1
|
Wang S, Sun Z, Zhao X, Li K, Wang Y, Zhang X. N-C QDs coated with a molecularly imprinted polymer as a fluorescent probe for detection of penicillin. Dalton Trans 2024; 53:6965-6973. [PMID: 38546786 DOI: 10.1039/d3dt04297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Many diseases are due to bacterial infections, which are treated by penicillin. Existing methods for penicillin detection have relatively high requirements for sample storage and processing, personnel professionalism, and instruments. Herein, water-soluble N-C quantum dots (QDs) from wheat straw were synthesized in a green way by using an efficient and simple method. The N-C QDs were modified with an imprinted layer by a gel-sol method. Penicillin selectively quenched the fluorescence emission of N-C QDs@MIP, and a linear relationship was obtained in the concentration range of 1.0 × 10-6-15.2 × 10-6 mol L-1. The reliability of the sensor in real sample analysis was satisfactory with results in the range of 93.6%-100%, and the sensor showed good reproducibility and long-term stability. The study provides a simple strategy to fabricate N-C QDs@MIP with a highly selective recognition ability and opens an avenue to develop highly efficient sensing probes for the detection of antibiotics in biological applications.
Collapse
Affiliation(s)
- Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, China.
| | - Zhihui Sun
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, China.
| | - Xuyang Zhao
- Xianyang Institute of Cultural Relics and Archaeology, Xianyang, 712000, China
| | - Kunhua Li
- Xianyang Institute of Cultural Relics and Archaeology, Xianyang, 712000, China
| | - Yafei Wang
- Xianyang Institute of Cultural Relics and Archaeology, Xianyang, 712000, China
| | - Xijing Zhang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, China.
| |
Collapse
|
2
|
Yilmaz H, Ertaş N, Basan H. Development of a new phosphorescence sensor based on surface molecularly imprinted Mn-doped ZnS quantum dots for detection of melamine in milk products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123818. [PMID: 38157742 DOI: 10.1016/j.saa.2023.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/13/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
This paper presents a novel room temperature phosphorescence sensor (IMIPs-ZnS QDs RTP sensor) based on inorganic surface molecularly imprinted polymers and Mn-doped ZnS quantum dots (QDs) for the rapid detection of trace melamine (MEL) in commercial milk products. The surface of Mn-ZnS QDs was modified with 3-(mercaptopropyl) trimethoxy silane (MPTS). Then, MEL, 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were used as a template/target molecule, functional monomer, and cross-linker, respectively. IMIPs-ZnS QDs RTP sensor was characterized using spectrofluorimeter, UV-Vis spectrophotometer, FT-IR, transmission electron microscope (TEM), and X-ray photoelectron spectrometer (XPS). Detection time and linear range for IMIPs-ZnS QDs RTP sensor were 30 min and 4.0-79.2 µM with a correlation coefficient value of 0.9946, respectively. Furthermore, LOD and LOQ values were calculated using Stern-Volmer equation as 0.29 and 0.97 µM, respectively. Thus, IMIPs-ZnS QDs RTP sensor was successfully applied for the detection of MEL residue in milk samples. Recovery values were in the range of 88.62-90.22 % with relatively high precision values (0.57-0.92 % RSD). Our findings indicate that the developed IMIPs-ZnS QDs RTP sensor exhibits high sensitivity and selectivity towards the MEL in milk sample containing potentially relatively high number of interfering compounds.
Collapse
Affiliation(s)
- Hüma Yilmaz
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, 06330 Ankara, Turkey
| | - Nusret Ertaş
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, 06330 Ankara, Turkey
| | - Hasan Basan
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, 06330 Ankara, Turkey.
| |
Collapse
|
3
|
Zhang X, Wang M, Zhang Y, Zhao P, Cai J, Yao Y, Liang J. Preparation of Molecularly Imprinted Cysteine Modified Zinc Sulfide Quantum Dots Based Sensor for Rapid Detection of Dopamine Hydrochloride. Molecules 2023; 28:molecules28093646. [PMID: 37175056 PMCID: PMC10180347 DOI: 10.3390/molecules28093646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
By combining surface molecular imprinting technology with cysteine-modified ZnS quantum dots, an elegant, molecularly imprinted cysteine-modified Mn2+: ZnS QDs (MIP@ZnS QDs) based fluorescence sensor was successfully developed. The constructed fluorescence sensor is based on a molecularly imprinted polymer (MIP) coated on the surface cysteine-modified ZnS quantum dots and used for rapid fluorescence detection of dopamine hydrochloride. The MIP@ZnS quantum dots possess the advantages of rapid response, high sensitivity, and selectivity for the detection of dopamine hydrochloride molecules. Experimental results show that the adsorption equilibrium time of MIP@ZnS QDs for dopamine hydrochloride molecules is 12 min, and it can selectively capture and bind dopamine in the sample with an imprinting factor of 29.5. The fluorescence quenching of MIP@ZnS QDs has a good linear (R2 = 0.9936) with the concentration of dopamine hydrochloride ranged from 0.01 to 1.0 μM, and the limit of detection is 3.6 nM. In addition, The MIP@ZnS QDs demonstrate good recyclability and stability and are successfully employed for detection of dopamine hydrochloride in urine samples with recoveries was 95.2% to 103.8%. The proposed MIP@ZnS QDs based fluorescent sensor provides a promising approach for food safety detection and drug analysis.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang 473061, China
| | - Meng Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yating Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Pan Zhao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiamei Cai
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yunjian Yao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiarong Liang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
4
|
Samadi-Maybodi A, Abbasifar J, Malekaneh M. New Fluorescent Nanosensor for Determination of Diazepam Using Molecularly Imprinted Mn-doped ZnS Quantum Dots. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127351. [PMID: 36942073 PMCID: PMC10024321 DOI: 10.5812/ijpr-127351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 10/27/2017] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
Abstract
In this study, molecularly imprinted Mn-doped ZnS quantum dots were used as nanosensors to determine diazepam and its metabolites. Mn-doped ZnS quantum dots (QDs) capped with L-cysteine were prepared using a sodium thiosulfate precursor and characterized by various methods. Methacrylic acid was used as a precursor for the synthesis of MIP Mn-doped ZnS QDs and then used to measure diazepam in various samples. The linear dynamic range, coefficient of determination, and detection limit were found to be 0.3 - 250 µmol/L, 0.989 and 8.78 × 10-2 µmol/L, respectively. The interference studies showed that the prepared nanosensor was selective for diazepam and its metabolites.
Collapse
Affiliation(s)
- Abdolraouf Samadi-Maybodi
- Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
- Corresponding Author: Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Javad Abbasifar
- Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
5
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
6
|
Jin S, Li D, Feng X, Fu G. Synthesis of carbon dots-based surface protein-imprinted nanoparticles via sandwich-structured template pre-assemble and post-imprinting modification for enhanced fluorescence detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhang X, Jiao P, Ma Y, Wei Y. Molecular Imprinted ZnS Quantum Dots-Based Sensor for Selective Sulfanilamide Detection. Polymers (Basel) 2022; 14:3540. [PMID: 36080615 PMCID: PMC9459902 DOI: 10.3390/polym14173540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Combining molecular imprinted polymers and water-soluble manganese-doped zinc sulfide quantum dots (Mn2+: ZnS QDs), a new molecule imprinted polymers-based fluorescence sensor was designed. The molecule imprinted quantum dots (MIP@QDs) were constructed by coating molecular imprinted polymers layer on the surface of ZnS: Mn2+ QDs using the surface molecular imprinting technology. The developed MIP@QDs-based sensor was used for rapid and selective fluorescence sensing of sulfanilamide in water samples. The binding experiments showed that the MIP@QDs has rapid fluorescent responses, which are highly selective of and sensitive to the detection of sulfanilamide. The respond time of the MIP@QDs was 5 min, and the imprinting factor was 14.8. Under optimal conditions, the developed MIP@QDs-based sensor shows a good linearity (R2 = 0.9916) over a sulfanilamide concentration range from 2.90 × 10-8 to 2.90 × 10-6 mol L-1, with a detection limit of 3.23 × 10-9 mol L-1. Furthermore, the proposed MIP@QDs-based sensor was applied to the determination of sulfanilamide in real samples, with recoveries of 96.80%-104.33%, exhibiting good recyclability and stability. Experimental results showed that the prepared MIP@QDs has the potential to serve as a selective and sensitive sensor for the fluorescence sensing of sulfonamides in water samples.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang 473061, China
| | - Pengfei Jiao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yihan Ma
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yuping Wei
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
8
|
Synthesis of surface protein-imprinted nanoparticles based on metal coordination and anchored carbon dots for enhanced fluorescence detection. Talanta 2022; 238:123070. [PMID: 34808565 DOI: 10.1016/j.talanta.2021.123070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/14/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022]
Abstract
Molecularly imprinted polymers endowed with photo-luminescent properties have attracted wide research interest in many fields such as biological analysis and diseases diagnosis. Herein, we illustrate a versatile method for the construction of surface protein-imprinted nanoparticles based on metal coordination and anchored carbon dots (CDs) for enhanced fluorescence detection of the target protein. As the fluorescent nanosupports for surface imprinting, CDs-attached SiO2 nanoparticles were synthesized via thiol-ene click chemistry. With histidine (His)-exposed protein as templates, imprinted nanoshells were formed over the nanosupports via copolymerization of a Cu2+-chelating monomer and an oligo (ethylene glycol) monomer, hence producing high-quality imprinted cavities because of both the relatively strong coordination and inhibited non-specific binding. Using lysozyme as a model His-exposed template, the imprinted nanoparticles showed fluorescence enhancement while binding the target protein, and exhibited significantly increased specific fluorescence response than the controls without the metal coordination. They achieved a high imprinting factor of 5.8 and a low limit of detection of 10.1 nM. Furthermore, such sensors were applied to determine lysozyme in diluted chicken egg-white samples with satisfactory recoveries at three spiking levels ranging from 97.9 to 101.4%. Human serum albumin was also used as another template protein for preliminary confirming the generality of the presented strategy.
Collapse
|
9
|
Design and Evaluation of a Competitive Phosphorescent Immunosensor for Aflatoxin M1 Quantification in Milk Samples Using Mn:ZnS Quantum Dots as Antibody Tags. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aflatoxin M1 (AFM1) is one of the most widespread aflatoxins that can be present in the milk of lactating mammals. It can cause carcinogenicity, mutagenesis, teratogenesis, genotoxicity and immunosuppression. The WHO recommends reducing the AFM1 concentration in food products, so the European Commission has set a maximum allowable limit of 0.05 µg L−1 in milk and its products. Thus, there is a need to develop new methodologies to satisfy the demand for reliable, cost-effective, robust and sensitive AFM1 routine controls. In the present work, a competitive phosphorescent immunosensor for AFM1 quantification in milk, based on antibody–antigen recognition and Mn:ZnS quantum dots (d-QDs) as photoluminescent labels, has been developed. Two different assay strategies based on the use of d-QDs as labels of secondary antibodies (direct assay), or of a derivative species of the antigen AFM1-Bovine Serum Albumin (indirect assay) were compared in terms of analytical performance for AFM1 quantification. The best analytical results were obtained with the immunoassay format that uses d-QDs as tags of secondary antibodies (direct assay), and said design was finally selected. The selected immunosensor provided a detection limit for AFM1 quantification of only 0.002 µg L−1, which greatly satisfied the maximum tolerable limit of AFM1 in milk of 0.05 µg L−1. The accuracy, calculated as recovery of AFM1 in fortified skimmed milk samples, ranged from 81 to 90%, with relative standard deviations from 3% to 14%. These results bring to light the good performance of such phosphorescent biosensors as simple and fast alternatives to conventional chromatographic analytical methods.
Collapse
|
10
|
Mukunzi D, Habimana JDD, Li Z, Zou X. Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles. Crit Rev Food Sci Nutr 2022; 63:6034-6068. [PMID: 35048762 DOI: 10.1080/10408398.2022.2027338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecularly imprinted polymers (MIPs) are tailor-made functional composites which selectively recognize and bind the target molecule of interest. MIP composites are products of the massively cross-linked polymer matrices, generated via polymerization, with bio-inspired recognition cavities that are morphologically similar in size, shape and spatial patterns to the target conformation. These features have enabled researchers to expand the field of molecular recognition, more specifically for target with peculiar requirements. Nevertheless, MIPs alone are characterized with weak sensitivity. Besides, nanoparticles (NPs) are remarkably sensitive but also suffer from poor selectivity. Intriguingly, the combination of the two results in a highly sensitive and selective MIP composite. For instance, the conjugation of different functional NPs with MIPs can generate new flexible target capture tools, either a dynamic sensor or a novel drug delivery system. In this regard, although the technology is considered an established and feasible approach, it is still perceived as a burgeoning technology for various fields, which makes it unceasingly worthy reviewing. Therefore, in this review, we attempt to give an update on various custom-made biosensors based on MIPs in combination with various NPs for the detection of mycotoxins, the toxic secondary metabolites of fungi. We first summarize the classification, prevalence, and toxicological characteristics of common mycotoxins. Next, we provide an overview of MIP composites and their characterization, and then segment the role of NPs with respect to common types of MIP-based sensors. At last, conclusions and outlook are discussed.
Collapse
Affiliation(s)
- Daniel Mukunzi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jean de Dieu Habimana
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Yang W, Fang Q, Zhang L, Yin H, Wu C, Zhang W, Huang W, Ni X. Synthesis and characterization of an innovative molecular imprinted polymers based on CdTe QDs fluorescence sensing for selective detection of sulfadimidine. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02714-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Zhang X, Tang B, Li Y, Liu C, Jiao P, Wei Y. Molecularly Imprinted Magnetic Fluorescent Nanocomposite-Based Sensor for Selective Detection of Lysozyme. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1575. [PMID: 34203859 PMCID: PMC8232576 DOI: 10.3390/nano11061575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
A new strategy for the design and construction of molecularly imprinted magnetic fluorescent nanocomposite-based-sensor is proposed. This multifunctional nanocomposite exhibits the necessary optics, magnetism and biocompatibility for use in the selective fluorescence detection of lysozyme. The magnetic fluorescent nanocomposites are prepared by combining carboxyl- functionalized Fe3O4 magnetic nanoparticles with l-cysteine-modified zinc sulfide quantum dots (MNP/QDs). Surface molecular imprinting technology was employed to coat the lysozyme molecularly imprinted polymer (MIP) layer on the MNP/QDs to form a core-shell structure. The molecularly imprinted MNP/QDs (MNP/QD@MIPs) can rapidly separate the target protein and then use fluorescence sensing to detect the protein; this reduces the background interference, and the selectivity and sensitivity of the detection are improved. The molecularly imprinted MNP/QDs sensor presented good linearity over a lysozyme concentration range from 0.2 to 2.0 μM and a detection limit of 4.53 × 10-3 μM for lysozyme. The imprinting factor of the MNP/QD@MIPs was 4.12, and the selectivity coefficient ranged from 3.19 to 3.85. Furthermore, the MNP/QD@MIPs sensor was applied to detect of lysozyme in human urine and egg white samples with recoveries of 95.40-103.33%. Experimental results showed that the prepared MNP/QD@MIPs has potential for selective magnetic separation and fluorescence sensing of target proteins in biological samples.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| | - Bo Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Yansong Li
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| | - Chengbin Liu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| | - Pengfei Jiao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| | - Yuping Wei
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| |
Collapse
|
13
|
A novel luminescence sensor based on porous molecularly imprinted polymer-ZnS quantum dots for selective recognition of paclitaxel. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
15
|
Jiang G, Jia Y, Cui S, Pu S. Photo‐Modulated Reversible Switching of Fluorescence from ZnO Quantum Dots with a Photochromic Diarylethene. ChemistrySelect 2020. [DOI: 10.1002/slct.202002973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Guorong Jiang
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Yanmei Jia
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
- Department of Ecology and environment Yuzhang Normal University Nanchang 330103 P. R. China
| |
Collapse
|
16
|
Zhang L, Luo K, Li D, Zhang Y, Zeng Y, Li J. Chiral molecular imprinted sensor for highly selective determination of D-carnitine in enantiomers via dsDNA-assisted conformation immobilization. Anal Chim Acta 2020; 1136:82-90. [PMID: 33081952 DOI: 10.1016/j.aca.2020.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 02/08/2023]
Abstract
In this paper, a novel approach was established on the basis of a molecularly imprinted technique with the aid of double-stranded deoxyribonucleic acid (dsDNA) embedded in a molecularly imprinted polymer (MIP) membrane as a new functional unit with chiral recognition for highly specific chiral recognition. The chiral molecules were immobilized and anchored in the cavities of the MIP membrane on the basis of the three-dimensional structure of a molecule determined by the functional groups, spatial characterization of the cavities of MIPs, and the spatial orientation with dsDNA embedded in MIPs. D-carnitine was selected as an example of a chiral molecular template, which intercalated into dsDNA immobilized on the gold electrode surface to form dsDNA-D-carnitine complex, and then the complex was embedded in the MIP during electropolymerization. After elution, the stereo-selective cavities were obtained. Our findings have shown that AAAA-TTTT base sequence had high affinity for D-carnitine intercalation. Combined with the electrochemical detection method, MIP sensor was prepared. The selectivity of the MIP sensor to ultratrace D-carnitine was significantly improved; the sensor had remarkable stereo-selectivity and highly chiral specific recognition to D-carnitine, and L-carnitine with a concentration of 10,000 times D-carnitine did not interfere with the detection of D-carnitine in the assay of raceme. The sensor also exhibited high sensitivity to ultratrace D-carnitine determination with a linear response to the concentration of D-carnitine in the range of 3.0 × 10-16 mol/L to 4.0 × 10-13 mol/L, with a detection limit of 2.24 × 10-16 mol/L. The mechanism of chiral recognition was studied, and result showed that apart from the recognition effect of imprinted cavities, dsDNA provided chiral selectivity to the spatial orientation of chiral molecules via the intercalation of chiral molecules with dsDNA and electrostatic interaction with groups of DNA base.
Collapse
Affiliation(s)
- Lianming Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China; College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610000, PR China
| | - Kui Luo
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Dan Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Yufu Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Ying Zeng
- College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610000, PR China
| | - Jianping Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China.
| |
Collapse
|
17
|
Liu Z, Hou J, He Q, Luo X, Huo D, Hou C. New application of Mn-doped ZnS quantum dots: phosphorescent sensor for the rapid screening of chloramphenicol and tetracycline residues. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3513-3522. [PMID: 32672268 DOI: 10.1039/d0ay00961j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a new application of Mn-doped ZnS quantum dots (Mn-ZnS QDs) was developed to screen chloramphenicol (CAP) and tetracycline (TC) residues simply and rapidly. Mn-ZnS QDs synthesized by a hydration method and modified by l-cysteine for better stability emit phosphorescence at 583 nm with the excitation wavelength at 289 nm. Based on the overlap of the Mn-ZnS QDs excitation spectra and CAP or TCs ultraviolet spectra, the excited light of the Mn-ZnS QDs was partially absorbed by CAP or TCs owing to the inner-filter effect (IFE), leading to a decrease in the phosphorescence intensity. The phosphorescence intensities of the samples prepared by mixing different TCs and CAP were in good agreement with the expected results from adding a single antibiotic sample. Therefore, the total molar concentrations of CAP and TCs could be screened based on the linear equation of a single standard substance. Represented by tetracycline (TC), as a member of the tetracycline family, under optimized conditions, showed a good linear relational concentration range over 4 orders of magnitude from 50 to 1.5 × 105 nM with a limit of detection (LOD; S/N ratio = 3) down to 8.6 nM. The phosphorescent sensor was also used to detect total TCs in actual samples successfully. The evaluations of the recovery rate and selectivity were good. These results demonstrated that the presented phosphorescent sensor can be a simple and rapid screening platform for CAP and TCs.
Collapse
Affiliation(s)
- Zhenping Liu
- Chongqing Vocational Institute of Safety & Technology, Chongqing 404000, P. R. China and Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jingzhou Hou
- Key Laboratory of Eco-environment of Three Gorges Region of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Qiang He
- Key Laboratory of Eco-environment of Three Gorges Region of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. and Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
18
|
Silanized carbon dot-based thermo-sensitive molecularly imprinted fluorescent sensor for bovine hemoglobin detection. Anal Bioanal Chem 2020; 412:5811-5817. [PMID: 32651648 DOI: 10.1007/s00216-020-02803-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Using the surface molecular imprinting technique, a thermo-sensitive molecularly imprinted fluorescent sensor was constructed for bovine hemoglobin (BHb) detection with the silanized carbon dots (CD@SiO2) as fluorescent signal, N-isopropylacrylamide as monomer sensitive to temperature, and BHb as template. The silanized carbon dots coated by the molecularly imprinted polymer (CD@SiO2@MIP) were characterized by high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy. Owing to the combination of the strong fluorescence sensitivity of CDs and the high selectivity of the molecular imprinting shell, the prepared sensor showed good recognition and detection performance to the target protein BHb, with a linear range of 0.31-1.55 μM and a detection limit of 1.55 μM. Furthermore, the sensor was utilized to detect the content of BHb in real urine with a recovery of 98.6-100.5%. The CD@SiO2@MIP sensors present a high potential for applications in the detection of BHb in biological systems. Graphical abstract.
Collapse
|
19
|
Patel J, Jain B, Singh AK, Susan MABH, Jean-Paul L. Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Sun Y, Feng X, Hu J, Bo S, Zhang J, Wang W, Li S, Yang Y. Preparation of hemoglobin (Hb)-imprinted poly(ionic liquid)s via Hb-catalyzed eATRP on gold nanodendrites. Anal Bioanal Chem 2019; 412:983-991. [PMID: 31848668 DOI: 10.1007/s00216-019-02324-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/06/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Hemoglobin (Hb)-imprinted poly(ionic liquid)s (HIPILs) were prepared on the surface of Au electrode modified with gold nanodendrites (Au/ND/HIPILs). HIPILs were synthesized with 1-vinyl-3-propyl imidazole sulfonate ionic liquids as functional monomers via electrochemically mediated atom transfer radical polymerization (eATRP) catalyzed by Hb. The Au/ND/HIPILs electrode was examined by cyclic voltammetry (CV), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The Au/ND/HIPILs electrode was also used as an electrochemical sensor to determine Hb by differential pulse voltammetry (DPV). Under the optimal conditions, the detection range of Hb was from 1.0 × 10-14 to 1.0 × 10-4 mg/mL with a limit of detection of 5.22 × 10-15 mg/mL (S/N = 3). Compared with other methods, the sensor based on poly(ionic liquid)s had the broader linear range and lower detection limit. Graphical Abstract.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China.
| | - Xuewei Feng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Jing Hu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Shuang Bo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Jiameng Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Siyu Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Yifei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| |
Collapse
|
21
|
Gui R, Jin H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Sobiech M, Bujak P, Luliński P, Pron A. Semiconductor nanocrystal-polymer hybrid nanomaterials and their application in molecular imprinting. NANOSCALE 2019; 11:12030-12074. [PMID: 31204762 DOI: 10.1039/c9nr02585e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Quantum dots (QDs) are attractive semiconductor fluorescent nanomaterials with remarkable optical and electrical properties. The broad absorption spectra and high stability of QD transducers are advantageous for sensing and bioimaging. Molecular imprinting is a technique for manufacturing synthetic polymeric materials with a high recognition ability towards a target analyte. The high selectivity of the molecularly imprinted polymers (MIPs) is a result of the fabrication process based on the template-tailored polymerization of functional monomers. The three-dimensional cavities formed in the polymer network can serve as the recognition elements of sensors because of their specificity and stability. Appending specific molecularly imprinted layers to QDs is a promising strategy to enhance the stability, sensitivity, and selective fluorescence response of the resulting sensors. By merging the benefits of MIPs and QDs, inventive optical sensors are constructed. In this review, the recent synthetic strategies used for the fabrication of QD nanocrystals emphasizing various approaches to effective functionalization in aqueous environments are discussed followed by a detailed presentation of current advances in QD conjugated MIPs (MIP-QDs). Frontiers in manufacturing of specific imprinted layers of these nanomaterials are presented and factors affecting the specific behaviour of an MIP shell are identified. Finally, current limitations of MIP-QDs are defined and prospects are outlined to amplify the capability of MIP-QDs in future sensing.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Bujak
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Adam Pron
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
23
|
Aflatoxins screening in non-dairy beverages by Mn-doped ZnS quantum dots – Molecularly imprinted polymer fluorescent probe. Talanta 2019; 199:65-71. [DOI: 10.1016/j.talanta.2019.02.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/20/2022]
|
24
|
Miao Y, Sun X, Lv J, Yan G. -Phosphorescent Mesoporous Surface Imprinting Microspheres: Preparation and Application for Transferrin Recognition from Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2264-2272. [PMID: 30589250 DOI: 10.1021/acsami.8b17772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The relationship between the thickness of surface molecularly imprinted polymers (MIPs) and specific recognition performance of transferrin (Trf) as well as the quantitative relation between the grafting amount of Mn-ZnS room-temperature phosphorescence (RTP) quantum dots (QDs) (short for PQDs) and RTP signals for recognition of Trf was analyzed in this study. Based on analysis results, RTP protein mesoporous imprinting microspheres (SiO2-PQDs-MIPs) with high specificity and strong interference resistance were developed using a mesoporous SiO2 nanomaterial that can create more three-dimensional precise recognition sites as the matrix and using PQDs with strong resistance to background fluorescence interference as the luminescent materials. A discriminatory analysis of Trf was realized by the phosphorescence quenching principle based on light quenching caused by the photoinduced electron transfer. The concentration range, limit of detection, relative standard deviation, and imprinting factor of Trf detection under pH 7.4 are 0.05-1.0 μM, 0.014 μM, 3.23%, and 3.09, respectively. Although the sensing signals of SiO2-PQDs-MIPs for proteins are based on the phosphorescence of PQDs, they are particularly suitable for specific recognition and accurate quantitative detection of proteins in biological fluids. Research conclusions are expected to realize high-efficiency recognition of target proteins in actual biological samples.
Collapse
Affiliation(s)
- Yanming Miao
- Shanxi Normal University , Linfen 041004 , P. R. China
| | - Xiaojie Sun
- Shanxi Normal University , Linfen 041004 , P. R. China
| | - Jinzhi Lv
- Shanxi Normal University , Linfen 041004 , P. R. China
| | - Guiqin Yan
- Shanxi Normal University , Linfen 041004 , P. R. China
| |
Collapse
|
25
|
Li R, Feng Y, Pan G, Liu L. Advances in Molecularly Imprinting Technology for Bioanalytical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E177. [PMID: 30621335 PMCID: PMC6338937 DOI: 10.3390/s19010177] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022]
Abstract
In recent years, along with the rapid development of relevant biological fields, there has been a tremendous motivation to combine molecular imprinting technology (MIT) with biosensing. In this situation, bioprobes and biosensors based on molecularly imprinted polymers (MIPs) have emerged as a reliable candidate for a comprehensive range of applications, from biomolecule detection to drug tracking. Unlike their precursors such as classic immunosensors based on antibody binding and natural receptor elements, MIPs create complementary cavities with stronger binding affinity, while their intrinsic artificial polymers facilitate their use in harsh environments. The major objective of this work is to review recent MIP bioprobes and biosensors, especially those used for biomolecules and drugs. In this review, MIP bioprobes and biosensors are categorized by sensing method, including optical sensing, electrochemical sensing, gravimetric sensing and magnetic sensing, respectively. The working mechanism(s) of each sensing method are thoroughly discussed. Moreover, this work aims to present the cutting-edge structures and modifiers offering higher properties and performances, and clearly point out recent efforts dedicated to introduce multi-sensing and multi-functional MIP bioprobes and biosensors applicable to interdisciplinary fields.
Collapse
Affiliation(s)
- Runfa Li
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Yonghai Feng
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Lei Liu
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| |
Collapse
|
26
|
Qin J, Sun X, Li D, Yan G. Phosphorescent immunosensor for simple and sensitive detection of microcystin-LR in water. RSC Adv 2019; 9:12747-12754. [PMID: 35515855 PMCID: PMC9063644 DOI: 10.1039/c9ra02141h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
A simple and sensitive Mn–ZnS quantum dot room-temperature phosphorescent immunosensor for detecting microcystin-LR was developed. This sensor adopted antigens and antibodies as recognition units and used Mn–ZnS RTP QDs as sensing materials to specifically bind with MC-LR. The structurally specific binding between the microcystin-LR antibody and MC-LR led to the aggregation of antibody-crosslinked QDs, and then the electrons of QDs would be transferred to the complex, leading to the phosphorescence quenching of QDs. The microcystin-LR antigen–antibody specific binding site was first analyzed. This phosphorescent immunosensor rapidly and sensitively detected microcystin-LR, with linear ranges of 0.2–1.5 μg L−1 and 1.5–20 μg L−1 and a detection limit of up to 0.024 μg L−1. Meanwhile, coexisting pollutants of microcystin-LR in water did not significantly interfere with microcystin-LR detection. The new sensor was applied to detect real water samples and showed high sensitivity and selectivity. A simple and sensitive Mn–ZnS quantum dot room-temperature phosphorescent immunosensor for detecting microcystin-LR was developed.![]()
Collapse
Affiliation(s)
- Jin Qin
- Shanxi Normal University
- Linfen
- China
| | | | | | | |
Collapse
|
27
|
Han X, Han W, Zhang S, Liu Z, Fu G. PEGylation of protein-imprinted nanocomposites sandwiching CdTe quantum dots with enhanced fluorescence sensing selectivity. RSC Adv 2019; 9:38165-38173. [PMID: 35541800 PMCID: PMC9075826 DOI: 10.1039/c9ra08556d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
PEGylated CdTe quantum dots containing protein-imprinted nanocomposites showing enhanced fluorescence sensing selectivity.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wenyan Han
- Key Laboratory of Bioactive Materials of Ministry of Education
- College of Life Science
- Nankai University
- Tianjin 300071
- China
| | - Shiting Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhiqiang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guoqi Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
28
|
Khataee A, Hassanzadeh J, Kohan E. Specific quantification of atropine using molecularly imprinted polymer on graphene quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:614-621. [PMID: 30077952 DOI: 10.1016/j.saa.2018.07.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 05/25/2023]
Abstract
Herein, development of a reliable and specific fluorometric assay was disclosed for the sensitive detection of atropine. The method was designed using the surface molecularly imprinted polymer on high fluorescent graphene quantum dots (GQDs). Molecularly imprinted polymer capped GQDs (MIP-GQDs) were prepared through the common co-polymerization reaction of 3-(3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), act as the main functional and cross-linking monomers, respectively. The used template for this reaction was atropine. The created blue luminescent MIP-GQDs composite, which had a great affinity to adsorb atropine from the sample solution, could lead to a notable fluorescence quenching. In fact, GQDs act as the recognizing antenna for adsorbed atropine into the specific MIP sites. The linear association between the observed quenching effect and atropine concentration was exploited to design a selective assay to the detection of atropine. After optimization process, a linear calibration graph was achieved in the atropine concentration range of 0.5-300 ng mL-1 with a detection limit of 0.22 ng mL-1. Exploitation of high specific MIP technique along with high fluorescent GQDs provided a highly selective and sensitive assay for atropine as a model analyte. It was adequately utilized for the analysis of atropine in biological samples.
Collapse
Affiliation(s)
- Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Javad Hassanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Elmira Kohan
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| |
Collapse
|
29
|
Molecular Fingerprints of Hemoglobin on a Nanofilm Chip. SENSORS 2018; 18:s18093016. [PMID: 30205614 PMCID: PMC6165033 DOI: 10.3390/s18093016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/05/2023]
Abstract
Hemoglobin is an iron carrying protein in erythrocytes and also an essential element to transfer oxygen from the lungs to the tissues. Abnormalities in hemoglobin concentration are closely correlated with health status and many diseases, including thalassemia, anemia, leukemia, heart disease, and excessive loss of blood. Particularly in resource-constrained settings existing blood analyzers are not readily applicable due to the need for high-level instrumentation and skilled personnel, thereby inexpensive, easy-to-use, and reliable detection methods are needed. Herein, a molecular fingerprints of hemoglobin on a nanofilm chip was obtained for real-time, sensitive, and selective hemoglobin detection using a surface plasmon resonance system. Briefly, through the photopolymerization technique, a template (hemoglobin) was imprinted on a monomeric (acrylamide) nanofilm on-chip using a cross-linker (methylenebisacrylamide) and an initiator-activator pair (ammonium persulfate-tetramethylethylenediamine). The molecularly imprinted nanofilm on-chip was characterized by atomic force microscopy and ellipsometry, followed by benchmarking detection performance of hemoglobin concentrations from 0.0005 mg mL−1 to 1.0 mg mL−1. Theoretical calculations and real-time detection implied that the molecularly imprinted nanofilm on-chip was able to detect as little as 0.00035 mg mL−1 of hemoglobin. In addition, the experimental results of hemoglobin detection on the chip well-fitted with the Langmuir adsorption isotherm model with high correlation coefficient (0.99) and association and dissociation coefficients (39.1 mL mg−1 and 0.03 mg mL−1) suggesting a monolayer binding characteristic. Assessments on selectivity, reusability and storage stability indicated that the presented chip is an alternative approach to current hemoglobin-targeted assays in low-resource regions, as well as antibody-based detection procedures in the field. In the future, this molecularly imprinted nanofilm on-chip can easily be integrated with portable plasmonic detectors, improving its access to these regions, as well as it can be tailored to detect other proteins and biomarkers.
Collapse
|
30
|
Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin. Talanta 2018; 188:145-151. [PMID: 30029356 DOI: 10.1016/j.talanta.2018.05.068] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/11/2018] [Accepted: 05/20/2018] [Indexed: 11/21/2022]
Abstract
A simple and effective method was proposed to prepare an imprinted polymer layer at the surface of magnetic carbon dots with dopamine as the functional monomer for selectively and sensitively fluorescent recognizing bovine hemoglobin. The magnetic fluorescence imprinted polymers were investigated by Fourier-transform infrared spectra, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and vibrating sample magnetometer. Under optimum conditions, the fluorescent intensity decreased linearly coincided with the concentration of bovine hemoglobin in the range of 0.05-16.0 μM with a detection limit of 17.3 nM. The magnetic fluorescence imprinted polymers were used for detecting bovine hemoglobin in real samples with the recoveries of 99.0-104.0%. These results indicated that a convenient method was proposed to develop fluorescent probes for rapid recognition and sensitive detection of trace proteins in real samples.
Collapse
|
31
|
Chantada–Vázquez MP, de–Becerra–Sánchez C, Fernández–del–Río A, Sánchez–González J, Bermejo AM, Bermejo–Barrera P, Moreda–Piñeiro A. Development and application of molecularly imprinted polymer – Mn-doped ZnS quantum dot fluorescent optosensing for cocaine screening in oral fluid and serum. Talanta 2018; 181:232-238. [DOI: 10.1016/j.talanta.2018.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 11/17/2022]
|
32
|
Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L. Molecular Imprinting Based Hybrid Ratiometric Fluorescence Sensor for the Visual Determination of Bovine Hemoglobin. ACS Sens 2018; 3:378-385. [PMID: 29336149 DOI: 10.1021/acssensors.7b00804] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a simple and effective strategy to construct a molecular imprinting ratiometric fluorescence sensor (MIR sensor) for the visual detection of bovine hemoglobin (BHb) used as a model protein. The sensor was prepared by simply mixing the solution of green and red CdTe quantum dots (QDs), which were embedded in core-shell structured molecularly imprinted polymers and silica nanoparticles, respectively. The resultant hybrid MIR sensor can selectively bind with BHb and thus quench the fluorescence of the green QDs, while the red QDs wrapped with silica are insensitive to BHb with the fluorescence intensity unchanged. As a result, a continuous obvious fluorescence color change from green to red can be observed by naked eyes, with the detection limit of 9.6 nM. Moreover, the MIR sensor was successfully applied to determine BHb in bovine urine samples with satisfactory recoveries at three spiking levels ranging from 95.7 to 101.5%, indicating great potential application for detecting BHb in real samples. This strategy of using different fluorescence emission materials incorporated to construct a ratiometric fluorescence sensor is reasonable and convenient, which can be extended to the preparation of other ratiometric fluorescence systems for targeted analytes.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shuangmei Yu
- Radiotherapy
Ward, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Wen Liu
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Longwen Fu
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
33
|
Nejdl L, Zelnickova J, Vaneckova T, Hynek D, Adam V, Vaculovicova M. Rapid preparation of self-assembled CdTe quantum dots used for sensing of DNA in urine. NEW J CHEM 2018. [DOI: 10.1039/c7nj05167k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this article, the authors report a systematic study of the self-assembly of CdTe quantum dots (QDs) stabilized by mercaptosuccinic acid (MSA) at laboratory temperature (25 °C) or after thermal treatment (90 °C).
Collapse
Affiliation(s)
- Lukas Nejdl
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Jaroslava Zelnickova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
| | - Tereza Vaneckova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Vojtech Adam
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
- Central European Institute of Technology
| |
Collapse
|
34
|
Xu J, Sun Y, Chen J, Zhong S. Novel application of amphiphilic block copolymers in Pickering emulsions and selective recognition of proteins. NEW J CHEM 2018. [DOI: 10.1039/c7nj04154c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amphiphilic block copolymer stabilized Pickering high internal phase emulsions and was mildly exfoliated to improve imprinting efficiency.
Collapse
Affiliation(s)
- Jiangfeng Xu
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Yanhua Sun
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Jian Chen
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Shian Zhong
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| |
Collapse
|
35
|
Rapid Detection of Acrylamide in Food Using Mn-Doped ZnS Quantum Dots as a Room Temperature Phosphorescent Probe. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1116-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Culver HR, Peppas NA. Protein-Imprinted Polymers: The Shape of Things to Come? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:5753-5761. [PMID: 30880872 PMCID: PMC6420229 DOI: 10.1021/acs.chemmater.7b01936] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The potential to develop materials with antibody-like molecular recognition properties has helped sustain interest in protein-imprinted polymers over the past several decades. Unfortunately, despite persistent research, the field of noncovalent protein imprinting has seen limited success in terms of achieving materials with high selectivity and high affinity. In this Perspective, important yet sometimes overlooked aspects of the imprinting and binding processes are reviewed to help understand why there has been limited success. In particular, the imprinting and binding processes are viewed through the scope of free radical polymerization and hydrogel swelling theories to underscore the complexity of the synthesis and behavior of protein-imprinted polymers. Additionally, we review the metrics of success commonly used in protein imprinting literature (i.e., adsorption capacity, imprinting factor, and selectivity factor) and consider the relevance of each to the characterization of an imprinted polymer's recognition characteristics. Throughout, common shortcomings are highlighted, and experiments that could help verify or disprove the efficacy of noncovalent protein imprinting are discussed.
Collapse
Affiliation(s)
- Heidi R. Culver
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, C0800, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, C0800, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A. Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, C0800, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, C0800, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, C0400, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
- College of Pharmacy, A1900, The University of Texas at Austin, Austin, Texas 78712, United States
- Corresponding Author:
| |
Collapse
|
37
|
Real-time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2149-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Deng P, Lu LQ, Cao WC, Tian XK. Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:578-583. [PMID: 27776312 DOI: 10.1016/j.saa.2016.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The phosphorescent l-cysteine modified manganese-doped zinc sulfide quantum dots (l-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO4-). l-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of l-cys-Mn-ZnS QDs was strongly quenched by MnO4- ascribed to the oxidation of l-cys and the increase of surface defects on l-cys-MnZnS QDs. Under the optimal conditions, l-cys-MnZnS QDs offer high selectivity over other anions for MnO4- determination, and good linear Stern-Volmer equation was obtained for MnO4- in the range of 0.5-100μM with a detection limit down to 0.24μM. The developed method was finally applied to the detection of MnO4- in water samples, and the spike-recoveries fell in the range of 95-106%.
Collapse
Affiliation(s)
- Pan Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Li-Qiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Wei-Cheng Cao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xi-Ke Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, Wuhan 430074, PR China
| |
Collapse
|
39
|
Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem Rev 2016; 116:12234-12327. [DOI: 10.1021/acs.chemrev.6b00290] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaixia Xu
- Key
Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong
Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Shuwen Zeng
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Butian Zhang
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Ken-Tye Yong
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | |
Collapse
|
40
|
Rezanejade Bardajee G, Hooshyar Z, Rezaei M, Khalili Khaneghah M, Fallahnejad F. Spectroscopic studies on the interactions of capped CdS quantum dots with human serum albumin (HSA) and bovine serum albumin (BSA). INORG NANO-MET CHEM 2016. [DOI: 10.1080/15533174.2016.1186098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Zari Hooshyar
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Marzieh Rezaei
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | | |
Collapse
|
41
|
Abbasifar J, Samadi-Maybodi A. Selective Determination of Atropine Using poly Dopamine-Coated Molecularly Imprinted Mn-Doped ZnS Quantum Dots. J Fluoresc 2016; 26:1645-52. [DOI: 10.1007/s10895-016-1853-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022]
|
42
|
Guo T, Deng Q, Fang G, Yun Y, Hu Y, Wang S. A double responsive smart upconversion fluorescence sensing material for glycoprotein. Biosens Bioelectron 2016; 85:596-602. [PMID: 27236725 DOI: 10.1016/j.bios.2016.05.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023]
Abstract
A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.
Collapse
Affiliation(s)
- Ting Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiliang Deng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaguang Yun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yongjin Hu
- Institute of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
43
|
Sun Y, Du H, Lan Y, Wang W, Liang Y, Feng C, Yang M. Preparation of hemoglobin (Hb) imprinted polymer by Hb catalyzed eATRP and its application in biosensor. Biosens Bioelectron 2016; 77:894-900. [DOI: 10.1016/j.bios.2015.10.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
|
44
|
Wang X, Yu J, Kang Q, Shen D, Li J, Chen L. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin. Biosens Bioelectron 2016; 77:624-30. [DOI: 10.1016/j.bios.2015.10.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022]
|
45
|
Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. Simple and Sensitive Molecularly Imprinted Polymer – Mn-Doped ZnS Quantum Dots Based Fluorescence Probe for Cocaine and Metabolites Determination in Urine. Anal Chem 2016; 88:2734-41. [DOI: 10.1021/acs.analchem.5b04250] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- María Pilar Chantada-Vázquez
- Department
of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 − Santiago de Compostela, Spain
| | - Juan Sánchez-González
- Department
of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 − Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- Department
of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 − Santiago de Compostela, Spain
| | - María Jesús Tabernero
- Department of Pathologic Anatomy and Forensic
Sciences, Faculty of Medicine, University of Santiago de Compostela, Rúa de San Francisco, s/n, 15782 − Santiago de Compostela, Spain
| | - Ana María Bermejo
- Department of Pathologic Anatomy and Forensic
Sciences, Faculty of Medicine, University of Santiago de Compostela, Rúa de San Francisco, s/n, 15782 − Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Department
of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 − Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Department
of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 − Santiago de Compostela, Spain
| |
Collapse
|
46
|
Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme. Anal Bioanal Chem 2016; 408:2083-93. [DOI: 10.1007/s00216-015-9298-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
|
47
|
Sun Y, Lan Y, Yang L, Kong F, Du H, Feng C. Preparation of hemoglobin imprinted polymers based on graphene and protein removal assisted by electric potential. RSC Adv 2016. [DOI: 10.1039/c6ra04039j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hemoglobin (Hb) imprinted polymers based on graphene were prepared on the surface of Au electrode and protein removal assisted by electric potential was studied in detail.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Yuting Lan
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Lulu Yang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Fanbo Kong
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Hongying Du
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Chunliang Feng
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| |
Collapse
|
48
|
Qiu X, Xu XY, Liang Y, Hua Y, Guo H. Fabrication of a molecularly imprinted polymer immobilized membrane with nanopores and its application in determination of β2-agonists in pork samples. J Chromatogr A 2016; 1429:79-85. [DOI: 10.1016/j.chroma.2015.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
|
49
|
Chen J, Zhu Y, Zhang Y. Room-temperature phosphorescence probe based on Mn-doped ZnS quantum dots for the sensitive and selective detection of selenite. RSC Adv 2016. [DOI: 10.1039/c6ra09702b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Selenite was selectively and sensitively detected based on the room-temperature phosphorescence quenching of Mn–ZnS QDs caused by HSe− from the reaction of selenite and glutathione.
Collapse
Affiliation(s)
- Jialing Chen
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Spectrochemical Analysis & Instrumentation
- Ministry of Education
- Xiamen University
| | - Yaxian Zhu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Spectrochemical Analysis & Instrumentation
- Ministry of Education
- Xiamen University
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University)
- College of Environment and Ecology
- Xiamen University
- Xiamen 361102
- China
| |
Collapse
|
50
|
Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. Synthesis and characterization of novel molecularly imprinted polymer – coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron 2016; 75:213-21. [DOI: 10.1016/j.bios.2015.08.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
|