such as diarrhea, vomiting, and sometimes death. So, there is a need for early detection of foodborne bacteria as pre-existing detection techniques are time-taking and tedious. Aptamer has gained interest due to its high stability, specificity, and sensitivity. Here, aptamer has been developed against Salmonella Typhimurium through the Cell-Selex method, and to further find the reason for specificity and sensitivity, OmpD protein was isolated, and binding studies were done. Single molecular FRET experiment using aptamer and graphene oxide studies has also been done to understand the mechanism of FRET and subsequently used for target bacterial detection. Using this assay, Salmonella Typhimurium can be detected up to 10 CFU/mL. Further, Magnetic Graphene oxide was used to develop an assay to separate and ablate bacteria using 808 nm NIR where temperature increase was more than 60 °C within 30 s and has been shown by plating as well as a confocal live dead assay. Thus, using various techniques, bacteria can be detected and ablated using specific aptamer and Graphene oxide.
Collapse
Affiliation(s)
- Ritika Gupta
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Vishal Singh
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India; ICMR-National Institute for Implementation Research on Non-Communicable Diseases, New Pali Road, Jodhpur, 342005, Rajasthan, India
| | - Nikita Sarawagi
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India
| | - Gurmeet Kaur
- Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, 147004, Punjab, India
| | - Raminder Kaur
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India
| | - Bhupesh Goyal
- Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, 147004, Punjab, India.
| | - Padmaja P Mishra
- Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, 700064, West Bengal, India; Homi Bhaba National Institute, Mumbai, 400094, Maharashtra, India.
| | - Nitin K Singhal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India.
| |
Collapse
|
3
|
Jha NG, Dkhar DS, Singh SK, Malode SJ, Shetti NP, Chandra P. Engineered Biosensors for Diagnosing Multidrug Resistance in Microbial and Malignant Cells. BIOSENSORS 2023; 13:235. [PMID: 36832001 PMCID: PMC9954051 DOI: 10.3390/bios13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To curtail pathogens or tumors, antimicrobial or antineoplastic drugs have been developed. These drugs target microbial/cancer growth and survival, thereby improving the host's health. In attempts to evade the detrimental effects of such drugs, these cells have evolved several mechanisms over time. Some variants of the cells have developed resistances against multiple drugs or antimicrobial agents. Such microorganisms or cancer cells are said to exhibit multidrug resistance (MDR). The drug resistance status of a cell can be determined by analyzing several genotypic and phenotypic changes, which are brought about by significant physiological and biochemical alterations. Owing to their resilient nature, treatment and management of MDR cases in clinics is arduous and requires a meticulous approach. Currently, techniques such as plating and culturing, biopsy, gene sequencing, and magnetic resonance imaging are prevalent in clinical practices for determining drug resistance status. However, the major drawbacks of using these methods lie in their time-consuming nature and the problem of translating them into point-of-care or mass-detection tools. To overcome the shortcomings of conventional techniques, biosensors with a low detection limit have been engineered to provide quick and reliable results conveniently. These devices are highly versatile in terms of analyte range and quantities that can be detected to report drug resistance in a given sample. A brief introduction to MDR, along with a detailed insight into recent biosensor design trends and use for identifying multidrug-resistant microorganisms and tumors, is presented in this review.
Collapse
Affiliation(s)
- Niharika G. Jha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S. Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Sumit K. Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Shweta J. Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Nagaraj P. Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Panjab, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
4
|
Madhu S, Ramasamy S, Choi J. Recent Developments in Electrochemical Sensors for the Detection of Antibiotic-Resistant Bacteria. Pharmaceuticals (Basel) 2022; 15:ph15121488. [PMID: 36558939 PMCID: PMC9786047 DOI: 10.3390/ph15121488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The development of efficient point-of-care (POC) diagnostic tools for detecting infectious diseases caused by destructive pathogens plays an important role in clinical and environmental monitoring. Nevertheless, evolving complex and inconsistent antibiotic-resistant species mire their drug efficacy. In this regard, substantial effort has been expended to develop electrochemical sensors, which have gained significant interest for advancing POC testing with rapid and accurate detection of resistant bacteria at a low cost compared to conventional phenotype methods. This review concentrates on the recent developments in electrochemical sensing techniques that have been applied to assess the diverse latent antibiotic resistances of pathogenic bacteria. It deliberates the prominence of biorecognition probes and tailor-made nanomaterials used in electrochemical antibiotic susceptibility testing (AST). In addition, the bimodal functional efficacy of nanomaterials that can serve as potential transducer electrodes and the antimicrobial agent was investigated to meet the current requirements in designing sensor module development. In the final section, we discuss the challenges with contemporary AST sensor techniques and extend the key ideas to meet the demands of the next POC electrochemical sensors and antibiotic design modules in the healthcare sector.
Collapse
|
5
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
6
|
In-situ redox-active hybrid graphene platform for label-free electrochemical biosensor: Insights from electrodeposition and electroless deposition. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Yu H, Guo W, Lu X, Xu H, Yang Q, Tan J, Zhang W. Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Yao Y, Pan H, Luo Y, Zhu D, Chao J, Su S, Wang L. A label-free electrochemical sensor for ultrasensitive microRNA-21 analysis based on the poly(l-cysteine)/MoS 2 sensing interface. Analyst 2021; 146:1663-1667. [PMID: 33480363 DOI: 10.1039/d0an02314k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The label-free detection of nucleic acids has attracted interest of scientists due to the fact that it is simple, fast and efficient. Herein, l-cysteine was electropolymerized on the molybdenum disulfide (MoS2) surface to form a stable and electroactive poly(l-cysteine)-functionalized molybdenum disulfide (Pl-Cys/MoS2) sensing interface. Taking microRNA-21 (miRNA-21) as an analytical model, a label-free electrochemical sensor was designed according to the properties of the Pl-Cys/MoS2 sensing interface. Experimental data exhibited that the designed electrochemical sensor exhibited excellent sensitivity, selectivity and stability towards miRNA-21 detection in buffer and real samples. This study offers a methodology to construct a label-free sensing interface by combining MoS2 nanosheets and electroactive molecules.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Castillo RM, Ramos E, Martínez A. Interaction of graphene with antipsychotic drugs: Is there any charge transfer process? J Comput Chem 2020; 42:60-65. [DOI: 10.1002/jcc.26433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Roxana M. Castillo
- Departamento de Física, Facultad de Ciencias Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria CDMX Mexico
| | - Estrella Ramos
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria CDMX Mexico
| | - Ana Martínez
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria CDMX Mexico
| |
Collapse
|
11
|
Qiang L, Zhang Y, Wu C, Han Y, Wang S, Wang Y, Zhang C, Liu G, Wu Q, Liu H, Jenkinson IR, Sun J, Han L. A Facile and Sensitive DNA Sensing of Harmful Algal Blooms Based on Graphene Oxide Nanosheets. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:498-510. [PMID: 32358654 DOI: 10.1007/s10126-020-09971-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Gene detection has important applications in biology, biomedical engineering, clinical, environmental, and marine fields. Rapid, sensitive, and selective recognition of specific genes is essential in practical applications. In this study, we describe a facile and sensitive DNA sensing platform for specific and quantitative detection of Heterosigma akashiwo, which is one of the causative agents of red tides. Fast and sensitive detection is achieved by using chemically synthesized graphene oxide (GO) nanosheets. Probe DNA is designed according to the specific DNA fragments of harmful algae and labeled with fluorescent molecules FAM (fluorescein-based dye). GO nanosheet solution is made, in which the strong interaction between FAM-labeled probe and GO nanosheets keeps them in close proximity, facilitating the fluorescence quenching of the fluorophore by GO nanosheets. In the presence of a complementary target DNA, the FAM-labeled DNA probe and the target DNA hybridize and desorb from the surface of GO nanosheets, resulting in restoration of fluorophore fluorescence. The concentration of target DNA fragments is analyzed by the fluorescence intensity at ~ 520 nm with emission wavelength of 480 nm. The sensitive detecting platform achieved stable measurement of 1 pM specific genes from Heterosigma akashiwo. Our GO nanosheet-based DNA-sensing platform performs fast and sensitive detection of trace amount of DNA, and enables quantitative recognition of harmful algae, which has promising applications in real-time monitoring in the marine environment of red tide generative dynamics, allowing effective control, particularly in relation to marine aquaculture.
Collapse
Affiliation(s)
- Le Qiang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Chao Wu
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yingkuan Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
- School of Microelectronics, Shandong University, Jinan, 250010, China
| | - Suchun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yanyan Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Congcong Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Guangzhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Qi Wu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, Jinan, 250100, Shandong, China
| | - Ian R Jenkinson
- Agency for Consultation and Research in Oceanography, 19320, La Roche Canillac, France
| | - Jun Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
12
|
Integrated Electrochemical Biosensors for Detection of Waterborne Pathogens in Low-Resource Settings. BIOSENSORS-BASEL 2020; 10:bios10040036. [PMID: 32294961 PMCID: PMC7236604 DOI: 10.3390/bios10040036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
More than 783 million people worldwide are currently without access to clean and safe water. Approximately 1 in 5 cases of mortality due to waterborne diseases involve children, and over 1.5 million cases of waterborne disease occur every year. In the developing world, this makes waterborne diseases the second highest cause of mortality. Such cases of waterborne disease are thought to be caused by poor sanitation, water infrastructure, public knowledge, and lack of suitable water monitoring systems. Conventional laboratory-based techniques are inadequate for effective on-site water quality monitoring purposes. This is due to their need for excessive equipment, operational complexity, lack of affordability, and long sample collection to data analysis times. In this review, we discuss the conventional techniques used in modern-day water quality testing. We discuss the future challenges of water quality testing in the developing world and how conventional techniques fall short of these challenges. Finally, we discuss the development of electrochemical biosensors and current research on the integration of these devices with microfluidic components to develop truly integrated, portable, simple to use and cost-effective devices for use by local environmental agencies, NGOs, and local communities in low-resource settings.
Collapse
|
13
|
Li Y, Feng X, Ma Y, Chen T, Ji W, Ma X, Chen Y, Xu H. Temperature and magnetic dual responsive restricted access material for the extraction of malachite green from crucian and shrimp samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj00230e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A restricted access material that does not need organic solvents during elution was prepared for the extraction of malachite green.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Xiangzhi Feng
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Yulong Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Tong Chen
- Comprehensive Technology Centre
- Zhenjiang Customs District
- Zhenjiang
- China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Xiaoxia Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- College of Chemistry and Chemical Engineering
| | - Yang Chen
- Shanghe New Materials Company
- Zhenjiang
- China
| | - Hong Xu
- Zhenjiang Centre for Disease Control and Prevention
- Zhenjiang 212000
- China
| |
Collapse
|
14
|
Tite T, Chiticaru EA, Burns JS, Ioniţă M. Impact of nano-morphology, lattice defects and conductivity on the performance of graphene based electrochemical biosensors. J Nanobiotechnology 2019; 17:101. [PMID: 31581949 PMCID: PMC6777027 DOI: 10.1186/s12951-019-0535-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Diverse properties of graphenic materials have been extensively explored to determine properties that make good electrochemical nanomaterial-based biosensors. These are reviewed by critically examining the influence of graphene nano-morphology, lattice defects and conductivity. Stability, reproducibility and fabrication are discussed together with sensitivity and selectivity. We provide an outlook on future directions for building efficient electrochemical biosensors.
Collapse
Affiliation(s)
- Teddy Tite
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Elena Alina Chiticaru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Jorge S. Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ioniţă
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
15
|
|
16
|
Singh S, Moudgil A, Mishra N, Das S, Mishra P. Vancomycin functionalized WO3 thin film-based impedance sensor for efficient capture and highly selective detection of Gram-positive bacteria. Biosens Bioelectron 2019; 136:23-30. [DOI: 10.1016/j.bios.2019.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
|
17
|
McCutcheon K, Bandara AB, Zuo Z, Heflin JR, Inzana TJ. The Application of a Nanomaterial Optical Fiber Biosensor Assay for Identification of Brucella Nomenspecies. BIOSENSORS 2019; 9:E64. [PMID: 31117228 PMCID: PMC6627525 DOI: 10.3390/bios9020064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022]
Abstract
Bacteria in the genus Brucella are the cause of brucellosis in humans and many domestic and wild animals. A rapid and culture-free detection assay to detect Brucella in clinical samples would be highly valuable. Nanomaterial optical fiber biosensors (NOFS) are capable of recognizing DNA hybridization events or other analyte interactions with high specificity and sensitivity. Therefore, a NOFS assay was developed to detect Brucella DNA from cultures and in tissue samples from infected mice. An ionic self-assembled multilayer (ISAM) film was coupled to a long-period grating optical fiber, and a nucleotide probe complementary to the Brucella IS711 region and modified with biotin was bound to the ISAM by covalent conjugation. When the ISAM/probe duplex was exposed to lysate containing ≥100 killed cells of Brucella, or liver or spleen tissue extracts from Brucella-infected mice, substantial attenuation of light transmission occurred, whereas exposure of the complexed fiber to non-Brucella gram-negative bacteria or control tissue samples resulted in negligible attenuation of light transmission. Oligonucleotide probes specific for B. abortus, B. melitensis, and B. suis could also be used to detect and differentiate these three nomenspecies. In summary, the NOFS biosensor assay detected three nomenspecies of Brucella without the use of polymerase chain reaction within 30 min and could specifically detect low numbers of this bacterium in clinical samples.
Collapse
Affiliation(s)
- Kelly McCutcheon
- Department of Physics, College of Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Aloka B Bandara
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Ziwei Zuo
- Department of Physics, College of Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - James R Heflin
- Department of Physics, College of Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Thomas J Inzana
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
- Long Island University, Brookville, NY 11548, USA.
| |
Collapse
|
18
|
Dikmen G. Synthesis and spectroscopic properties of 1-benzyl-5,6 diamino-2-thiouracil bonded graphene oxide. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Gill AAS, Singh S, Thapliyal N, Karpoormath R. Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Mikrochim Acta 2019; 186:114. [PMID: 30648216 DOI: 10.1007/s00604-018-3186-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a number of life-threatening complications in humans. Mutations in the genetic sequence of S. aureus due to the presence of certain genes results in resistance against β-lactamases. Thus, there is an urgent need for developing highly sensitive techniques for the early detection of MRSA to counter the rise in resistant strains. This review (142 refs.) extensively covers literature reports on nanomaterial-based optical and electrochemical sensors from the year 1983 to date, with particularly emphasis on recent advances in electrochemical sensing (such as voltammetry and impedimetric) and optical sensing (such as colorimetry and fluorometry) techniques. Among the electrochemical methods, various nanomaterials were employed for the modification of electrodes. Whereas, in optical assays, formats such as enzyme linked immunosorbent assay, lateral flow assays or in optical fiber systems are common. In addition, novel sensing platforms are reported by applying advanced nanomaterials which include gold nanoparticles, nanotitania, graphene, graphene-oxide, cadmium telluride and related quantum dots, nanocomposites, upconversion nanoparticles and bacteriophages. Finally, closing remarks and an outlook conclude the review. Graphical abstract Schematic of the diversity of nanomaterial-based methods for detection of methicillin-resistant Staphylococcus aureus (MRSA). AuNPs: gold nanoparticles; QDs: quantum dots; PVL: Panton-Valentine leukocidin; mecA gene: mec-gene complex encoding methicillin resistance.
Collapse
Affiliation(s)
- Atal A S Gill
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Sima Singh
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neeta Thapliyal
- Department of Applied Science, Women Institute of Technology, Sudhowala, Dehradun, Uttarakhand, 248007, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| |
Collapse
|
20
|
Hlongwane GN, Dodoo-Arhin D, Wamwangi D, Daramola MO, Moothi K, Iyuke SE. DNA hybridisation sensors for product authentication and tracing: State of the art and challenges. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1016/j.sajce.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
Bandara AB, Zuo Z, McCutcheon K, Ramachandran S, Heflin JR, Inzana TJ. Identification of Histophilus somni by a nanomaterial optical fiber biosensor assay. J Vet Diagn Invest 2018; 30:821-829. [PMID: 30264658 PMCID: PMC6505835 DOI: 10.1177/1040638718803665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histophilus somni is an opportunistic pathogen responsible for respiratory and systemic diseases of cattle and sheep. Rapid and accurate detection of H. somni is essential to distinguish H. somni from other potential pathogens for proper control and treatment of infections. Nanomaterial optical fiber biosensors (NOFS) recognize analyte interactions, such as DNA hybridization, with high specificity and sensitivity, and were applied to detect H. somni DNA in culture and clinical samples. An ionic self-assembled multilayer (ISAM) film was fabricated on a long-period grating optical fiber, and a biotinylated, nucleotide probe complementary to the H. somni 16S rDNA gene was coupled to the ISAM film. Exposure of the ISAM::probe to ⩾100 killed cells of H. somni strain 2336 without DNA amplification resulted in attenuation of light transmission of ⩾9.4%. Exposure of the complexed fiber to Escherichia coli or non- H. somni species of Pasteurellaceae reduced light transmission by ⩽3.4%. Exposure of the ISAM::probe to blood, bronchoalveolar fluid, or spleen from mice or calves infected with H. somni resulted in ⩾24.3% transmission attenuation. The assay correctly detected all 6 strains of H. somni tested from culture, or tissues from 3 separate mice and calves tested in duplicate. Six heterologous strains (representing 6 genera) reacted at below the cutoff value of 4.87% attenuation of light transmission. NOFS detected at least 100 H. somni cells without DNA amplification within 45 min with high specificity. Although different fibers could vary in signal sensitivity, this did not affect the sensitivity or specificity of the assay.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas J. Inzana
- Thomas J. Inzana, College of Veterinary Medicine, Long Island University, Brookville, NY 11548.
| |
Collapse
|
22
|
Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology 2018; 16:75. [PMID: 30243292 PMCID: PMC6150956 DOI: 10.1186/s12951-018-0400-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
Graphene's unique physical structure, as well as its chemical and electrical properties, make it ideal for use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine and modified graphene with nanoparticles and polymers. Several of these platforms were used to immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed based on its chemical composition. These methods include covalent bonding, such as the coupling of the biomolecules via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide reactions, and physisorption. In the literature, several detection methods are employed; however, the most common is electrochemical. The main reason for researchers to use this detection approach is because this method is simple, rapid and presents good sensitivity. These biosensors can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen detection. In this review, we will present the research conducted with antibodies, DNA molecules and, enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to diseases.
Collapse
Affiliation(s)
- Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Hang N. Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Sofia K. Fanourakis
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| |
Collapse
|
23
|
Wu X, Mu F, Wang Y, Zhao H. Graphene and Graphene-Based Nanomaterials for DNA Detection: A Review. Molecules 2018; 23:E2050. [PMID: 30115822 PMCID: PMC6222676 DOI: 10.3390/molecules23082050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
DNA detection with high sensitivity and specificity has tremendous potential as molecular diagnostic agents. Graphene and graphene-based nanomaterials, such as graphene nanopore, graphene nanoribbon, graphene oxide, and reduced graphene oxide, graphene-nanoparticle composites, were demonstrated to have unique properties, which have attracted increasing interest towards the application of DNA detection with improved performance. This article comprehensively reviews the most recent trends in DNA detection based on graphene and graphene-related nanomaterials. Based on the current understanding, this review attempts to identify the future directions in which the field is likely to thrive, and stimulate more significant research in this subject.
Collapse
Affiliation(s)
- Xin Wu
- George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA.
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fengwen Mu
- Department of Precision Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Yinghui Wang
- Kunshan Branch, Institute of Microelectronics, Chinese Academy of Sciences, Suzhou 215347, China.
| | - Haiyan Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Anal Chim Acta 2018; 1044:102-109. [PMID: 30442390 DOI: 10.1016/j.aca.2018.07.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/13/2023]
Abstract
A label-free electrochemical DNA sensor based on pyrrolidinyl peptide nucleic acid (acpcPNA)-immobilized on a paper-based analytical device (PAD) was developed. Unlike previous PNA-based electrochemical PAD (ePAD) sensors where the capture element was placed directly on the electrode, acpcPNA was covalently immobilized onto partially oxidized cellulose paper allowing regeneration by simple PAD replacement. As an example application, a sensor probe was designed for Mycobacterium tuberculosis (MTB) detection. The ePAD DNA sensor was used to determine a synthetic 15-base oligonucleotide of MTB by measuring the fractional change in the charge transfer resistance (Rct) obtained from electrochemical impedance spectroscopy (EIS). The Rct of [Fe(CN)6]3-/4- before and after hybridization with the target DNA could be clearly distinguished. Cyclic voltammetry (CV) was used to verify the EIS results, and showed an increase in peak potential splitting in a similar stepwise manner for each immobilization step. Under optimal conditions, a linear calibration curve in the range of 2-200 nM and the limit of detection 1.24 nM were measured. The acpcPNA probe exhibited very high selectivity for complementary oligonucleotides over single-base-mismatch, two-base-mismatch and non-complementary DNA targets due to the conformationally constrained structure of the acpcPNA. Moreover, the ePAD DNA sensor platform was successfully applied to detect PCR-amplified MTB DNA extracted from clinical samples. The proposed paper-based electrochemical DNA sensor has potential to be an alternative device for low-cost, simple, label-free, sensitive and selective DNA sensor.
Collapse
|
25
|
Tang M, Zhou Z, Shangguan L, Zhao F, Liu S. Electrochemiluminescent detection of cardiac troponin I by using soybean peroxidase labeled-antibody as signal amplifier. Talanta 2018; 180:47-53. [PMID: 29332832 DOI: 10.1016/j.talanta.2017.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
This work proposed an electrochemiluminescence (ECL) immunosensor for quantitative monitoring of cardiac troponin I (cTnI) in plasma with soybean peroxidase (SBP) labeled-antibody as signal amplifier. The ECL sandwich immunosensor was constructed by covalent binding anti-cTnI capture antibody (Ab1) to polyethylenimine-functionalized graphene matrix, which was obtained by a simple hydrothermal reaction between polyethylenimine (PEI) and graphene oxide (GO). After that, the SBP-labeled detection antibody (SBP-Ab2), synthesized by NaIO4 method, was immobilized on the surface of electrode through sandwich immunoreaction. The SBP on electrode surface displayed strong and stable ECL signal of luminol in the presence of H2O2, which could be used for cTnI detection with a concentration range of 5-30,000pg/mL and a detection limit of 3.3pg/mL. This proposed SBP-modified immunosensor displayed high sensitivity, selectivity and accuracy, and was expected not only to detect cTnI in practical human plasma sample but also to be used in other biomarkers detection.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | | | - Li Shangguan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fang Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
26
|
Mirzaee M, Dehghanian C, Sabet Bokati K. One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Yang T, Chen H, Qiu Z, Yu R, Luo S, Li W, Jiao K. Direct Electrochemical Vibrio DNA Sensing Adopting Highly Stable Graphene-Flavin Mononucleotide Aqueous Dispersion Modified Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4540-4547. [PMID: 29334458 DOI: 10.1021/acsami.7b18212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A biofunctionalized graphene nanohybrid was prepared by simultaneously sonicating graphene and riboflavin 5'-monophosphate sodium salt (FMNS). FMNS, as a biodispersant, showed an efficient stabilization for obtaining highly dispersed graphene nanosheets in an aqueous solution. Due to the superior dispersion of graphene and the excellent electrochemical redox activity of FMNS, a direct electrochemical DNA sensor was fabricated by adopting the inherent electrochemical redox activity of graphene-FMNS (Gr-FMNS). The comparison between using traditional electrochemical indicator ([Fe(CN)6]3-/4-) and using the self-signal of Gr-FMNS was fully conducted to study the DNA-sensing performance. The results indicate that the proposed DNA-sensing platform displays fine selectivity, high sensitivity, good stability, and reproducibility using either [Fe(CN)6]3-/4- probe or the self-signal of Gr-FMNS. The two methods display the same level of detection limit: 7.4 × 10-17 M (using [Fe(CN)6]3-/4-) and 8.3 × 10-17 M (using self-signal), respectively, and the latter exhibits higher sensitivity. Furthermore, the sensing platform also can be applied for the DNA determination in real samples.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, P. R. China
| | - Huaiyin Chen
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, P. R. China
- Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, P. R. China
| | - Zhiwei Qiu
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, P. R. China
| | - Renzhong Yu
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, P. R. China
| | - Shizhong Luo
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, P. R. China
| | - Weihua Li
- Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, P. R. China
- Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University , Zhuhai 519082, P. R. China
| | - Kui Jiao
- Key Laboratory of Sensor Analysis of Tumor Marker of Education Ministry, Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, P. R. China
| |
Collapse
|
28
|
Electrochemical detection of microRNAs by graphene oxide modified disposable graphite electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Graphene-Based Nanomaterials and Their Applications in Biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:61-71. [PMID: 30471026 DOI: 10.1007/978-981-13-0445-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently graphene has been drawing tremendous attention mainly due to its potential contributions to applications in biology, information technology and energy. Among these applications graphene-based biosensors have been particularly progressed caused in part by development of diverse derivatives of graphene such as graphene oxides (GOs) and graphene quantum dots (GQDs). In this chapter preparation and functionalization of the graphene and GOQs are described together with their optoelectronic properties. Recent progresses in graphene and GQD-based biosensors are also highlighted with emphasis on immunoassay which utilizes unique interaction between antigen and antibody, and oligonucleotide assay which utilizes hybridization process. Since electrical and optical features are the most prominent characteristics of graphene-based nanomaterials, biosensor systems will be focused on electrochemical and fluorescence-based detection scheme.
Collapse
|
30
|
Zhai L, Li L, Zhang Q. Fabrication of capsaicin functionalized reduced graphene oxide and its effect on proliferation and differentiation of osteoblasts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:41-45. [PMID: 29175712 DOI: 10.1016/j.etap.2017.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Herein, we report a new simple and biological approach for the preparation of capsaicin adsorbed reduced graphene oxide (RGO), where capsaicin acts as a stabilizing and deoxygenating agent. The capsaicin that is decorated on graphene surface plays an important role as a capping agent to avoid the aggregation of graphene sheets. The capsaicin functionalized RGO stimulated the differentiation and proliferation of osteoblasts to a larger extent, which is a significant feature for the use of biomaterials in biomedical application such as in bone tissue engineering, more speciafically in the case of diseases such as osteoporosis.
Collapse
Affiliation(s)
- Liansuo Zhai
- Department of Orthopedics, Jiyang County People's Hospital, Jinan, Shandong, 251400, China.
| | - Lin Li
- Department of Orthopedics, Jiyang County People's Hospital, Jinan, Shandong, 251400, China
| | - Qi Zhang
- Department of Orthopedics, Jiyang County People's Hospital, Jinan, Shandong, 251400, China
| |
Collapse
|
31
|
Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samorì P. Chemical sensing with 2D materials. Chem Soc Rev 2018; 47:4860-4908. [DOI: 10.1039/c8cs00417j] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the last decade, two-dimensional materials (2DMs) have attracted great attention due to their unique chemical and physical properties, which make them appealing platforms for diverse applications in sensing of gas, metal ions as well as relevant chemical entities.
Collapse
Affiliation(s)
| | - Włodzimierz Czepa
- Faculty of Chemistry
- Adam Mickiewicz University
- 61614 Poznań
- Poland
- Centre for Advanced Technologies
| | | | | | | | - Paolo Samorì
- Université de Strasbourg
- CNRS
- ISIS
- 67000 Strasbourg
- France
| |
Collapse
|
32
|
Bhardwaj N, Bhardwaj SK, Mehta J, Kim KH, Deep A. MOF-Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33589-33598. [PMID: 28891643 DOI: 10.1021/acsami.7b07818] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To produce a sensitive and specific biosensor for Staphylococcus aureus, bacteriophages have been interfaced with a water-dispersible and environmentally stable metal-organic framework (MOF), NH2-MIL-53(Fe). The conjugation of the MOF with bacteriophages has been achieved through the use of glutaraldehyde as cross-linker. Highly sensitive detection of S. aureus in both synthetic and real samples was realized by the proposed MOF-bacteriophage biosensor based on the photoluminescence quenching phenomena: limit of detection (31 CFU/mL) and range of detection (40 to 4 × 108 CFU/mL). This is the first report exploiting the use of an MOF-bacteriophage complex for the biosensing of S. aureus. The results of our study highlight that the proposed biosensor is more sensitive than most of the previous methods while exhibiting some advanced features like specificity, regenerability, extended range of linear detection, and stability for long-term storage (even at room temperature).
Collapse
Affiliation(s)
- Neha Bhardwaj
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO) , Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR-CSIO) , Chandigarh 160030, India
| | - Sanjeev K Bhardwaj
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO) , Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR-CSIO) , Chandigarh 160030, India
| | - Jyotsana Mehta
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO) , Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR-CSIO) , Chandigarh 160030, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University , 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Akash Deep
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO) , Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR-CSIO) , Chandigarh 160030, India
| |
Collapse
|
33
|
Ribovski L, Zucolotto V, Janegitz BC. A label-free electrochemical DNA sensor to identify breast cancer susceptibility. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Hulme J. Recent advances in the detection of methicillin resistant Staphylococcus aureus (MRSA). BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-016-1201-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Zhao Y, Yang X, Han D, Qi H, Gao Q, Zhang C. Cyclometalated Iridium-Complex-Based Label-Free Supersandwich Electrogenerated Chemiluminescence Biosensor for the Detection of Micro-RNA. ChemElectroChem 2017. [DOI: 10.1002/celc.201600881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Danjuan Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| |
Collapse
|
36
|
Rao KS, Narasimha G, Manorama SV. Multifunctional Inorganic Nanocomposite of Fe 3O 4@SiO 2@Ru(BiPy) 2(BPC) for DNA Recognition. ChemistrySelect 2017. [DOI: 10.1002/slct.201601912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kandibanda Srinivasa Rao
- Nanomaterials Laboratory; Inorganic and Physical Chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad-500007, T.S. India
| | - Gundeboina Narasimha
- Nanomaterials Laboratory; Inorganic and Physical Chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad-500007, T.S. India
- Academy of Scientific and Innovative research (AcSIR); New Delhi India
| | - Sunkara V. Manorama
- Nanomaterials Laboratory; Inorganic and Physical Chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad-500007, T.S. India
- Academy of Scientific and Innovative research (AcSIR); New Delhi India
| |
Collapse
|
37
|
Fan X, Qi Y, Shi Z, Lv Y, Guo Y. Molecular mechanism of helicase on graphene-based hybridization reaction platform for microRNA detection. RSC Adv 2017. [DOI: 10.1039/c7ra06203f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Escherichia coli RecQ helicase was introduced for the first time to demonstrate its molecular mechanism on hybridization reaction for the detection of microRNA, using graphene oxide (GO) as nano-quencher.
Collapse
Affiliation(s)
- Xiaojun Fan
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Yi Qi
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Zhaoyi Shi
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Yongkang Lv
- Key Laboratory of Coal Science and Technology
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Yujing Guo
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
38
|
Rapid detection of single nucleotide mutation in p53 gene based on gold nanoparticles decorated on graphene nanosheets. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1198-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Ranjan S, Dasgupta N. Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:252-258. [PMID: 28011435 DOI: 10.1016/j.jphotobiol.2016.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 02/03/2023]
Abstract
In this paper, we report an enzyme dependent, green one-pot deoxygenation cum decoration method to synthesize diastase-conjugated reduced graphene oxide (DRG) nanosheets, DRG/gold nanoparticles (DRG/Au) composite. The DRG synthesis was completed in 7h under heating at 90°C on water bath. Selected area electron diffraction (SAED) and Atomic force microscopy (AFM) study has revealed the formation of bilayered reduced graphene oxide sheets. Transmission electron microscopy (TEM) images of DRG/Au composite have shown the uniform decoration of gold nanoparticles (AuNPs) onto the DRG nanosheet surface. Fourier transform infrared spectroscopy (FTIR) and Raman results additionally have shown the functionalization of enzyme molecules onto the DRG nanosheet surface after reduction making it as an effective platform towards the efficient binding of gold nanoparticles. In vitro cytotoxicity studies by MTT assay on A549 and HCT116 cell lines exhibited that the cytotoxicity of the prepared graphene oxide (GO), DRG and DRG/Au is dose dependant. These results have shown that this synthetic method is effective for the production of large scale graphene in a low cost, simple and green method. Since this process avoids the use of hazardous and toxic substances, the produced DRG/Au composites are likely to offer various potential applications in biology and medicine.
Collapse
Affiliation(s)
- Sireesh Babu Maddinedi
- The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China; Trace Elements Speciation Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Badal Kumar Mandal
- Trace Elements Speciation Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India.
| | - Sagar Hindurao Patil
- Center for Material Characterization (CMC), National Chemical Laboratory, Pune 411008, India
| | | | - Shivendu Ranjan
- Nano-food Research Group, Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Nandita Dasgupta
- Nano-food Research Group, Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
40
|
Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal Chim Acta 2016; 952:32-40. [PMID: 28010840 DOI: 10.1016/j.aca.2016.11.071] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/21/2016] [Accepted: 11/29/2016] [Indexed: 12/29/2022]
Abstract
A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10-200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer.
Collapse
|
41
|
Saleem W, Salinas C, Watkins B, Garvey G, Sharma AC, Ghosh R. Antibody functionalized graphene biosensor for label-free electrochemical immunosensing of fibrinogen, an indicator of trauma induced coagulopathy. Biosens Bioelectron 2016; 86:522-529. [DOI: 10.1016/j.bios.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/25/2016] [Accepted: 07/04/2016] [Indexed: 01/28/2023]
|
42
|
Han W, Niu WY, Sun B, Shi GC, Cui XQ. Biofabrication of polyphenols stabilized reduced graphene oxide and its anti-tuberculosis activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:305-309. [DOI: 10.1016/j.jphotobiol.2016.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
|
43
|
Wang S, Liu Q, Li H, Li Y, Hao N, Qian J, Zhu W, Wang K. Fabrication of label-free electrochemical impedimetric DNA biosensor for detection of genetically modified soybean by recognizing CaMV 35S promoter. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Photocatalytic electrosensor for label-free and ultrasensitive detection of BRCA1 gene. Biosens Bioelectron 2016; 85:957-963. [DOI: 10.1016/j.bios.2016.05.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
|
45
|
A novel aptameric biosensor based on the self-assembled DNA-WS 2 nanosheet architecture. Talanta 2016; 163:78-84. [PMID: 27886773 DOI: 10.1016/j.talanta.2016.10.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022]
Abstract
It has been reported that tungsten disulfide (WS2) can bind single-stranded DNA (ssDNA) with high affinity while it has less affinity toward double stranded DNA (dsDNA). In this work, for the first time, the high affinity between WS2 and ssDNA was used to construct stable sensing interface for ATP detection. A DNA sequence with -SH at one end was first immobilized on Au electrode. WS2 nanosheets were immobilized on the SH-DNA/Au electrode surface due to the strong affinity between WS2 and ssDNA. Then the WS2 nanosheets were used to immobilize ATP binding aptamer (ABA) through the high affinity between WS2 and ssDNA, too. When ATP reacts with the ABA aptamer, duplex will be formed and dissociated from the WS2 nanosheets. On the basis of this, an electrochemical aptasensor for ATP was fabricated. This ATP sensor showed high sensitivity, selectivity and stability due to the unique WS2-ssDNA interactions and the specific aptamer-target recognition. Furthermore, this strategy was generalized to detect Hg2+ using a mercury-specific aptamer (MSO). This strategy can be expected to offer a promising approach for designing high-performance electrochemical aptasensors for a spectrum of targets.
Collapse
|
46
|
Lee J, Kim J, Kim S, Min DH. Biosensors based on graphene oxide and its biomedical application. Adv Drug Deliv Rev 2016; 105:275-287. [PMID: 27302607 PMCID: PMC7102652 DOI: 10.1016/j.addr.2016.06.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022]
Abstract
Graphene oxide (GO) is one of the most attributed materials for opening new possibilities in the development of next generation biosensors. Due to the coexistence of hydrophobic domain from pristine graphite structure and hydrophilic oxygen containing functional groups, GO exhibits good water dispersibility, biocompatibility, and high affinity for specific biomolecules as well as properties of graphene itself partly depending on preparation methods. These properties of GO provided a lot of opportunities for the development of novel biological sensing platforms, including biosensors based on fluorescence resonance energy transfer (FRET), laser desorption/ionization mass spectrometry (LDI-MS), surface-enhanced Raman spectroscopy (SERS), and electrochemical detection. In this review, we classify GO-based biological sensors developed so far by their signal generation strategy and provide the comprehensive overview of them. In addition, we offer insights into how the GO attributed in each sensor system and how they improved the sensing performance.
Collapse
|
47
|
|
48
|
Sulfonated polyaniline-graphene oxide hybrids: Synthesis and effect of monomer composition on the electrochemical signal for direct DNA detection. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Tu J, Zhao M, Zhan X, Ruan Z, Zhang HL, Li Q, Li Z. Functionalization of graphene by a TPE-containing polymer using nitrogen-based nucleophiles. Polym Chem 2016. [DOI: 10.1039/c6py00631k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the nitrogen-centered anion reaction of PCT and GO, two new hybrids, RGO-PCT-i and RGO-PCT-s, were successfully prepared and applied as potential optical limiting materials.
Collapse
Affiliation(s)
- Jin Tu
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan
- China
| | - Min Zhao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xuejun Zhan
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan
- China
| | - Zhijun Ruan
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan
- China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Qianqian Li
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan
- China
| | - Zhen Li
- Department of Chemistry
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials
- Wuhan University
- Wuhan
- China
| |
Collapse
|
50
|
Wang Y, Bai X, Wen W, Zhang X, Wang S. Ultrasensitive Electrochemical Biosensor for HIV Gene Detection Based on Graphene Stabilized Gold Nanoclusters with Exonuclease Amplification. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18872-9. [PMID: 26252625 DOI: 10.1021/acsami.5b05857] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because human immunodeficiency virus (HIV) has been one of the most terrible viruses in recent decades, early diagnosis of the HIV gene is of great importance for all scientists around the world. In our work, we developed a novel electrochemical biosensor based on one-step ultrasonic synthesized graphene stabilized gold nanocluster (GR/AuNC) modified glassy carbon electrode (GCE) with an exonuclease III (Exo III)-assisted target recycling amplification strategy for the detection of HIV DNA. It is the first time that GR/AuNCs have been used as biosensor platform and aptamer with cytosine-rich base set as capture probe to construct the biosensor. With the combination of cytosine-rich capture probe, good conductivity and high surfaces of GR/AuNCs, and Exo III-assisted target recycling amplification, we realized high sensitivity and good selectivity detection of target HIV DNA with a detection limit of 30 aM (S/N = 3). Furthermore, the proposed biosensor has a promising potential application for target detection in human serum analysis.
Collapse
Affiliation(s)
- Yijia Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| | - Xiaoning Bai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University , Wuhan 430062, People's Republic of China
| |
Collapse
|