1
|
Sung B. In silico modeling of endocrine organ-on-a-chip systems. Math Biosci 2022; 352:108900. [PMID: 36075288 DOI: 10.1016/j.mbs.2022.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
The organ-on-a-chip (OoC) is an artificially reconstructed microphysiological system that is implemented using tissue mimics integrated into miniaturized perfusion devices. OoCs emulate dynamic and physiologically relevant features of the body, which are not available in standard in vitro methods. Furthermore, OoCs provide highly sophisticated multi-organ connectivity and biomechanical cues based on microfluidic platforms. Consequently, they are often considered ideal in vitro systems for mimicking self-regulating biophysical and biochemical networks in vivo where multiple tissues and organs crosstalk through the blood flow, similar to the human endocrine system. Therefore, OoCs have been extensively applied to simulate complex hormone dynamics and endocrine signaling pathways in a mechanistic and fully controlled manner. Mathematical and computational modeling approaches are critical for quantitatively analyzing an OoC and predicting its complex responses. In this review article, recently developed in silico modeling concepts of endocrine OoC systems are summarized, including the mathematical models of tissue-level transport phenomena, microscale fluid dynamics, distant hormone signaling, and heterogeneous cell-cell communication. From this background, whole chip-level analytic approaches in pharmacokinetics and pharmacodynamics will be described with a focus on the spatial and temporal behaviors of absorption, distribution, metabolism, and excretion in endocrine biochips. Finally, quantitative design frameworks for endocrine OoCs are reviewed with respect to support parameter calibration/scaling and enable predictive in vitro-in vivo extrapolations. In particular, we highlight the analytical and numerical modeling strategies of the nonlinear phenomena in endocrine systems on-chip, which are of particular importance in drug screening and environmental health applications.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- Biosensor Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Biosensing Dopamine and L-Epinephrine with Laccase (Trametes pubescens) Immobilized on a Gold Modified Electrode. BIOSENSORS 2022; 12:bios12090719. [PMID: 36140104 PMCID: PMC9496072 DOI: 10.3390/bios12090719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Engineering electrode surfaces through the electrodeposition of gold may provide a range of advantages in the context of biosensor development, such as greatly enhanced surface area, improved conductivity and versatile functionalization. In this work we report on the development of an electrochemical biosensor for the laccase-catalyzed assay of two catecholamines—dopamine and L-epinephrine. Variety of electrochemical techniques—cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy and constant potential amperometry have been used in its characterization. It has been demonstrated that the laccase electrode is capable of sensing dopamine using two distinct techniques—differential pulse voltammetry and constant potential amperometry, the latter being suitable for the assay of L-epinephrine as well. The biosensor response to both catecholamines, examined by constant potential chronoamperometry over the potential range from 0.2 to −0.1 V (vs. Ag|AgCl, sat KCl) showed the highest electrode sensitivity at 0 and −0.1 V. The dependencies of the current density on either catecholamine’s concentration was found to follow the Michaelis—Menten kinetics with apparent constants KMapp = 0.116 ± 0.015 mM for dopamine and KMapp = 0.245 ± 0.031 mM for L-epinephrine and linear dynamic ranges spanning up to 0.10 mM and 0.20 mM, respectively. Calculated limits of detection for both analytes were found to be within the sub-micromolar concentration range. The biosensor applicability to the assay of dopamine concentration in a pharmaceutical product was demonstrated (with recovery rates between 99% and 106%, n = 3).
Collapse
|
3
|
Tian Z, Qin X, Shao F, Li X, Wang Z, Liu S, Wu Y. Electrofluorochromic imaging analysis of dopamine release from living PC12 cells with bipolar nanoelectrodes array. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Racz RR, Kollo M, Racz G, Bulz C, Ackels T, Warner T, Wray W, Kiskin N, Chen C, Ye Z, de Hoz L, Rancz E, Schaefer AT. jULIEs: nanostructured polytrodes for low traumatic extracellular recordings and stimulation in the mammalian brain. J Neural Eng 2022; 19. [PMID: 35108701 DOI: 10.1088/1741-2552/ac514f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Objective Extracellular microelectrode techniques are the most widely used approach to interrogate neuronal populations. Regardless of the manufacturing method, damage to the vasculature and circuit function during probe insertion remains a concern. Reducing the footprint of the penetrating probes is a potential solution to this issue. However, coupling to the extracellular signals requires careful surface engineering. Approach Here, we show that continuously drawn SiO2-insulated ultra-microelectrode fibres offer an attractive substrate to address these challenges. Individual fibres can be fabricated to >10m continuous stretches and a selection of diameters below 30 µm with a low resistance (<100 Ω/m), continuous metal core of <10 µm and atomically flat smooth shank surfaces. To optimize the properties of the miniaturised electrode-tissue interface, we electrodeposit rough Au structures followed by ~20nm IrOx film by electrodeposition resulting in reduction of the interfacial impedance to <500kΩ at 1 kHz. Main results We demonstrate that these ultra-low impedance electrodes (jULIEs) can record and stimulate single and multi-unit activity with minimal tissue disturbance and exceptional signal-to-noise ratio in both superficial (~40µm) and deep (~6mm) structures of the mouse brain. We further show that sensor modifications are stable and probe manufacturing is reproducible. Significance Minimally perturbing bidirectional neural interfacing can reveal circuit function in the mammalian brain in vivo.
Collapse
Affiliation(s)
- Romeo Robert Racz
- Neurophysiology, The Francis Crick Institute, 1 MIdland Road, London, London, NW1 1AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Mihaly Kollo
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Gabriella Racz
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ciprian Bulz
- University of Southampton, University Road, Southampton, Hampshire, SO17 1BJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Tobias Ackels
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Tom Warner
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - William Wray
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Nikolai Kiskin
- Department of Bioengineering, Imperial College London, Exhibition Road, London, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chi Chen
- Department of Neurogenetics, Charité Universitätsmedizin Berlin, Hermann-Rein-Straße 3, Berlin, Berlin, 10117, GERMANY
| | - Zhiwen Ye
- University of Washington, 1959 NE Pacific St., Seattle, Washington, 98195-7420, UNITED STATES
| | - Livia de Hoz
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Virchowweg 6, Berlin, Berlin, 10117, GERMANY
| | - Ede Rancz
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andreas T Schaefer
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
5
|
Soucy JR, Bindas AJ, Koppes AN, Koppes RA. Instrumented Microphysiological Systems for Real-Time Measurement and Manipulation of Cellular Electrochemical Processes. iScience 2019; 21:521-548. [PMID: 31715497 PMCID: PMC6849363 DOI: 10.1016/j.isci.2019.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recent advancements in electronic materials and subsequent surface modifications have facilitated real-time measurements of cellular processes far beyond traditional passive recordings of neurons and muscle cells. Specifically, the functionalization of conductive materials with ligand-binding aptamers has permitted the utilization of traditional electronic materials for bioelectronic sensing. Further, microfabrication techniques have better allowed microfluidic devices to recapitulate the physiological and pathological conditions of complex tissues and organs in vitro or microphysiological systems (MPS). The convergence of these models with advances in biological/biomedical microelectromechanical systems (BioMEMS) instrumentation has rapidly bolstered a wide array of bioelectronic platforms for real-time cellular analytics. In this review, we provide an overview of the sensing techniques that are relevant to MPS development and highlight the different organ systems to integrate instrumentation for measurement and manipulation of cellular function. Special attention is given to how instrumented MPS can disrupt the drug development and fundamental mechanistic discovery processes.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Dervisevic E, Tuck KL, Voelcker NH, Cadarso VJ. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5027. [PMID: 31752167 PMCID: PMC6891382 DOI: 10.3390/s19225027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Lab-on-a-chip sensing technologies have changed how cell biology research is conducted. This review summarises the progress in the lab-on-a-chip devices implemented for the detection of cellular metabolites. The review is divided into two subsections according to the methods used for the metabolite detection. Each section includes a table which summarises the relevant literature and also elaborates the advantages of, and the challenges faced with that particular method. The review continues with a section discussing the achievements attained due to using lab-on-a-chip devices within the specific context. Finally, a concluding section summarises what is to be resolved and discusses the future perspectives.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia;
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Fraser LA, Cheung YW, Kinghorn AB, Guo W, Shiu SCC, Jinata C, Liu M, Bhuyan S, Nan L, Shum HC, Tanner JA. Microfluidic Technology for Nucleic Acid Aptamer Evolution and Application. ACTA ACUST UNITED AC 2019; 3:e1900012. [PMID: 32627415 DOI: 10.1002/adbi.201900012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/12/2019] [Indexed: 12/18/2022]
Abstract
The intersection of microfluidics and aptamer technologies holds particular promise for rapid progress in a plethora of applications across biomedical science and other areas. Here, the influence of microfluidics on the field of aptamers, from traditional capillary electrophoresis approaches through innovative modern-day approaches using micromagnetic beads and emulsion droplets, is reviewed. Miniaturizing aptamer-based bioassays through microfluidics has the potential to transform diagnostics and embedded biosensing in the coming years.
Collapse
Affiliation(s)
- Lewis A Fraser
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Yee-Wai Cheung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Chandra Jinata
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Mengping Liu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Soubhagya Bhuyan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Lang Nan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| |
Collapse
|
8
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 2018; 121:137-152. [DOI: 10.1016/j.bios.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
9
|
Li Y, Sella C, Lemaître F, Guille-Collignon M, Amatore C, Thouin L. Downstream Simultaneous Electrochemical Detection of Primary Reactive Oxygen and Nitrogen Species Released by Cell Populations in an Integrated Microfluidic Device. Anal Chem 2018; 90:9386-9394. [PMID: 29979582 DOI: 10.1021/acs.analchem.8b02039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An innovative microfluidic platform was designed to monitor electrochemically four primary reactive oxygen (ROS) and reactive nitrogen species (RNS) released by aerobic cells. Taking advantage of the space confinement and electrode performances under flow conditions, only a few experiments were sufficient to directly provide significant statistical data relative to the average behavior of cells during oxidative-stress bursts. The microfluidic platform comprised an upstream microchamber for cell culture and four parallel microchannels located downstream for separately detecting H2O2, ONOO-, NO·, and NO2-. Amperometric measurements were performed at highly sensitive Pt-black electrodes implemented in the microchannels. RAW 264.7 macrophage secretions triggered by a calcium ionophore were used as a way to assess the performance, sensitivity, and specificity of the integrated microfluidic device. In comparison with some previous evaluations achieved from single-cell measurements, reproducible and relevant determinations validated the proof of concept of this microfluidic platform for analyzing statistically significant oxidative-stress responses of various cell types.
Collapse
Affiliation(s)
- Yun Li
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Catherine Sella
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Frédéric Lemaître
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Manon Guille-Collignon
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Christian Amatore
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| | - Laurent Thouin
- PASTEUR, Département de chimie , École normale supérieure, PSL Université, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
10
|
Li X, Hu H, Zhao S, Liu YM. Microfluidic Platform with In-Chip Electrophoresis Coupled to Mass Spectrometry for Monitoring Neurochemical Release from Nerve Cells. Anal Chem 2016; 88:5338-44. [PMID: 27111409 DOI: 10.1021/acs.analchem.6b00638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chemical stimulus-induced neurotransmitter release from neuronal cells is well-documented. However, the dynamic changes in neurochemical release remain to be fully explored. In this work, a three-layered microfluidic chip was fabricated and evaluated for studying the dynamics of neurotransmitter release from PC-12 cells. The chip features integration of a nanoliter sized chamber for cell perfusion, pneumatic pressure valves for fluidic control, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Deploying this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) was developed to simultaneously quantify important neurotransmitters, including dopamine (DA), serotonin (5-HT), aspartic acid (Asp), and glutamic acid (Glu) without need for labeling or enrichment. Monitoring neurotransmitter release from PC-12 cells exposed to KCl (or alcohol) revealed that all four neurotransmitters investigated were released. Two release patterns were observed, one for the two monoamine neurotransmitters (i.e., DA and 5-HT) and another for the two amino acid neurotransmitters. Release dynamics for the two monoamine neurotransmitters was significantly different. The cells released DA most quickly and heavily in response to the stimulation. After exposure to the chemical stimulus for 4 min, the DA level in the perfusate from the cells was 86% lower than that at the beginning. Very interestingly, the cells started to release 5-HT in large quantities when they stopped releasing DA. These results suggest that DA and 5-HT are packaged into different vesicle pools and they are mobilized differently in response to chemical stimuli. The microfluidic platform proposed is proven useful for monitoring cellular release in biological studies.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University , 1400 Lynch Street, Jackson, Mississippi 39217, United States.,Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China
| | - Hankun Hu
- Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China.,Zhongnan Hospital, Wuhan University , Wuhan 430071, China
| | - Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University , Guilin 51004, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University , 1400 Lynch Street, Jackson, Mississippi 39217, United States.,Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China
| |
Collapse
|
11
|
Identification of catecholamine neurotransmitters using fluorescence sensor array. Anal Chim Acta 2016; 917:85-92. [DOI: 10.1016/j.aca.2016.02.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 02/07/2023]
|
12
|
Amatore C, Delacotte J, Guille-Collignon M, Lemaître F. Vesicular exocytosis and microdevices - microelectrode arrays. Analyst 2016; 140:3687-95. [PMID: 25803190 DOI: 10.1039/c4an01932f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Among all the analytical techniques capable of monitoring exocytosis in real time at the single cell level, electrochemistry (particularly amperometry at a constant potential) using ultramicroelectrodes has been demonstrated to be an important and convenient tool for more than two decades. Indeed, because the electrochemical sensor is located in the close vicinity of the emitting cell ("artificial synapse" configuration), much data can be gathered from the whole cell activity (secretion frequency) to the individual vesicular release (duration, fluxes or amount of molecules released) with an excellent sensitivity. However, such a single cell analysis and its intrinsic benefits are at the expense of the spatial resolution and/or the number of experiments. The quite recent development of microdevices/microsystems (and mainly the microelectrode arrays (MEAs)) offers in some way a complementary approach either by combining spectroscopy-microscopy or by implementing a multianalysis. Such developments are described and discussed in the present review over the 2005-2014 period.
Collapse
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | |
Collapse
|
13
|
Nahavandi S, Tang SY, Baratchi S, Soffe R, Nahavandi S, Kalantar-zadeh K, Mitchell A, Khoshmanesh K. Microfluidic platforms for the investigation of intercellular signalling mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4810-26. [PMID: 25238429 DOI: 10.1002/smll.201401444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/27/2014] [Indexed: 05/02/2023]
Abstract
Intercellular signalling has been identified as a highly complex process, responsible for orchestrating many physiological functions. While conventional methods of investigation have been useful, their limitations are impeding further development. Microfluidics offers an opportunity to overcome some of these limitations. Most notably, microfluidic systems can emulate the in-vivo environments. Further, they enable exceptionally precise control of the microenvironment, allowing complex mechanisms to be selectively isolated and studied in detail. There has thus been a growing adoption of microfluidic platforms for investigation of cell signalling mechanisms. This review provides an overview of the different signalling mechanisms and discusses the methods used to study them, with a focus on the microfluidic devices developed for this purpose.
Collapse
Affiliation(s)
- Sofia Nahavandi
- Faculty of Medicine, Dentistry, & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lemaître F, Guille Collignon M, Amatore C. Recent advances in Electrochemical Detection of Exocytosis. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 2014; 63:218-231. [PMID: 25105943 DOI: 10.1016/j.bios.2014.07.029] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/03/2014] [Accepted: 07/12/2014] [Indexed: 02/06/2023]
Abstract
Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Center for Systems Biology and Biomedical Center, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Edinson Lucumi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Rafael Gómez-Sjöberg
- Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, United States of America
| | - Ronan M T Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
16
|
Song YS, Bai SJ. Characterization of a single cell of Chlorella in a microfluidic channel using amperometric electrode arrays. Biotechnol Lett 2014; 36:2185-91. [DOI: 10.1007/s10529-014-1594-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
17
|
Rozniecka E, Jonsson-Niedziolka M, Celebanska A, Niedziolka-Jonsson J, Opallo M. Selective electrochemical detection of dopamine in a microfluidic channel on carbon nanoparticulate electrodes. Analyst 2014; 139:2896-903. [DOI: 10.1039/c3an02207b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Ges IA, Brindley RL, Currie KPM, Baudenbacher FJ. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. LAB ON A CHIP 2013; 13:4663-73. [PMID: 24126415 PMCID: PMC3892771 DOI: 10.1039/c3lc50779c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.
Collapse
Affiliation(s)
- Igor A Ges
- Dept. of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235-1631, USA.
| | | | | | | |
Collapse
|
19
|
Wikswo JP, Block FE, Cliffel DE, Goodwin CR, Marasco CC, Markov DA, McLean DL, McLean JA, McKenzie JR, Reiserer RS, Samson PC, Schaffer DK, Seale KT, Sherrod SD. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans Biomed Eng 2013; 60:682-90. [PMID: 23380852 PMCID: PMC3696887 DOI: 10.1109/tbme.2013.2244891] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (μHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 μL for the μHu. We believe that successful mHu and μHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.
Collapse
Affiliation(s)
- John P. Wikswo
- Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics, and Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - Frank E. Block
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631 USA
| | - David E. Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235-1822 USA
| | - Cody R. Goodwin
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235-1822 USA
| | - Christina C. Marasco
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631 USA
| | - Dmitry A. Markov
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232-6840 USA
| | - David L. McLean
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235-1822 USA
| | | | - Ronald S. Reiserer
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - Philip C. Samson
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - David K. Schaffer
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - Kevin T. Seale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631 USA
| | - Stacy D. Sherrod
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| |
Collapse
|
20
|
Ashkenani H, Taher MA. Selective voltammetric determination of Cu(II) based on multiwalled carbon nanotube and nano-porous Cu-ion imprinted polymer. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|