1
|
Feng X, Li P, Xiao M, Li T, Chen B, Wang X, Wang L. Recent advances in the detection of pathogenic microorganisms and toxins based on field-effect transistor biosensors. Crit Rev Food Sci Nutr 2023; 64:9161-9190. [PMID: 37171049 DOI: 10.1080/10408398.2023.2208677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In food safety analysis, the detection and control of foodborne pathogens and their toxins are of great importance. Monitoring of virus transmission is equally important, especially in light of recent findings that coronaviruses have been detected in frozen foods and packages during the current global epidemic of coronavirus disease 2019. In recent years, field-effect transistor (FET) biosensors have attracted considerable scholarly attention for pathogenic microorganisms and toxins detection and sensing due to their rapid response time, high sensitivity, wide dynamic range, high specificity, label-free detection, portability, and cost-effectiveness. FET-based biosensors can be modified with specific recognition elements, thus providing real-time qualitative and semiquantitative analysis. Furthermore, with advances in nanotechnology and device design, various high-performance nanomaterials are gradually applied in the detection of FET-based biosensors. In this article, we review specific detection in different biological recognition elements are immobilized on FET biosensors for the detection of pathogenic microorganisms and toxins, and we also discuss nonspecific detection by FET biosensors. In addition, there are still unresolved challenges in the development and application of FET biosensors for achieving efficient, multiplexed, in situ detection of pathogenic microorganisms and toxins. Therefore, directions for future FET biosensor research and applications are discussed.
Collapse
Affiliation(s)
- Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Li P, Li T, Feng X, Liu D, Zhong Q, Fang X, Liao Z, Wang J, Xiao M, Wang L. A micro-carbon nanotube transistor for ultra-sensitive, label-free, and rapid detection of Staphylococcal enterotoxin C in food. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131033. [PMID: 36812728 DOI: 10.1016/j.jhazmat.2023.131033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Staphylococcal enterotoxin C (SEC) is an enterotoxin produced by Staphylococcus aureus, which can cause intestinal diseases. Therefore, it is of great significance to develop a sensitive detection method for SEC to ensure food safety and prevent foodborne diseases in humans. A field-effect transistor (FET) based on high-purity carbon nanotubes (CNTs) was used as a transducer, and a nucleic acid aptamer with high affinity was used for recognition to capture the target. The results indicated that the biosensor achieved an ultra-low theoretical detection limit of 1.25 fg/mL in PBS, and its good specificity was verified by detecting target analogs. Three typical food homogenates were used as the solution to be measured to verify that the biosensor had a swift response time (within 5 min after sample addition). An additional study with a more significant basa fish sample response also showed excellent sensitivity (theoretical detection limit of 8.15 fg/mL) and a stable detection ratio. In summary, this CNT-FET biosensor enabled the label-free, ultra-sensitive, and fast detection of SEC in complex samples. The FET biosensors could be further used as a universal biosensor platform for the ultrasensitive detection of multiple biological toxic pollutants, thus considerably stopping the spread of harmful substances.
Collapse
Affiliation(s)
- Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Daohe Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Zhu Y, Wei Q, Jin Q, Li G, Zhang Q, Xiao H, Li T, Wei F, Luo Y. Polyethylene Glycol Functionalized Silicon Nanowire Field-Effect Transistor Biosensor for Glucose Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:604. [PMID: 36770565 PMCID: PMC9919870 DOI: 10.3390/nano13030604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Accurate monitoring of blood glucose levels is crucial for the diagnosis of diabetes patients. In this paper, we proposed a simple "mixed-catalyzer layer" modified silicon nanowire field-effect transistor biosensor that enabled direct detection of glucose with low-charge in high ionic strength solutions. A stable screening system was established to overcome Debye screening effect by forming a porous biopolymer layer with polyethylene glycol (PEG) modified on the surface of SiNW. The experimental results show that when the optimal ratio (APTMS:silane-PEG = 2:1) modified the surface of silicon nanowires, glucose oxidase can detect glucose in the concentration range of 10 nM to 10 mM. The sensitivity of the biosensor is calculated to be 0.47 μAcm-2mM-1, its fast response time not exceeding 8 s, and the detection limit is up to 10 nM. This glucose sensor has the advantages of high sensitivity, strong specificity and fast real-time response. Therefore, it has a potential clinical application prospect in disease diagnosis.
Collapse
Affiliation(s)
- Yan Zhu
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
| | - Qianhui Wei
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528051, China
| | - Qingxi Jin
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
| | - Gangrong Li
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528051, China
| | - Qingzhu Zhang
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| | - Han Xiao
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Tengfei Li
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528051, China
| | - Feng Wei
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528051, China
| | - Yingchun Luo
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
4
|
Li Y, Zhou Y, Wang R, Chen Z, Luo X, Wang L, Zhao X, Zhang C, Yu P. Removal of aflatoxin B 1 from aqueous solution using amino-grafted magnetic mesoporous silica prepared from rice husk. Food Chem 2022; 389:132987. [PMID: 35489257 DOI: 10.1016/j.foodchem.2022.132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
It is urgent to solve the contamination of aflatoxin B1 (AFB1) in food and water. In this study, the mesoporous silica was prepared from rice husk, which was then magnetized using the precipitation technique, followed by amino-modification with 3-aminopropyltriethoxysilane, forming amino-grafted magnetic mesoporous silica (NMMS). X-ray diffraction, Fourier transformed infrared spectra, and thermogravimetric analysis showed the successful grafting of amino groups on NMMS with a percentage of grafting up to 13.33%. The NMMS had an adsorption capacity of 169.88 μg/g and a removal rate of 93.43% for AFB1 in aqueous solutions at 20 °C, pH 7.0 for 2.0 h. The adsorption of AFB1 by NMMS followed a quasi-second-order kinetics and fitted well with the Langmuir model. Furthermore, the removal rate of AFB1 by NMMS remained 72.43% after repeating the adsorption-desorption process for five times. This study provided a facile approach to prepare NMMS for effective removal of AFB1.
Collapse
Affiliation(s)
- Ya'nan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Yunyu Zhou
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Wuxi Zodolabs Biotech Co., Ltd, Yanxin Road 311, Wuxi 214174, China
| | - Ren Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiaohu Luo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiuping Zhao
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Chen Zhang
- Wuxi Xinwu Environmental Protection Technology Co., Ltd, Tianshan Road 8-2116, Wuxi 214028, China
| | - Peibin Yu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
5
|
Yadav N, Yadav SS, Chhillar AK, Rana JS. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem Toxicol 2021; 152:112201. [PMID: 33862122 DOI: 10.1016/j.fct.2021.112201] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
6
|
Rodriguez RS, O'Keefe TL, Froehlich C, Lewis RE, Sheldon TR, Haynes CL. Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Anal Chem 2020; 93:23-40. [PMID: 33147958 DOI: 10.1021/acs.analchem.0c04357] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebeca S Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Tana L O'Keefe
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Clarice Froehlich
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Riley E Lewis
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Trever R Sheldon
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples. Food Chem 2020; 336:127713. [PMID: 32768909 DOI: 10.1016/j.foodchem.2020.127713] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022]
Abstract
The presence of multiple mycotoxins in the agricultural products poses a serious threat to the health of humans and animals. Citrinin (CIT) causes slow growth in animals and damages the kidney function. Zearalenone (ZEN) causes chronic poisoning, abnormal functioning and even death in animals. Herein, a dual fluorescent immunochromatographic assay (DF-ICA) based on europium nanoparticles (EuNPs) was developed for the simultaneous detection of CIT and ZEN in the corn samples. After optimization, the limits of detection (LODs), IC50 and average recoveries for the simultaneous determination of CIT and ZEN were 0.06 and 0.11 ng/mL, 0.35 and 0.76 ng/mL, from 86.3% to 111.6% and from 86.6% to 114.4%, respectively. Moreover, the DF-ICA was validated by high performance liquid chromatography (HPLC) analyses, and a satisfactory consistency was obtained. In brief, this work demonstrates the feasibility of DF-ICA for simultaneous monitoring of CIT and ZEN in the corn samples.
Collapse
|
8
|
Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules 2020; 25:molecules25030680. [PMID: 32033448 PMCID: PMC7036789 DOI: 10.3390/molecules25030680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers, in sensing technology, are famous for their role as receptors in versatile applications due to their high specificity and selectivity to a wide range of targets including proteins, small molecules, oligonucleotides, metal ions, viruses, and cells. The outburst of field-effect transistors provides a label-free detection and ultra-sensitive technique with significantly improved results in terms of detection of substances. However, their combination in this field is challenged by several factors. Recent advances in the discovery of aptamers and studies of Field-Effect Transistor (FET) aptasensors overcome these limitations and potentially expand the dominance of aptamers in the biosensor market.
Collapse
|
9
|
Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosens Bioelectron 2019; 143:111603. [DOI: 10.1016/j.bios.2019.111603] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/04/2023]
|
10
|
Gao J, Chen Z, Mao L, Zhang W, Wen W, Zhang X, Wang S. Electrochemiluminescent aptasensor based on resonance energy transfer system between CdTe quantum dots and cyanine dyes for the sensitive detection of Ochratoxin A. Talanta 2019; 199:178-183. [PMID: 30952243 DOI: 10.1016/j.talanta.2019.02.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/27/2019] [Accepted: 02/09/2019] [Indexed: 12/23/2022]
Abstract
In this work, an innovative aptasensor based on electrochemiluminescence resonance energy transfer (ECL-RET) from CdTe quantum dots (QDs) to a cyanine dye (Cy5) fluorophore for the determination of Ochratoxin A (OTA) was fabricated. A strong cathodic ECL emission was obtained by the CdTe QDs modified glassy carbon electrode (GCE). After the immobilization with the capture DNA (cDNA) and the sequential hybridization with the probe DNA-modified Cy5 (pDNA, the aptamer of OTA), the ECL signal enhanced obviously through the ECL-RET. Meanwhile, the spectrum- and distance-related ECL enhancement effect was investigated. When the target OTA was in the presence, the pDNA-Cy5 molecules were released from the electrode surface owing to the specific interaction between OTA and aptamer, resulting in an evident decrease of ECL signal. Under optimal conditions, the developed aptasensor displayed the linear response toward OTA in the wide range of 0.0005-50 ng/mL with a low detection limit of 0.17 pg/mL. With the excellent selectivity, stability and repeatability, the strategy provided an efficient and universal method for the sensitive detection of target in practical application.
Collapse
Affiliation(s)
- Jingwen Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ziyi Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China
| | - Lebao Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
11
|
Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosens Bioelectron 2018; 99:237-243. [DOI: 10.1016/j.bios.2017.07.056] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/21/2017] [Indexed: 01/16/2023]
|
12
|
Recent advances in Nanomaterial-mediated Bio and immune sensors for detection of aflatoxin in food products. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Xu L, Zhang Z, Zhang Q, Li P. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers. Toxins (Basel) 2016; 8:239. [PMID: 27529281 PMCID: PMC4999855 DOI: 10.3390/toxins8080239] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing.
Collapse
Affiliation(s)
- Lin Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection and Test Center for oilseeds Products, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
14
|
Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD. Recent advances in mycotoxins detection. Biosens Bioelectron 2016; 81:532-545. [PMID: 27019032 DOI: 10.1016/j.bios.2016.03.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 01/01/2023]
Abstract
Mycotoxins contamination in both food and feed is inevitable. Mycotoxin toxicity in foodstuff can occur at very low concentrations necessitating early availability of sensitive and reliable methods for their detection. The present research thrust is towards the development of a user friendly biosensor for mycotoxin detection at both academic and industrial levels to replace conventional expensive chromatographic and ELISA techniques. This review critically analyzes the recent research trend towards the construction of immunosensor, aptasensor, enzymatic sensors and others for mycotoxin detection with a reference to label and label free methods, synthesis of new materials including nano dimension, and transuding techniques. Technological aspects in the development of biosensors for mycotoxin detection, current challenges and future prospects are also included to provide a overview and suggestions for future research directions.
Collapse
Affiliation(s)
- Ruchika Chauhan
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Delhi 110042, India.
| | - Tushar Sachdev
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - T Basu
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - B D Malhotra
- Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
15
|
Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 2016; 912:10-23. [DOI: 10.1016/j.aca.2016.01.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
|
16
|
Screening for kidney malfunction using injection moulded plastic urinalysis cartridge. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Li X, Li P, Zhang Q, Li R, Zhang W, Zhang Z, Ding X, Tang X. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosens Bioelectron 2013; 49:426-32. [PMID: 23807236 DOI: 10.1016/j.bios.2013.05.039] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022]
|
18
|
Justino CI, Freitas AC, Amaral JP, Rocha-Santos TA, Cardoso S, Duarte AC. Disposable immunosensors for C-reactive protein based on carbon nanotubes field effect transistors. Talanta 2013; 108:165-70. [DOI: 10.1016/j.talanta.2013.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 11/30/2022]
|
19
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|