1
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
2
|
Sun L, Chen LG, Wang HB. Fenton-like reaction triggered chemical redox-cycling signal amplification for ultrasensitive fluorometric detection of H 2O 2 and glucose. Analyst 2024; 149:546-552. [PMID: 38088105 DOI: 10.1039/d3an01682j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
An ultrasensitive fluorescent biosensor is reported for glucose detection based on a Fenton-like reaction triggered chemical redox-cycling signal amplification strategy. In this amplified strategy, Cu2+ oxidizes chemically o-phenylenediamine (OPD) to generate photosensitive 2,3-diaminophenazine (DAP) and Cu+/Cu0. On the one hand, the generated Cu0 catalyzes the oxidation of OPD. On the other hand, H2O2 reacts with Cu+ to produce hydroxyl radicals (˙OH) and Cu2+ through a Cu+-mediated Fenton-like reaction. The generated ˙OH and recycled Cu2+ ions take turns oxidizing OPD to produce more photoactive DAP, triggering a self-sustaining chemical redox-cycling reaction and a remarkable fluorescent enhancement. It is worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Benefiting from H2O2-triggered chemical redox-cycling signal amplification, the strategy was exploited for the development of an ultrasensitive fluorescent biosensor for glucose determination. Glucose content monitoring was realized with a linear range from 1 nM to 1 μM and a limit of detection of 0.3 nM. This study validates the practicability of the chemical redox-cycling signal amplification on the fluorescent bioanalysis of glucose in human serum samples. It is expected that the method offers new opportunities to develop ultrasensitive fluorescent analysis strategy.
Collapse
Affiliation(s)
- Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| |
Collapse
|
3
|
Chen LG, Sun L, Wu NN, Tao BB, Wang HB. Cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction: Toward an ultrasensitive split-type fluorescent immunoassay. Anal Chim Acta 2023; 1279:341843. [PMID: 37827655 DOI: 10.1016/j.aca.2023.341843] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
An ultrasensitive split-type fluorescent immunobiosensor has been reported based on a cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction. In this strategy, Cu2+ could oxidize chemically o-phenylenediamine (OPD) to generate photosensitive 2, 3-diaminophenazine (DAP) and Cu+/Cu0. On one hand, the generated Cu0 in turn catalyzed the oxidation of OPD. On the other hand, the introduced H2O2 reacted with Cu + ion to produce hydroxyl radicals (·OH) and Cu2+ ion through a Cu + -mediated Fenton-like reaction. The produced ·OH and recycled Cu2+ ion could take turns oxidizing OPD to generate more photoactive DAP, which triggering a self-sustaining chemical redox-cycling reaction and leading to a remarkable fluorescent improvement. It was worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Based on the H2O2-triggered cascade signal amplification, the strategy was exploited for the construction of split-type fluorescent immunoassay by taking interleukin-6 (IL-6) as the model target. It was realized for the ultrasensitive determination of IL-6 in a linear ranging from 20 fg/mL to 10 pg/mL with a limit of detection of 5 fg/mL. The study validated the practicability of the cascade signal amplification on the fluorescent bioanalysis and the superior performance in fluorescent immunoassay. It is expected that the strategy would offer new opportunities to develop ultrasensitive fluorescent methods for biosensor and bioanalysis.
Collapse
Affiliation(s)
- Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
4
|
Chen C, La M, Yi X, Huang M, Xia N, Zhou Y. Progress in Electrochemical Immunosensors with Alkaline Phosphatase as the Signal Label. BIOSENSORS 2023; 13:855. [PMID: 37754089 PMCID: PMC10526794 DOI: 10.3390/bios13090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical immunosensors have shown great potential in clinical diagnosis, food safety, environmental protection, and other fields. The feasible and innovative combination of enzyme catalysis and other signal-amplified elements has yielded exciting progress in the development of electrochemical immunosensors. Alkaline phosphatase (ALP) is one of the most popularly used enzyme reporters in bioassays. It has been widely utilized to design electrochemical immunosensors owing to its significant advantages (e.g., high catalytic activity, high turnover number, and excellent substrate specificity). In this work, we summarized the achievements of electrochemical immunosensors with ALP as the signal reporter. We mainly focused on detection principles and signal amplification strategies and briefly discussed the challenges regarding how to further improve the performance of ALP-based immunoassays.
Collapse
Affiliation(s)
- Changdong Chen
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| | - Ming La
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Mengjie Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yanbiao Zhou
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| |
Collapse
|
5
|
Liu L, Ma X, Chang Y, Guo H, Wang W. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels. BIOSENSORS 2023; 13:785. [PMID: 37622871 PMCID: PMC10452607 DOI: 10.3390/bios13080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
It is of great importance to have sensitive and accurate detection of cis-diol-containing biologically related substances because of their important functions in the research fields of metabolomics, glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have been used as synthetic receptors for the specific recognition and detection of cis-diol-containing species. This review critically summarizes the recent advances with boronic acid-based materials as recognition elements and signal labels for the detection of cis-diol-containing biological species, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also address the challenges and future perspectives for developing versatile boronic acid-based materials with various promising applications.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenqing Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
6
|
Gao F, Liu G, Qiao Y, Dong X, Liu L. Streptavidin-Conjugated DNA for the Boronate Affinity-Based Detection of Poly(ADP-Ribose) Polymerase-1 with Improved Sensitivity. BIOSENSORS 2023; 13:723. [PMID: 37504121 PMCID: PMC10377026 DOI: 10.3390/bios13070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
This work reports the development of a fluorescence method for the detection of poly(ADP-ribose) polymerase-1 (PARP1), in which a phenylboronic acid-modified fluorescein isothiocyanate dye (FITC-PBA) was used to recognize the formed poly(ADP-ribose) (PAR) polymer. The detection system was designed by conjugating recombinant streptavidin (rSA) with PARP1-specific double-stranded DNA (dsDNA) through streptavidin-biotin interaction. Capture of PARP1 via rSA-biotin-dsDNA allowed for the poly-ADP-ribosylation (PARylation) of both rSA and PARP1 in a homogeneous solution. The resulting rSA-biotin-dsDNA/PAR conjugates were then captured and separated via the commercialized nitrilotriacetic acid-nickel ion-modified magnetic bead (MB-NTA-Ni) through the interaction between NTA-Ni on MB surface and oligohistidine (His6) tag in rSA. The PAR polymer could capture the dye of FITC-PBA through the borate ester interaction between the boronic acid moiety in PBA and the cis-diol group in ribose, thus causing a decrease in fluorescence signal. The PARylation of streptavidin and the influence of steric hindrance on PARylation efficiency were confirmed using reasonable detection strategies. The method showed a wide linear range (0.01~20 U) and a low detection limit (0.01 U). This work should be valuable for the development of novel biosensors for the detection of poly(ADP-ribose) polymerases and diol-containing species.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yishu Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiuwen Dong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
7
|
Wikantyasning ER, Da’i M, Cholisoh Z, Kalsum U. 3-Aminophenylboronic Acid Conjugation on Responsive Polymer and Gold Nanoparticles for Qualitative Bacterial Detection. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:81-87. [PMID: 37469647 PMCID: PMC10353662 DOI: 10.4103/jpbs.jpbs_646_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 04/08/2023] [Indexed: 07/21/2023] Open
Abstract
Background Because of their sensitive and selective responses to a wide variety of analytes, colorimetric sensors have gained widespread acceptance in recent years. Gold nanoparticles (AuNPs) are widely employed in visual sensor strategies due to their high stability and ease of use. Combining AuNPs with a responsive polymer can result in distinct surface plasmon resonance (SPR) changes that can be utilized as colorimetric biosensors. Objectives The purpose of this research is to develop a colorimetric-based sensor through the utilization of the optical properties of gold nanoparticles (AuNPs) crosslinked with pH-responsive polymers poly (acrylic acid) (PAA) conjugated to 3-aminophenyl boronic acid (APBA). Methods The polymer (PAA) was synthesized via RAFT polymerization. The inversed Turkevic method was used to produce AuNPs, which were subsequently used in a self-assembly process using poly (acrylic acid)-aminophenyl boronic acid (PAA-APBA) to create the self-assembled AuNPs-APBA-PAA. The particle size, zeta potential, and reversibility of the polymer-modified gold nanoparticles were determined using a transmission electron microscope (TEM), a particle size analyzer (PSA), and an Ultraviolet-Visible spectrophotometer (UV-Vis spectrophotometer). Visual, UV-Vis spectrophotometer and TEM observations confirmed the system's ability to identify bacteria. Statistical analysis was performed using a one-way analysis of variance using Excel software. Results Using UV-Vis spectrophotometry, the particle size of AuNPs was determined to be 25.7 nm, and the maximum absorbance occurred at 530 nm. AuNPs PAA APBA colloid exhibited an absorbance maximum of 532 nm, a zeta potential of -41.53, and a pH transition point between 4 and 5. At E. coli concentrations of 4.5 x 107 CFU/mL, the color of the system sensors changed from red to blue after 15 hours of incubation, whereas at S. aureus concentrations of 1.2 x 109 CFU/mL, the color changed to purple immediately after mixing. The TEM confirmed that the detection mechanism is based on the boronate-polyol bonding of saccharides on the outer membranes of Escherichia coli and Staphylococcus aureus. Conclusions The use of APBA in conjunction with pH-responsive PAA polymers containing AuNPs to detect E. coli and S. aureus bacteria induces a maximum wavelength transition, followed by a color change from red to blue. By the process of de-swelling of the responsive polymer, which induces the aggregation of the AuNPs, the established sensor system is able to alter the color. The conjugated polymer and gold nanoparticle-based sensor system demonstrated a promising method for bacterial detection.
Collapse
Affiliation(s)
| | - Muhammad Da’i
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157, Sukoharjo, Indonesia
| | - Zakky Cholisoh
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani 157, Sukoharjo, Indonesia
| | - Ummi Kalsum
- Study Program of Pharmacy, STIKES Telogorejo, Jl. Yos Sudarso, Semarang, Jawa Tengah, Indonesia
| |
Collapse
|
8
|
Li CH, Chan MH, Chang YC, Hsiao M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010364. [PMID: 36615558 PMCID: PMC9822408 DOI: 10.3390/molecules28010364] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Molecular biology applications based on gold nanotechnology have revolutionary impacts, especially in diagnosing and treating molecular and cellular levels. The combination of plasmonic resonance, biochemistry, and optoelectronic engineering has increased the detection of molecules and the possibility of atoms. These advantages have brought medical research to the cellular level for application potential. Many research groups are working towards this. The superior analytical properties of gold nanoparticles can not only be used as an effective drug screening instrument for gene sequencing in new drug development but also as an essential tool for detecting physiological functions, such as blood glucose, antigen-antibody analysis, etc. The review introduces the principles of biomedical sensing systems, the principles of nanomaterial analysis applied to biomedicine at home and abroad, and the chemical surface modification of various gold nanoparticles.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Feng S, Xue Y, Huang J, Yang X. Ferrocene-Functionalized Covalent Organic Frameworks and Target Catalyzed Hairpin Assembly Strategy for Amplified Electrochemical Determination of MicroRNAs. Anal Chem 2022; 94:16945-16952. [DOI: 10.1021/acs.analchem.2c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Petrou L, Ladame S. On-chip miRNA extraction platforms: recent technological advances and implications for next generation point-of-care nucleic acid tests. LAB ON A CHIP 2022; 22:463-475. [PMID: 35048934 DOI: 10.1039/d1lc00868d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circulating microRNAs (or miRNAs) in bodily fluids, are increasingly being highlighted as promising diagnostic and predictive biomarkers for a broad range of pathologies. Although nucleic acid sensors have been developed that can detect minute concentrations of biomarkers with high sensitivity and sequence specificity, their robustness is often compromised by sample collection and processing prior to analysis. Such steps either (i) involve complex, multi-step procedures and toxic chemicals unsuitable for incorporation into portable devices or (ii) are inefficient and non-standardised therefore affecting the reliability/reproducibility of the test. The development of point-of-care nucleic acid tests based on the detection of miRNAs is therefore highly dependent on the development of an automated, on-chip, sample processing platform that would enable extraction or pre-purification of the biological specimen prior to reaching the sensing platform. In this review we categorise and critically discuss the most promising technologies that have been developed to facilitate the transition of nucleic acid tests based on miRNA detection from bench to bedside.
Collapse
Affiliation(s)
- Loukia Petrou
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
11
|
Zhang L, Su W, Liu S, Huang C, Ghalandari B, Divsalar A, Ding X. Recent Progresses in Electrochemical DNA Biosensors for MicroRNA Detection. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:18-32. [PMID: 36939771 PMCID: PMC9590547 DOI: 10.1007/s43657-021-00032-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), as the small, non-coding, evolutionary conserved, and post-transcriptional gene regulators of the genome, have been highly associated with various diseases such as cancers, viral infections, and cardiovascular diseases. Several techniques have been established to detect miRNAs, including northern blotting, real-time polymerase chain reaction (RT-PCR), and fluorescent microarray platform. However, it remains a significant challenge to develop sensitive, accurate, rapid, and cost-effective methods to detect miRNAs due to their short size, high similarity, and low abundance. The electrochemical biosensors exhibit tremendous potential in miRNA detection because they satisfy feature integration, portability, mass production, short response time, and minimal sample consumption. This article reviewed the working principles and signal amplification strategies of electrochemical DNA biosensors summarized the recent improvements. With the development of DNA nanotechnology, nanomaterials and biotechnology, electrochemical DNA biosensors of high sensitivity and specificity for microRNA detection will shortly be commercially accessible.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Wenqiong Su
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Shuopeng Liu
- East China Branch, China Academy of Information and Communications Technology, Shanghai, 200030 China
| | - Chengjie Huang
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Behafarid Ghalandari
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
| | - Xianting Ding
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| |
Collapse
|
12
|
DNA–Gold Nanoparticle Conjugates for Intracellular miRNA Detection Using Surface-Enhanced Raman Spectroscopy. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-021-00042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Zhou L, Kasai N, Nakajima H, Kato S, Mao S, Uchiyama K. In Situ Single-Cell Stimulation and Real-Time Electrochemical Detection of Lactate Response Using a Microfluidic Probe. Anal Chem 2021; 93:8680-8686. [PMID: 34107213 DOI: 10.1021/acs.analchem.1c01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolism of a single cell, even within the same organization, differs from other cells by orders of magnitude. Single-cell analysis provides key information for early diagnosis of cancer as well as drug screening. Any slight change in the microenvironment may affect the state of a single cell. Timely and effective cell monitoring is conducive to better understand the behavior of single cells. The immediate response of a single cell described in this study is a liquid transfer-based approach for real-time electrochemical detection. The cell was in situ stimulated by continuous flow with glucose, and lactate secreted from the cell would diffuse into the microflow. The microflow was aspirated into the detection channel where lactate was then decomposed by coupled enzyme reactions and detected by an electrode. This work provides a novel approach for detecting lactate response from a single cell by noninvasive measurements, and the position resolution of the microfluidic probe reaches the level of a single cell and permits individual heterogeneity in cells to be explored in the diagnosis and treatment of cancer as well as in many other situations.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Nahoko Kasai
- University Education Center, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Shungo Kato
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Sifeng Mao
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| |
Collapse
|
14
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
15
|
Hai X, Li Y, Zhu C, Song W, Cao J, Bi S. DNA-based label-free electrochemical biosensors: From principles to applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Akbal Vural O, Yaman YT, Bolat G, Abaci S. Human Serum Albumin−Gold Nanoparticle Based Impedimetric Sensor for Sensitive Detection of miRNA‐200c. ELECTROANAL 2020. [DOI: 10.1002/elan.202060342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Oznur Akbal Vural
- Advanced Technologies Application and Research Center Hacettepe University Ankara Turkey
| | - Yesim Tugce Yaman
- Advanced Technologies Application and Research Center Hacettepe University Ankara Turkey
- Analytical Chemistry Division, Department of Chemistry Hacettepe University Ankara Turkey
| | - Gulcin Bolat
- Analytical Chemistry Division, Department of Chemistry Hacettepe University Ankara Turkey
| | - Serdar Abaci
- Advanced Technologies Application and Research Center Hacettepe University Ankara Turkey
- Analytical Chemistry Division, Department of Chemistry Hacettepe University Ankara Turkey
| |
Collapse
|
17
|
Araiza-Olivera D, Gutierrez-Aguilar M, Espinosa-García AM, García-García JA, Tapia-Orozco N, Sánchez-Pérez C, Palacios-Reyes C, Escárcega D, Villalón-López DN, García-Arrazola R. From bench to bedside: Biosensing strategies to evaluate endocrine disrupting compounds based on epigenetic events and their potential use in medicine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103450. [PMID: 32622887 DOI: 10.1016/j.etap.2020.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The relationship between endocrine system disorders and health risks due to chemical environmental compounds has become a growing concern in recent years. Involuntary exposure to endocrine disruptors (EDCs) is associated with the worldwide increase of diseases such as cancer, obesity, diabetes, and neurocortical disorders. EDCs are compounds that target the nuclear hormonereceptors (NHR) leading to epigenetic changes. Consequently, the use of biosensing strategies based on epigenetic events have a great potential to provide outstanding information about the exposition of EDCs and their evaluation in human health. This review addresses the novel trends in biosensing EDCs evaluation based on DNA methylation assays associated with different human diseases.
Collapse
Affiliation(s)
- D Araiza-Olivera
- Department of Chemistry and Biomolecules, Institute of Chemistry, UNAM, Mexico.
| | | | - A M Espinosa-García
- Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - J A García-García
- Department of Education, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - N Tapia-Orozco
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Sánchez-Pérez
- Institute of Applied Sciences and Technology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Palacios-Reyes
- Laboratory of Genetics and Molecular Diagnostics, Juarez Hospital of Mexico, Mexico City, Mexico.
| | - D Escárcega
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, calle del Puente 222, Ejidos de Huipulco, Tlalpan 14380, Mexico City, Mexico.
| | - Demelza N Villalón-López
- Instituto Politénico Nacional-Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Prolongación de Carpio y Plande Ayala, colonia Casco de Santo Tomás. Del, Miguel Hidalgo, 11350, Mexico.
| | - R García-Arrazola
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| |
Collapse
|
18
|
Martínez-Periñán E, Gutiérrez-Sánchez C, García-Mendiola T, Lorenzo E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. BIOSENSORS-BASEL 2020; 10:bios10090118. [PMID: 32916838 PMCID: PMC7559215 DOI: 10.3390/bios10090118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Electrogenerated chemiluminescence (also called electrochemiluminescence (ECL)) has become a great focus of attention in different fields of analysis, mainly as a consequence of the potential remarkably high sensitivity and wide dynamic range. In the particular case of sensing applications, ECL biosensor unites the benefits of the high selectivity of biological recognition elements and the high sensitivity of ECL analysis methods. Hence, it is a powerful analytical device for sensitive detection of different analytes of interest in medical prognosis and diagnosis, food control and environment. These wide range of applications are increased by the introduction of screen-printed electrodes (SPEs). Disposable SPE-based biosensors cover the need to perform in-situ measurements with portable devices quickly and accurately. In this review, we sum up the latest biosensing applications and current progress on ECL bioanalysis combined with disposable SPEs in the field of bio affinity ECL sensors including immunosensors, DNA analysis and catalytic ECL sensors. Furthermore, the integration of nanomaterials with particular physical and chemical properties in the ECL biosensing systems has improved tremendously their sensitivity and overall performance, being one of the most appropriates research fields for the development of highly sensitive ECL biosensor devices.
Collapse
Affiliation(s)
- Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Cristina Gutiérrez-Sánchez
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-4488
| |
Collapse
|
19
|
Su S, Sun Q, Ma J, Zhu D, Wang F, Chao J, Fan C, Li Q, Wang L. Ultrasensitive analysis of microRNAs with gold nanoparticle-decorated molybdenum disulfide nanohybrid-based multilayer nanoprobes. Chem Commun (Camb) 2020; 56:9012-9015. [PMID: 32638751 DOI: 10.1039/d0cc03845h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nanoprobe-based signal amplification strategy is a powerful way to ultrasensitively detect biomolecules. Herein, a gold nanoparticle-decorated molybdenum disulfide (MoS2-AuNP)-based multilayer nanoprobe (MLNP) was designed for ultrasensitive analysis of microRNA-21 (miRNA-21). The MLNP-amplified electrochemical biosensor exhibited an ultrawide dynamic range (10 aM-1 μM) and an ultralow detection limit (38 aM) for target miRNA-21 analysis. Furthermore, this biosensor can determine miRNA-21 expression in cell lysates of 100 human cervical cancer (HeLa) cells. Our results demonstrate that MoS2-AuNP nanocomposites have great potential in constructing biosensors for target molecule analysis.
Collapse
Affiliation(s)
- Shao Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
He Q, Luo H, Chen L, Dong J, Chen K, Ning Y. Nanographite‐based fluorescent biosensor for detecting microRNA using duplex‐specific nuclease‐assisted recycling. LUMINESCENCE 2020; 35:347-354. [DOI: 10.1002/bio.3733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Qizhi He
- Department of Human Anatomy, Histology and Embryology, Institute of NeuroscienceChangsha Medical University Changsha Hunan China
| | - Huaiqing Luo
- Department of Human Anatomy, Histology and Embryology, Institute of NeuroscienceChangsha Medical University Changsha Hunan China
| | - Lingli Chen
- Department of MicrobiologyThe Medicine School of Hunan University of Chinese Medicine Changsha Hunan China
| | - Jun Dong
- Department of Human Anatomy, Histology and Embryology, Institute of NeuroscienceChangsha Medical University Changsha Hunan China
| | - Keke Chen
- Department of Human Anatomy, Histology and Embryology, Institute of NeuroscienceChangsha Medical University Changsha Hunan China
| | - Yi Ning
- Department of MicrobiologyThe Medicine School of Hunan University of Chinese Medicine Changsha Hunan China
| |
Collapse
|
21
|
Wang JY, Kwon JS, Hsu SM, Chuang HS. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform. LAB ON A CHIP 2020; 20:356-362. [PMID: 31848562 DOI: 10.1039/c9lc00975b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bead-based immunosensors have intrigued the scientific community over the past decades due to their rapid and multiplexed capabilities in the detection of various biological targets. Nevertheless, their use in the detection of low-abundance analytes remains a continuing challenge because of their limited number of active enrichment approaches. To this end, our research presents a delicate microbead enrichment technique using an optoelectrokinetic platform, followed by the detection of dual biomarkers for the sensitive screening of an eye disease termed diabetic retinopathy (DR). In this study, microbeads turned fluorescent as their surfaces formed sandwiched immunocomplexes in the presence of target antigens. The tiny fluorescent dots were then concentrated using the optoelectrokinetic platform for the enhancement of their signals. The signal rapidly escalated in 10 s, and the optimal limit of detection was nearly 100 pg mL-1. For practical DR screening, two biomarkers, lipocalin 1 (LCN1) and vascular endothelial growth factor (VEGF), were used. Approximately 20 μL of analytes were collected from the tear samples of the tested patients. The concentrations of both biomarkers showed escalating trends with the severity of DR. Two concentration thresholds of LCN1 and VEGF that indicate proliferative DR were determined out of 24 clinical samples based on the receiver operating characteristic curves. For verification, a single-blind test was conducted with additional clinical tear samples from five random subjects. The final outcome of this evaluation showed an accuracy of >80%. This non-invasive screening provides a potential means for the early diagnosis of DR and may increase the screening rate among the high-risk diabetic population in the future.
Collapse
Affiliation(s)
- Jen-Yi Wang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Jae-Sung Kwon
- Division of Thermal and Fluids Science, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. and Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam and Department of Mechanical Engineering, Incheon National University, Incheon, Republic of Korea.
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan and Center for Micro/Nano Science and Technology, National Cheng Kung University, Taiwan.
| |
Collapse
|
22
|
Li Y, Wang J, Wang S, Wang J. Rolling circle amplification based colorimetric determination of Staphylococcus aureus. Mikrochim Acta 2020; 187:119. [PMID: 31927667 DOI: 10.1007/s00604-019-4082-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022]
Abstract
A colorimetric microplate assay for determination of Staphylococcus aureus DNA is described. Linear padlock probes were designed to recognize target sequences. After DNA binding, the linear padlock probes were circularized by ligation and then hybridize with biotin-labeled capture probes. Biotin-labeled capture probes act as primers to initiate the RCA. The biotin-labeled RCA products hybridize with digoxin-labeled signal probes fixed on streptavidin-functionalized wells of a 96-well plate. To enhance sensitivity, an AuNP-anti-digoxigenin-POx-HRP conjugate was added to the wells and then bound to digoxin-labeled signalling probes. The oxidation of tetramethylbenzidine (TMB) by H2O2 produces a color change from colorless to blue via HRP catalysis. After the reaction was terminated, absorbance is measured at 450 nm. For target sequences of Staphylococcus aureus, the detection limit is 1.2 pM. For genomic DNA, the detection limit is 7.4 pg.μL-1. The potential application of the method was verified by analyzing spiked food samples. Graphical abstractSchematic representation of rolling circle amplification and functionalized AuNP-based colorimetric determination of Staphylococcus aureus. The method uses streptavidin-functionalized 96-well plates and RCA as a molecular tool and AuNP-anti-digoxigenin-POx-HRP as signal transduction markers to increase sensitivity.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory for Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin, 300457, People's Republic of China
| | - Junying Wang
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Haidian District, Beijing, 010010, People's Republic of China
| | - Shuo Wang
- Medical college, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| | - Junping Wang
- State Key Laboratory for Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
23
|
Sabahi A, Salahandish R, Ghaffarinejad A, Omidinia E. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta 2019; 209:120595. [PMID: 31892044 DOI: 10.1016/j.talanta.2019.120595] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) appear as a novel reliable candidate in biomarkers for early diagnosis of cancer. Due to their roles in various types of cancer, their potential as a diagnostic biomarker is getting more attention. Here, a novel electrochemical biosensor for detection of miR-21 was demonstrated, through combining the advantages of electrochemical methods and nanomaterials with the selectivity of oligonucleotides, based on thiolated receptor probe-functionalized dendritic gold nanostructures (den-Au) via the self-assembly monolayer (SAM) process which grafted on the single-wall carbon nanotubes (SWCNTs) platform on the surface of the fluorine-doped tin oxide (FTO) electrode. Cadmium ions (Cd2+) were used as signal units and also signal amplification substance which labeled before on miR-21 target. The oxidation signal of Cd2+ as a signal unit was measured by differential pulse voltammetry (DPV) technique that had a very wide linear relationship with the concentration of miR-21 target (0.01 fmol L-1 to 1 μmol L-1) and low experimental detection limit of 0.01 fmol L-1. Furthermore, fabricated biosensor showed acceptable performance in human serum samples and also good selectivity indiscriminate between the complementary target and non-complementary one, so this nano-genosensor can clinically be used for prostate cancer diagnosis through the detection of miR-21 in human serum samples.
Collapse
Affiliation(s)
- Abbas Sabahi
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Razieh Salahandish
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Eskandar Omidinia
- Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran, 13164, Iran.
| |
Collapse
|
24
|
Zhang J, Hun X. Electrochemical determination of miRNA-155 using molybdenum carbide nanosheets and colloidal gold modified electrode coupled with mismatched catalytic hairpin assembly strategy. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Cui A, Zhang J, Bai W, Sun H, Bao L, Ma F, Li Y. Signal-on electrogenerated chemiluminescence biosensor for ultrasensitive detection of microRNA-21 based on isothermal strand-displacement polymerase reaction and bridge DNA-gold nanoparticles. Biosens Bioelectron 2019; 144:111664. [DOI: 10.1016/j.bios.2019.111664] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/10/2019] [Accepted: 08/28/2019] [Indexed: 01/15/2023]
|
26
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
27
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Zhang H, Fan M, Jiang J, Shen Q, Cai C, Shen J. Sensitive electrochemical biosensor for MicroRNAs based on duplex-specific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Anal Chim Acta 2019; 1064:33-39. [DOI: 10.1016/j.aca.2019.02.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
|
29
|
Annamalai P, Slaughter G. Wireless bipotentiostat circuit for glucose and H 2O 2 interrogation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:1567-1570. [PMID: 31946194 DOI: 10.1109/embc.2019.8857500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we present a cost-effective point-of-use wireless platform for the electrochemical detection of low concentrations of glucose and hydrogen peroxide (H2O2), simultaneously. The electrochemical system utilizes a dual sensor integrated with a portable bipotentiostat. The bipotentiostat hardware implements a basic designed that reduces the cost of construction and increase the affordability of the instrument, while providing similar functionality as the more expensive bench-top potentiostats. The bipotentiostat utilizes inexpensive components and common Ag/AgCl reference and platinum counter electrodes and two working electrodes, and it is designed to detect currents within the range of 20 uA - 7 mA. Additionally, the bipotentiostat is integrate with wireless module ESP8266 that interfaces with a smartphone to enable real-time monitoring and visualization of the analyte concentration levels. The results show that the selfdesigned bipotentiostat is capable of performing chronoamperometry and demonstrate an electrochemical detection system that is a portable alternative system for laboratory and point-of-use testing.
Collapse
|
30
|
Jia Y, Yan X, Guo X, Zhou G, Liu P, Li Z. One Step Preparation of Peptide-Coated Gold Nanoparticles with Tunable Size. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2107. [PMID: 31262008 PMCID: PMC6651442 DOI: 10.3390/ma12132107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 01/27/2023]
Abstract
Gold nanoparticles (AuNPs) made from self-assembling peptides have been used in many research fields and attracted a great deal of attention due to their high stability, biocompatibility and functionality. However, existing preparation methods for peptide-coated AuNPs are post-synthesis processes, which are complicated and time consuming. Therefore, a one-step preparation method for peptide-coated AuNPs is proposed here. The AuNPs obtained by this method exhibit good stability. Importantly, peptide-coated AuNPs with precise different sizes can be prepared by this method through pH control of reducing reagent tyrosine in range of 10.0~12.7. Thus, the one-step preparation method proposed here provides a significant tool for the research in different fields concerning NP size, stability and biocompatibility.
Collapse
Affiliation(s)
- Yongmei Jia
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Cunjin Road, Zhanjiang 524048, China
| | - Xiaoning Yan
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Cunjin Road, Zhanjiang 524048, China
| | - Xin Guo
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Cunjin Road, Zhanjiang 524048, China
| | - Guohua Zhou
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Cunjin Road, Zhanjiang 524048, China.
| | - Peilian Liu
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Cunjin Road, Zhanjiang 524048, China
| | - Zhiguo Li
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Cunjin Road, Zhanjiang 524048, China
| |
Collapse
|
31
|
Kumar A, Purohit B, Maurya PK, Pandey LM, Chandra P. Engineered Nanomaterial Assisted Signal‐amplification Strategies for Enhancing Analytical Performance of Electrochemical Biosensors. ELECTROANAL 2019. [DOI: 10.1002/elan.201900216] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ashutosh Kumar
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Buddhadev Purohit
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of Haryana Mahendragarh 123031 Haryana India
| | - Lalit Mohan Pandey
- Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Pranjal Chandra
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati, Guwahati 781039 Assam India
| |
Collapse
|
32
|
Wang J, Lu J, Dong S, Zhu N, Gyimah E, Wang K, Li Y, Zhang Z. An ultrasensitive electrochemical biosensor for detection of microRNA-21 based on redox reaction of ascorbic acid/iodine and duplex-specific nuclease assisted target recycling. Biosens Bioelectron 2019; 130:81-87. [DOI: 10.1016/j.bios.2019.01.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
|
33
|
Tian R, Ning W, Chen M, Zhang C, Li Q, Bai J. High performance electrochemical biosensor based on 3D nitrogen-doped reduced graphene oxide electrode and tetrahedral DNA nanostructure. Talanta 2019; 194:273-281. [DOI: 10.1016/j.talanta.2018.09.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/19/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
|
34
|
Wang B, You Z, Ren D. Target-assisted FRET signal amplification for ultrasensitive detection of microRNA. Analyst 2019; 144:2304-2311. [DOI: 10.1039/c8an02266f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recycling of target miRNA and high quenching efficiency of nanogold greatly improved the sensitivity for miRNA detection.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Precision Measurement Technology and Instruments
- Department of Precision Instrument
- Tsinghua University
- Beijing
- China
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instruments
- Department of Precision Instrument
- Tsinghua University
- Beijing
- China
| | - Dahai Ren
- State Key Laboratory of Precision Measurement Technology and Instruments
- Department of Precision Instrument
- Tsinghua University
- Beijing
- China
| |
Collapse
|
35
|
Wang YH, He LL, Huang KJ, Chen YX, Wang SY, Liu ZH, Li D. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst 2019; 144:2849-2866. [DOI: 10.1039/c9an00081j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent efforts in the application of nanomaterials as sensing elements in electrochemical and optical miRNAs assays.
Collapse
Affiliation(s)
- Yi-Han Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Liu-Liu He
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ying-Xu Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Shu-Yu Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Zhen-Hua Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Dan Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
36
|
Abstract
High-throughput profiling/sensing of nucleic acids has recently emerged as a highly promising strategy for the early diagnosis and improved prognosis of a broad range of pathologies, most notably cancer. Among the potential biomarker candidates, microRNAs (miRNAs), a class of non-coding RNAs of 19-25 nucleotides in length, are of particular interest due to their role in the post-transcriptional regulation of gene expression. Developing miRNA sensing technologies that are quantitative, ultrasensitive and highly specific has proven very challenging because of their small size, low natural abundance and the high degree of sequence similarity among family members. When compared to optical based methods, electrochemical sensors offer many advantages in terms of sensitivity and scalability. This non-comprehensive review aims to break-down and highlight some of the most promising strategies for electrochemical sensing of microRNA biomarkers.
Collapse
Affiliation(s)
- Philip Gillespie
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| |
Collapse
|
37
|
Yang B, Liu D, Zhu L, Liu Y, Wang X, Qiao L, Zhang W, Liu B. Sensitive detection of thyroid stimulating hormone by inkjet printed microchip with a double signal amplification strategy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Jiang P, Wang Y, Zhao L, Ji C, Chen D, Nie L. Applications of Gold Nanoparticles in Non-Optical Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E977. [PMID: 30486293 PMCID: PMC6315477 DOI: 10.3390/nano8120977] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
Due to their unique properties, such as good biocompatibility, excellent conductivity, effective catalysis, high density, and high surface-to-volume ratio, gold nanoparticles (AuNPs) are widely used in the field of bioassay. Mainly, AuNPs used in optical biosensors have been described in some reviews. In this review, we highlight recent advances in AuNP-based non-optical bioassays, including piezoelectric biosensor, electrochemical biosensor, and inductively coupled plasma mass spectrometry (ICP-MS) bio-detection. Some representative examples are presented to illustrate the effect of AuNPs in non-optical bioassay and the mechanisms of AuNPs in improving detection performances are described. Finally, the review summarizes the future prospects of AuNPs in non-optical biosensors.
Collapse
Affiliation(s)
- Pengfei Jiang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yulin Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Lan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Chenyang Ji
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Dongchu Chen
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
39
|
Coutinho C, Somoza Á. MicroRNA sensors based on gold nanoparticles. Anal Bioanal Chem 2018; 411:1807-1824. [PMID: 30390112 DOI: 10.1007/s00216-018-1450-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs, the dysregulation of which has been associated with the progression of several human diseases, including cancer. Interestingly, these molecules can be used as biomarkers for early disease diagnosis and can be found in a variety of body fluids and tissue samples. However, their specific properties and very low concentrations make their detection rather challenging. In this regard, current detection methods are complex, cost-ineffective, and of limited application in point-of-care settings or resource-limited facilities. Recently, nanotechnology-based approaches have emerged as promising alternatives to conventional miRNA detection methods and paved the way for research towards sensitive, fast, and low-cost detection systems. In particular, due to their exceptional properties, the use of gold nanoparticles (AuNPs) has significantly improved the performance of miRNA biosensors. This review discusses the application of AuNPs in different miRNA sensor modalities, commenting on recently reported examples. A practical overview of each modality is provided, highlighting their future use in clinical diagnosis. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Catarina Coutinho
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain.
| |
Collapse
|
40
|
Elhakim HK, Azab SM, Fekry AM. A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:489-495. [DOI: 10.1016/j.msec.2018.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
|
41
|
Wang H, Zhou C, Sun X, Jian Y, Kong Q, Cui K, Ge S, Yu J. Polyhedral-AuPd nanoparticles-based dual-mode cytosensor with turn on enable signal for highly sensitive cell evalution on lab-on-paper device. Biosens Bioelectron 2018; 117:651-658. [DOI: 10.1016/j.bios.2018.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
42
|
Zouari M, Campuzano S, Pingarrón J, Raouafi N. Ultrasensitive determination of microribonucleic acids in cancer cells with nanostructured-disposable electrodes using the viral protein p19 for recognition of ribonucleic acid/microribonucleic acid homoduplexes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Mahato K, Kumar A, Maurya PK, Chandra P. Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens Bioelectron 2018; 100:411-428. [DOI: 10.1016/j.bios.2017.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023]
|
44
|
Jian Y, Wang H, Lan F, Liang L, Ren N, Liu H, Ge S, Yu J. Electrochemiluminescence based detection of microRNA by applying an amplification strategy and Hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II)tris(bipyridine). Mikrochim Acta 2018; 185:133. [DOI: 10.1007/s00604-018-2693-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022]
|
45
|
Tian L, Qian K, Qi J, Liu Q, Yao C, Song W, Wang Y. Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21. Biosens Bioelectron 2018; 99:564-570. [DOI: 10.1016/j.bios.2017.08.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023]
|
46
|
Kilic T, Erdem A, Ozsoz M, Carrara S. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron 2018; 99:525-546. [DOI: 10.1016/j.bios.2017.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
|
47
|
Feng K, Liu J, Deng L, Yu H, Yang M. Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction. Mikrochim Acta 2017; 185:28. [DOI: 10.1007/s00604-017-2579-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/18/2017] [Indexed: 01/23/2023]
|
48
|
Yang Y, Yu YY, Wang YZ, Zhang CL, Wang JX, Fang Z, Lv H, Zhong JJ, Yong YC. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosens Bioelectron 2017; 98:338-344. [DOI: 10.1016/j.bios.2017.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
49
|
Vargas E, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Povedano E, Pedrero M, Montoya JJ, Campuzano S, Pingarrón JM. Magnetic Beads-Based Sensor with Tailored Sensitivity for Rapid and Single-Step Amperometric Determination of miRNAs. Int J Mol Sci 2017; 18:ijms18112151. [PMID: 29120349 PMCID: PMC5713197 DOI: 10.3390/ijms18112151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA–RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H2O2/hydroquinone (HQ) system. The magnitude of the cathodic signal obtained at −0.20 V (vs. the Ag pseudo-reference electrode) demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD) of 10 attomoles (in a 25 μL sample) without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared). This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA–RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNAt) extracted from human mammary epithelial normal (MCF-10A) and cancer (MCF-7) cells and tumor tissues.
Collapse
Affiliation(s)
- Eva Vargas
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Rebeca M Torrente-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | | | - Eloy Povedano
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - María Pedrero
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Juan J Montoya
- Cannan Research and Investment & Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
50
|
Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Vilaivan T, Thavarungkul P. Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor. Biosens Bioelectron 2017; 102:217-225. [PMID: 29149687 DOI: 10.1016/j.bios.2017.11.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/22/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
Abstract
A label-free electrochemical miRNA biosensor was developed based on a pyrrolidinyl peptide nucleic acid (acpcPNA)/polypyrrole (PPy)/silver nanofoam (AgNF) modified electrode. The AgNF was electrodeposited as redox indicator on a gold electrode, which was then functionalized with an electropolymerized layer of PPy, a conducting polymer, to immobilize the PNA probes. The fabrication process was investigated by electrochemical impedance spectroscopy. The biosensor was used to detect miRNA-21, a biomarker abnormally expressed in most cancers. The signal was monitored by the change in current of the AgNF redox reaction before and after hybridization using cyclic voltammetry. Two PNA probe lengths were investigated and the longer probe exhibited a better performance. Nucleotide overhangs on the electrode side affected the signal more than overhangs on the solution side due to the greater insulation of the sensing surface. Under optimal conditions, the electrochemical signal was proportional to miRNA-21 concentrations between 0.20fM and 1.0nM, with a very low detection limit of 0.20fM. The biosensor showed a high specificity which could discriminate between complementary, single-, doubled-base mismatched, and non-complementary targets. Three out of the seven tested plasma samples provided detectable concentrations (63 ± 4, 111 ± 4 and 164 ± 7fM). The sensor also showed good recoveries (81-119%). The results indicated the possibilities of this biosensor for analysis without RNA extraction and/or amplification, making the sensor potentially useful for both the prognosis and diagnosis of cancer in clinical application.
Collapse
Affiliation(s)
- Tawatchai Kangkamano
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Apon Numnuam
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panote Thavarungkul
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|