1
|
Manimekala T, Sivasubramanian R, Dharmalingam G. Nanomaterial-Based Biosensors using Field-Effect Transistors: A Review. JOURNAL OF ELECTRONIC MATERIALS 2022; 51:1950-1973. [PMID: 35250154 PMCID: PMC8881998 DOI: 10.1007/s11664-022-09492-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
Field-effect transistor biosensors (Bio-FET) have attracted great interest in recent years owing to their distinctive properties like high sensitivity, good selectivity, and easy integration into portable and wearable electronic devices. Bio-FET performance mainly relies on the constituent components such as the bio-recognition layer and the transducer, which ensures device stability, sensitivity, and lifetime. Nanomaterial-based Bio-FETs are excellent candidates for biosensing applications. This review discusses the basic concepts, function, and working principles of Bio-FETs, and focuses on the progress of recent research in Bio-FETs in the sensing of neurotransmitters, glucose, nucleic acids, proteins, viruses, and cancer biomarkers using nanomaterials. Finally, challenges in the development of Bio-FETs, as well as an outlook on the prospects of nano Bio-FET-based sensing in various fields, are discussed.
Collapse
Affiliation(s)
- T. Manimekala
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
- Electrochemical Sensors and Energy Materials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| | - R. Sivasubramanian
- Electrochemical Sensors and Energy Materials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| | - Gnanaprakash Dharmalingam
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| |
Collapse
|
2
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
3
|
Kousseff CJ, Taifakou FE, Neal WG, Palma M, Nielsen CB. Controlling morphology, adhesion, and electrochromic behavior of
PEDOT
films through molecular design and processing. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - William G. Neal
- Department of Chemistry Queen Mary University of London London UK
| | - Matteo Palma
- Department of Chemistry Queen Mary University of London London UK
| | | |
Collapse
|
4
|
Tran VV, Tran NHT, Hwang HS, Chang M. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: Potential for rapid COVID-19 detection. Biosens Bioelectron 2021; 182:113192. [PMID: 33819902 PMCID: PMC7992312 DOI: 10.1016/j.bios.2021.113192] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Rapid, accurate, portable, and large-scale diagnostic technologies for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) are crucial for controlling the coronavirus disease (COVID-19). The current standard technologies, i.e., reverse-transcription polymerase chain reaction, serological assays, and computed tomography (CT) exhibit practical limitations and challenges in case of massive and rapid testing. Biosensors, particularly electrochemical conducting polymer (CP)-based biosensors, are considered as potential alternatives owing to their large advantages such as high selectivity and sensitivity, rapid detection, low cost, simplicity, flexibility, long self-life, and ease of use. Therefore, CP-based biosensors can serve as multisensors, mobile biosensors, and wearable biosensors, facilitating the development of point-of-care (POC) systems and home-use biosensors for COVID-19 detection. However, the application of these biosensors for COVID-19 entails several challenges related to their degradation, low crystallinity, charge transport properties, and weak interaction with biomarkers. To overcome these problems, this study provides scientific evidence for the potential applications of CP-based electrochemical biosensors in COVID-19 detection based on their applications for the detection of various biomarkers such as DNA/RNA, proteins, whole viruses, and antigens. We then propose promising strategies for the development of CP-based electrochemical biosensors for COVID-19 detection.
Collapse
Affiliation(s)
- Vinh Van Tran
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City 700000, Viet Nam; Vietnam National University, HoChiMinh City 700000, Viet Nam
| | - Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea.
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea; Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
5
|
A conductive polymer nanowire including functional quantum dots generated via pulsed laser irradiation for high-sensitivity sensor applications. Sci Rep 2021; 11:11203. [PMID: 34045531 PMCID: PMC8159946 DOI: 10.1038/s41598-021-90460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
The fabrication of functional conductive polymer nanowires (CPNWs), including ultrahigh-sensitive flexible nanosensors has attracted considerable attention in field of the Internet of Things. However, the controllable and space-selective growth of CPNWs remains challenging, and a novel synthetic technique is required. Herein, we demonstrate the synthesis of space-selective CPNWs that include quantum dots (QDs) with changeable optical properties via single-pulse laser irradiation in air at atmospheric pressure. Time-resolved shadowgraphy was applied to monitor the synthetic process of the CPNWs and optimise the process conditions. The electrical conductivity of the CPNWs with QDs (QD-CPNWs) was analysed in the presence and absence of light irradiation and was found to change drastically (over six times) under light irradiation. QD-CPNW synthesis under laser irradiation shows great potential for fabricating highly photosensitive functional nanomaterials and is expected to be applied in the production of ultrahigh-sensitive photosensors in the future.
Collapse
|
6
|
Li SY, Schon BS, Travas-Sejdic J. A Conductive Microfiltration Membrane for In Situ Fouling Detection: Proof-of-Concept Using Model Wine Solutions. Macromol Rapid Commun 2020; 41:e2000303. [PMID: 32767529 DOI: 10.1002/marc.202000303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/04/2020] [Indexed: 11/11/2022]
Abstract
Cross-flow microfiltration, using a microporous membrane, is a well-established technique for wine clarification in oenology because of its cost-effectiveness and high-throughput. However, membrane fouling remains a significant issue for wine filtration in high-throughput systems. Herein, an approach for in situ real-time monitoring of fouling in filtration systems using a conductive filtration membrane and a model fluid for filtration is reported. The membrane is fabricated by embedding poly(3,4-ethylenedioxythiophene) into an electrospun sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene microporous membrane, producing a conductive microfiltration membrane. Measurement of the resistance of the conductive membrane during filtration with the fouling solutions containing pectin, as one of the major foulants in unfiltered wine and pre-fermentation grape juice, shows a time- and concentration-dependent response. This work opens a door to new methodology for in situ monitoring of fouling processes in wine and juice filtration systems.
Collapse
Affiliation(s)
- Sheung-Yin Li
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland CBD, Auckland, 1010, New Zealand.,The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Benjamin S Schon
- The New Zealand Institute for Plant and Food Research Limited, Canterbury Agriculture and Science Centre, 74 Gerald St, Lincoln, 7608, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland CBD, Auckland, 1010, New Zealand.,The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| |
Collapse
|
7
|
A disposable electrochemical sensor based on electrospinning of molecularly imprinted nanohybrid films for highly sensitive determination of the organotin acaricide cyhexatin. Mikrochim Acta 2019; 186:504. [PMID: 31270627 DOI: 10.1007/s00604-019-3631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
Nanofibrous polyporous membranes imprinted with cyhexatin (CYT) were formed via the ordered distribution of the imprints in electrospun nanofibers. The MIPs have a high mass transfer rate and enhanced adsorption capacity. In addition, a printed carbon electrode with enhanced sensitivity was developed via electrochemical fabrication of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). The molecularly imprinted sensor exhibits excellent selectivity and sensitivity for CYT. The structure and morphology of the nanohybrid films were characterized by using scanning electron microscopy, atomic force microscopy and chronoamperometry. The sensing performances were evaluated by cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy by using hexacyanoferrate(IV) as an electrochemical probe. The electrode, best operated at a working potential of around 0.16 V (vs. Ag/AgCl), has a linear response in the 1-800 ng mL-1 CYT concentration range and a detection limit of 0.17 ng mL-1 (at S/N = 3). The sensor demonstrated satisfactory recoveries when applied to the determination of CYT in spiked pear samples. Graphical abstract Schematic presentation of the electrochemical sensor for detection of CYT.
Collapse
|
8
|
Hubbe H, Mendes E, Boukany PE. Polymeric Nanowires for Diagnostic Applications. MICROMACHINES 2019; 10:mi10040225. [PMID: 30934898 PMCID: PMC6523414 DOI: 10.3390/mi10040225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
Polymer nanowire-related research has shown considerable progress over the last decade. The wide variety of materials and the multitude of well-established chemical modifications have made polymer nanowires interesting as a functional part of a diagnostic biosensing device. This review provides an overview of relevant publications addressing the needs for a nanowire-based sensor for biomolecules. Working our way towards the detection methods itself, we review different nanowire fabrication methods and materials. Especially for an electrical signal read-out, the nanowire should persist in a single-wire configuration with well-defined positioning. Thus, the possibility of the alignment of nanowires is discussed. While some fabrication methods immanently yield an aligned single wire, other methods result in disordered structures and have to be manipulated into the desired configuration.
Collapse
Affiliation(s)
- Hendrik Hubbe
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.
| |
Collapse
|
9
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Ahmad R, Mahmoudi T, Ahn MS, Hahn YB. Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosens Bioelectron 2018; 100:312-325. [PMID: 28942344 PMCID: PMC7126762 DOI: 10.1016/j.bios.2017.09.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022]
Abstract
Nanowires (NWs)-based field-effect transistors (FETs) have attracted considerable interest to develop innovative biosensors using NWs of different materials (i.e. semiconductors, polymers, etc.). NWs-based FETs provide significant advantages over the other bulk or non-NWs nanomaterials-based FETs. As the building blocks for FET-based biosensors, one-dimensional NWs offer excellent surface-to-volume ratio and are more suitable and sensitive for sensing applications. During the past decade, FET-based biosensors are smartly designed and used due to their great specificity, sensitivity, and high selectivity. Additionally, they have the advantage of low weight, low cost of mass production, small size and compatible with commercial planar processes for large-scale circuitry. In this respect, we summarize the recent advances of NWs-based FET biosensors for different biomolecule detection i.e. glucose, cholesterol, uric acid, urea, hormone, proteins, nucleotide, biomarkers, etc. A comparative sensing performance, present challenges, and future prospects of NWs-based FET biosensors are discussed in detail.
Collapse
Affiliation(s)
- Rafiq Ahmad
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Tahmineh Mahmoudi
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Min-Sang Ahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Yoon-Bong Hahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
11
|
Zhu B, Travas-Sejdic J. PNA versus DNA in electrochemical gene sensing based on conducting polymers: study of charge and surface blocking effects on the sensor signal. Analyst 2018; 143:687-694. [PMID: 29297913 DOI: 10.1039/c7an01590a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this communication, we present an in-depth study of DNA/DNA, DNA/PNA and PNA/PNA hybridisation on a conducting polymer-modified electrode, measured by means of electrochemical impedance spectroscopy (EIS). DNA or PNA nucleic base sequence probes (where DNA stands for deoxyribonucleic acid and PNA for peptide nucleic acid) were covalently attached onto the sensor surface. As PNA is a non-charged variant of DNA, we investigate the effects of the surface charge and surface blocking by the surface confined probe/target nucleic bases complexes onto the kinetics of redox reaction of Fe(CN)63-/4- couple occurring at the electrode/solution interface that provides electrochemical readout for hybridisation. A range of hybridisation detection experiments were performed, where the surface charge and surface charge density were varied, through varying the charged nature of the probe and the target (i.e. PNA or DNA) and the density of surface-bound PNA and DNA probes. To further the understanding of these effects on the measured electrochemical signal, kinetic studies of the hybridisation reactions were undertaken, and the equilibrium binding constants and binding rate constants for the hybridisation reactions were obtained. The study provides valuable insights to guide future designs of biosensors.
Collapse
Affiliation(s)
- Bicheng Zhu
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
12
|
Aydemir N, Chan E, Baek P, Barker D, Williams DE, Travas-Sejdic J. New immobilisation method for oligonucleotides on electrodes enables highly-sensitive, electrochemical label-free gene sensing. Biosens Bioelectron 2017; 97:128-135. [DOI: 10.1016/j.bios.2017.05.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/16/2017] [Accepted: 05/27/2017] [Indexed: 01/02/2023]
|
13
|
Kerr-Phillips TE, Aydemir N, Chan EWC, Barker D, Malmström J, Plesse C, Travas-Sejdic J. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosens Bioelectron 2017; 100:549-555. [PMID: 29017070 DOI: 10.1016/j.bios.2017.09.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023]
Abstract
A highly selective, label-free sensor for the non-Hodgkin lymphoma gene, with an aM detection limit, utilizing electrochemical impedance spectroscopy (EIS) is presented. The sensor consists of a conducting electrospun fibre mat, surface-grafted with poly(acrylic acid) (PAA) brushes and a conducting polymer sensing element with covalently attached oligonucleotide probes. The sensor was fabricated from electrospun NBR rubber, embedded with poly(3,4-ethylenedioxythiophene) (PEDOT), followed by grafting poly(acrylic acid) brushes and then electrochemically polymerizing a conducting polymer monomer with ssDNA probe sequence pre-attached. The resulting non-Hodgkin lymphoma gene sensor showed a detection limit of 1aM (1 × 10-18mol/L), more than 400 folds lower compared to a thin-film analogue. The sensor presented extraordinary selectivity, with only 1%, 2.7% and 4.6% of the signal recorded for the fully non-complimentary, T-A and G-C base mismatch oligonucleotide sequences, respectively. We suggest that such greatly enhanced selectivity is due to the presence of negatively charged carboxylic acid moieties from PAA grafts that electrostatically repel the non-complementary and mismatch DNA sequences, overcoming the non-specific binding.
Collapse
Affiliation(s)
- Thomas E Kerr-Phillips
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Nihan Aydemir
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Eddie Wai Chi Chan
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Barker
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Jenny Malmström
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand; Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Cedric Plesse
- LPPI-EA2528, Institut des Materiaux, 5 mail Gay Lussac, Neuville sur Oise, Cergy-Pontoise cedex 95031, France
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
14
|
Seyfoddin A, Chan A, Chen WT, Rupenthal ID, Waterhouse GIN, Svirskis D. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur J Pharm Biopharm 2015; 94:419-26. [PMID: 26141345 DOI: 10.1016/j.ejpb.2015.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 01/02/2023]
Abstract
Corticosteroids such as dexamethasone are first line ophthalmic treatment for non-infectious posterior uveitis. Corticosteroids are often administered via intravitreal injection to treat this condition with frequent injections associated with poor treatment adherence and complications such as endophthalmitis. Current ocular implants provide sustained corticosteroid release at predetermined rates and lack the ability for dose individualisation. This study describes the successful fabrication of electrically responsive macroporous polypyrrole (PPy) thin films, and their subsequent application to triggered dexamethasone release. Colloidal crystal films composed of 370nm polymethylmethacrylate colloids were first deposited on ITO coated glass substrates, and subsequently used as sacrificial templates for the fabrication of high surface area, 3-dimensionally ordered macroporous PPy inverse opal (PPy IO) thin films. SEM, UV-Vis reflectance and cyclic voltammetry measurements established that the redox state of the PPy IO films could be controlled via electrical stimulation, which in turn influences both porosity and optical properties of the films. Incorporation of the anti-inflammatory corticosteroid, dexamethasone phosphate (DexP), in the PPy IO films during their fabrication resulted in an effective delivery platform for triggered DexP release. A sustained release profile was observed for the PPy IO-DexP films, bursts of release could be triggered by electrical stimulation. The amount of DexP released from the PPy IO-DexP films was significantly higher than that released from the conventional non-porous PPy-DexP films of comparable mass. Results suggest that electrically responsive PPy IO structures are highly suitable for on-demand drug delivery applications. This technology may enable physicians to fine-tune the required dose according to disease state and patients' needs to enhance the safety and efficacy of corticosteroid treatment.
Collapse
Affiliation(s)
- A Seyfoddin
- School of Pharmacy, The University of Auckland, New Zealand
| | - A Chan
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - W-T Chen
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - I D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, The University of Auckland, New Zealand
| | - G I N Waterhouse
- School of Chemical Sciences, The University of Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.
| | - D Svirskis
- School of Pharmacy, The University of Auckland, New Zealand.
| |
Collapse
|
15
|
Zaffino RL, Galan T, Pardo WA, Mir M, Samitier J. Nanoprobes for enhanced electrochemical DNA sensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:817-27. [DOI: 10.1002/wnan.1344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/07/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Rosa Letizia Zaffino
- Nanobioengineering Laboratory; Institute for Bioengineering of Catalonia (IBEC); Barcelona Spain
- Department of Electronics; Barcelona University (UB); Barcelona Spain
| | - Teresa Galan
- Nanobioengineering Laboratory; Institute for Bioengineering of Catalonia (IBEC); Barcelona Spain
- Department of Electronics; Barcelona University (UB); Barcelona Spain
| | - Wilmer Alfonso Pardo
- Nanobioengineering Laboratory; Institute for Bioengineering of Catalonia (IBEC); Barcelona Spain
- Department of Electronics; Barcelona University (UB); Barcelona Spain
| | - Mònica Mir
- Nanobioengineering Laboratory; Institute for Bioengineering of Catalonia (IBEC); Barcelona Spain
- Centro de Investigación Biomédica en Red de Bioingeniería; Biomateriales y Nanomedicina (CIBER-BBN); Zaragoza Spain
| | - Josep Samitier
- Nanobioengineering Laboratory; Institute for Bioengineering of Catalonia (IBEC); Barcelona Spain
- Department of Electronics; Barcelona University (UB); Barcelona Spain
- Centro de Investigación Biomédica en Red de Bioingeniería; Biomateriales y Nanomedicina (CIBER-BBN); Zaragoza Spain
| |
Collapse
|
16
|
Aydemir N, McArdle H, Patel S, Whitford W, Evans CW, Travas-Sejdic J, Williams DE. A Label-Free, Sensitive, Real-Time, Semiquantitative Electrochemical Measurement Method for DNA Polymerase Amplification (ePCR). Anal Chem 2015; 87:5189-97. [PMID: 25946200 DOI: 10.1021/acs.analchem.5b00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oligonucleotide hybridization to a complementary sequence that is covalently attached to an electrochemically active conducting polymer (ECP) coating the working electrode of an electrochemical cell causes an increase in reaction impedance for the ferro-ferricyanide redox couple. We demonstrate the use of this effect to measure, in real time, the progress of DNA polymerase chain reaction (PCR) amplification of a minor component of a DNA extract. The forward primer is attached to the ECP. The solution contains other PCR components and the redox couple. Each cycle of amplification gives an easily measurable impedance increase. Target concentration can be estimated by cycle count to reach a threshold impedance. As proof of principle, we demonstrate an electrochemical real-time quantitative PCR (e-PCR) measurement in the total DNA extracted from chicken blood of an 844 base pair region of the mitochondrial Cytochrome c oxidase gene, present at ∼1 ppm of total DNA. We show that the detection and semiquantitation of as few as 2 copies/μL of target can be achieved within less than 10 PCR cycles.
Collapse
Affiliation(s)
| | | | - Selina Patel
- ∇School of Biological Sciences, University of Auckland, Auckland 1022, New Zealand
| | - Whitney Whitford
- ∇School of Biological Sciences, University of Auckland, Auckland 1022, New Zealand
| | - Clive W Evans
- ∇School of Biological Sciences, University of Auckland, Auckland 1022, New Zealand
| | | | | |
Collapse
|
17
|
de Lima SV, de Oliveira HP, Andrade CA, de Melo CP. A dielectric study of interpolymer complexes of polyaniline and DNA. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Cui Z, Coletta C, Dazzi A, Lefrançois P, Gervais M, Néron S, Remita S. Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14086-94. [PMID: 25361236 DOI: 10.1021/la5037844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, a novel and extremely facile method for the synthesis of conducting polypyrrole (PPy) was achieved in aqueous solution. This radiolytic method is totally free of template and environmentally friendly compared with traditional chemical methods. According to ultraviolet-visible (UV-vis) spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis, pyrrole (Py) monomers were polymerized into PPy thanks to their oxidation by HO(•) radicals produced by the radiolysis of water when exposed to γ irradiation. The morphology of PPy was characterized by cryo-transmission electron microscopy (cryo-TEM) in aqueous solution and by scanning electron microscopy (SEM) after deposition. In an original way, high-resolution atomic force microscopy, coupled with infrared nanospectroscopy, was used to probe the local chemical composition of PPy nanostructures. The results demonstrated that spherical and chaplet-like PPy nanostructures were formed by γ-radiolysis. Thermogravimetric analysis (TGA) and electronic conductivity measurements showed that radiosynthesized PPy had good thermal stability and an electrical conductivity higher than that of chemically synthesized PPy.
Collapse
Affiliation(s)
- Zhenpeng Cui
- Laboratoire de Chimie Physique, LCP, UMR 8000, CNRS, Université Paris-Sud , Bât. 349, Campus d'Orsay, 15 avenue Jean Perrin, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
19
|
A dopamine sensor based on a carbon paste electrode modified with DNA-doped poly(3,4-ethylenedioxythiophene). Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
DEL VALLE MA, RAMOS AC, ANTILEN MP, HERNANDEZ LA, ARTEAGA GC, DIAZ FR, LOUARN G. Electro-synthesis and Characterization of Polymer Nanostructures from Terthiophene Using Silica Mesoporous Films as Template. ELECTROCHEMISTRY 2014. [DOI: 10.5796/electrochemistry.82.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
|
22
|
Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmström J. Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2014; 2:4593-4609. [DOI: 10.1039/c4tb00598h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fabrication of conductive polymer nanowires and their sensing of nucleic acids, proteins and pathogens is reviewed in this feature article.
Collapse
Affiliation(s)
- J. Travas-Sejdic
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - N. Aydemir
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - B. Kannan
- Revolution Fibres Ltd
- , New Zealand
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
| | - D. E. Williams
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - J. Malmström
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| |
Collapse
|
23
|
Nie T, Xu JK, Lu LM, Zhang KX, Bai L, Wen YP. Electroactive species-doped poly(3,4-ethylenedioxythiophene) films: Enhanced sensitivity for electrochemical simultaneous determination of vitamins B2, B6 and C. Biosens Bioelectron 2013; 50:244-50. [DOI: 10.1016/j.bios.2013.06.057] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 11/27/2022]
|
24
|
Musumeci C, Hutchison JA, Samorì P. Controlling the morphology of conductive PEDOT by in situ electropolymerization: from thin films to nanowires with variable electrical properties. NANOSCALE 2013; 5:7756-7761. [PMID: 23892463 DOI: 10.1039/c3nr03093h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The controlled electrochemical synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) as a model conjugated polymer is described here. We show that the morphology of electrochemically synthesized PEDOT can be finely tuned directly in a device, by carefully guiding the nucleation and growth processes as well as electromigration phenomena, resulting in structures with variable electrical properties.
Collapse
Affiliation(s)
- Chiara Musumeci
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | | | |
Collapse
|
25
|
Nie G, Bai Z, Yu W, Zhang L. Electrochemiluminescence biosensor for Ramos cells based on a nanostructured conducting polymer composite material (PICA‐MWNTs). ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26623] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Guangming Nie
- State Key Laboratory Base of Eco‐chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042 People's Republic of China
| | - Zhimin Bai
- State Key Laboratory Base of Eco‐chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042 People's Republic of China
| | - Wenying Yu
- State Key Laboratory Base of Eco‐chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042 People's Republic of China
| | - Lin Zhang
- State Key Laboratory Base of Eco‐chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042 People's Republic of China
| |
Collapse
|
26
|
A new precursor for conducting polymer-based brush interfaces with electroactivity in aqueous solution. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.11.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Kannan B, Williams DE, Laslau C, Travas-Sejdic J. The electrochemical growth of highly conductive single PEDOT (conducting polymer):BMIPF6 (ionic liquid) nanowires. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33107a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|