1
|
Deng H, Nakamoto T. Biosensors for Odor Detection: A Review. BIOSENSORS 2023; 13:1000. [PMID: 38131760 PMCID: PMC10741685 DOI: 10.3390/bios13121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Animals can easily detect hundreds of thousands of odors in the environment with high sensitivity and selectivity. With the progress of biological olfactory research, scientists have extracted multiple biomaterials and integrated them with different transducers thus generating numerous biosensors. Those biosensors inherit the sensing ability of living organisms and present excellent detection performance. In this paper, we mainly introduce odor biosensors based on substances from animal olfactory systems. Several instances of organ/tissue-based, cell-based, and protein-based biosensors are described and compared. Furthermore, we list some other biological materials such as peptide, nanovesicle, enzyme, and aptamer that are also utilized in odor biosensors. In addition, we illustrate the further developments of odor biosensors.
Collapse
Affiliation(s)
| | - Takamichi Nakamoto
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama 226-8503, Kanagawa, Japan;
| |
Collapse
|
2
|
Wu C, Zhu P, Liu Y, Du L, Wang P. Field-Effect Sensors Using Biomaterials for Chemical Sensing. SENSORS 2021; 21:s21237874. [PMID: 34883883 PMCID: PMC8659547 DOI: 10.3390/s21237874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
After millions of years of evolution, biological chemical sensing systems (i.e., olfactory and taste systems) have become very powerful natural systems which show extreme high performances in detecting and discriminating various chemical substances. Creating field-effect sensors using biomaterials that are able to detect specific target chemical substances with high sensitivity would have broad applications in many areas, ranging from biomedicine and environments to the food industry, but this has proved extremely challenging. Over decades of intense research, field-effect sensors using biomaterials for chemical sensing have achieved significant progress and have shown promising prospects and potential applications. This review will summarize the most recent advances in the development of field-effect sensors using biomaterials for chemical sensing with an emphasis on those using functional biomaterials as sensing elements such as olfactory and taste cells and receptors. Firstly, unique principles and approaches for the development of these field-effect sensors using biomaterials will be introduced. Then, the major types of field-effect sensors using biomaterials will be presented, which includes field-effect transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive electrolyte–insulator–semiconductor (EIS) sensors. Finally, the current limitations, main challenges and future trends of field-effect sensors using biomaterials for chemical sensing will be proposed and discussed.
Collapse
Affiliation(s)
- Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| |
Collapse
|
3
|
Huang S, Zhang T, Li H, Zhang M, Liu X, Xu D, Wang H, Shen Z, Wu Q, Tao J, Xia W, Xie X, Liu F. Flexible Tongue Electrode Array System for In Vivo Mapping of Electrical Signals of Taste Sensation. ACS Sens 2021; 6:4108-4117. [PMID: 34757732 DOI: 10.1021/acssensors.1c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tongue is a unique organ that senses tastes, and the scientific puzzle about whether electricity can evoke taste sensations and how the sensations have been distributed on the tongue has not been solved. Investigations on tongue stimulation by electricity might benefit the developments of techniques for clinical neuromodulation, tissue activation, and a brain-tongue-machine interface. To solve the scientific puzzle of whether electrical stimulation induces taste-related sensations, a portable flexible tongue electrode array system (FTEAS) was developed, which can synchronously provide electrical stimulation and signal mapping at each zone of the tongue. Utilizing the FTEAS to perform tests on the rat tongue in vivo, specific electrical signals were observed to be evoked by chemical and electrical stimulations. The features and distributions of the electric signals evoked during the rat tongue tests were systematically studied and comprehensively analyzed. The results show that an appropriate electrical stimulation can induce multiple sensations simultaneously, while the distribution of each sensation was not significantly distinguished among different zones of the tongue, and at the same time, this taste-related electrical signal can be recorded by the FTEAS. This work establishes a promising platform to solve the scientific puzzle of how sensations are activated chemically and electrically on the tongue and may provide advanced noninvasive oral-electrotherapy and a brain-tongue-machine interface.
Collapse
Affiliation(s)
- Shuang Huang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Li
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyue Zhang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Liu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Wang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiran Shen
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianni Wu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Tao
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Xia
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Yang CM, Yen T, Liu HL, Lin YJ, Lin PY, Tsui LS, Chen CH, Chen YP, Hsu YC, Lo CH, Wu TR, Lai HC, Chin WC, Pijanowska DG, Hwang TL, Lai CS. A real-time mirror-LAPS mini system for dynamic chemical imaging and cell acidification monitoring. SENSORS AND ACTUATORS B: CHEMICAL 2021; 341:130003. [DOI: 10.1016/j.snb.2021.130003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
5
|
Hirata Y, Oda H, Osaki T, Takeuchi S. Biohybrid sensor for odor detection. LAB ON A CHIP 2021; 21:2643-2657. [PMID: 34132291 DOI: 10.1039/d1lc00233c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biohybrid odorant sensors that directly integrate a biological olfactory system have been increasingly studied and are suggested to be the next generation of ultrasensitive sensors by taking advantage of the sensitivity and selectivity of living organisms. In this review, we provide a detailed description of the recent developments of biohybrid odorant sensors, especially considering the requisites for their perspective of on-site applications. We introduce the methodologies to effectively capture the biological signals from olfactory systems by readout devices, and describe the essential properties regarding the gaseous detection, stability, quality control, and portability. Moreover, we address the recent progress on multiple odorant recognition using multiple sensors as well as the current screening approaches for pairs of orphan receptors and ligands necessary for the extension of the currently available range of biohybrid sensors. Finally, we discuss our perspectives for the future for the development of practical odorant sensors.
Collapse
Affiliation(s)
- Yusuke Hirata
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Haruka Oda
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. and Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
6
|
Zhang N, Wei X, Fan Y, Zhou X, Liu Y. Recent advances in development of biosensors for taste-related analyses. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Wasilewski T, Kamysz W, Gębicki J. Bioelectronic tongue: Current status and perspectives. Biosens Bioelectron 2019; 150:111923. [PMID: 31787451 DOI: 10.1016/j.bios.2019.111923] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
In the course of evolution, nature has endowed humans with systems for the recognition of a wide range of tastes with a sensitivity and selectivity which are indispensable for the evaluation of edibility and flavour attributes. Inspiration by a biological sense of taste has become a basis for the design of instruments, operation principles and parameters enabling to mimic the unique properties of their biological precursors. In response to the demand for fast, sensitive and selective techniques of flavouring analysis, devices belonging to the group of bioelectronic tongues (B-ETs) have been designed. They combine achievements of chemometric analysis employed for many years in electronic tongues (ETs), with unique properties of bio-inspired materials, such as natural taste receptors (TRs) regarding receptor/ligand affinity. Investigations of the efficiency of the prototype devices create new application possibilities and suggest successful implementation in real applications. With advances in the field of biotechnology, microfluidics and nanotechnologies, many exciting developments have been made in the design of B-ETs in the last five years or so. The presented characteristics of the recent design solutions, application possibilities, critical evaluation of potentialities and limitations as well as the outline of further development prospects related to B-ETs should contribute to the systematisation and expansion of our knowledge.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Hallera 107, 80-416, Gdansk, Poland.
| | - Wojciech Kamysz
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Hallera 107, 80-416, Gdansk, Poland
| | - Jacek Gębicki
- Gdańsk University of Technology, Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
8
|
Wang J, Kong S, Chen F, Chen W, Du L, Cai W, Huang L, Wu C, Zhang DW. A bioelectronic taste sensor based on bioengineered Escherichia coli cells combined with ITO-constructed electrochemical sensors. Anal Chim Acta 2019; 1079:73-78. [PMID: 31387721 DOI: 10.1016/j.aca.2019.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023]
Abstract
In this study, we developed a novel bioelectronic taste sensor for the detection of specific bitter substances. A human bitter taste receptor, hT2R4, was efficiently expressed in Escherichia coli (E. coli), which was used as the primary recognition element. A simple and low-cost electrochemical device based on ITO-based electrolyte-semiconductor (ES) structure was innovatively employed as the transducer to assess bacterial metabolic consequences of receptor activation in real time. An apparent increase in extracellular acidification rate was observed, which was resulted from the triggering of hT2R4 receptors by their target ligand of denatonium. The sensor showed dose-dependent responses to denatonuim ranging from 50 nM to 500 nM, while non-bioengineered bacteria without hT2R4 receptors exhibited negligible responses to the same stimulus. In addition, the specificity of the proposed taste biosensor was verified using other typical bitter substances such as quinine and alpha-naphthylthiourea (ANTU). This research provides a simple and inexpensive approach for the construction of bioelectronic taste sensors.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shu Kong
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Cai
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou, 310031, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
9
|
A light-addressable microfluidic device for label-free functional assays of bioengineered taste receptor cells via extracellular recording. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-0085-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
10
|
Zabadaj M, Szuplewska A, Balcerzak M, Chudy M, Ciosek-Skibińska P. Ion Chromatographic Fingerprinting of STC-1 Cellular Response for Taste Sensing. SENSORS 2019; 19:s19051062. [PMID: 30832321 PMCID: PMC6427131 DOI: 10.3390/s19051062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/23/2022]
Abstract
Taste sensing is of great importance in both the pharmaceutical and foodstuff industries, and is currently mainly based on human sensory evaluation. Many approaches based on chemical sensors have been proposed, leading to the development of various electronic tongue systems. However, this approach is limited by the applied recognition methods, which do not consider natural receptors. Biorecognition elements such as taste receptor proteins or whole cells can be involved in the development of taste sensing biosensors usually equipped with various electrochemical transducers. Here, we propose a new approach: intestinal secretin tumor cell line (STC-1) chemosensory cells were applied for taste recognition, and their taste-specific cellular response was decoded from ion chromatographic fingerprints with the use of multivariate data processing by partial least squares discriminant analysis (PLS-DA). This approach could be useful for the development of various non-invasive taste sensing assays, as well as for studying taste transduction mechanisms in vitro.
Collapse
Affiliation(s)
- Marcin Zabadaj
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Aleksandra Szuplewska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Maria Balcerzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Michał Chudy
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Patrycja Ciosek-Skibińska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
11
|
Son M, Park TH. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment. Biotechnol Adv 2017; 36:371-379. [PMID: 29289691 DOI: 10.1016/j.biotechadv.2017.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/27/2017] [Accepted: 12/27/2017] [Indexed: 01/14/2023]
Abstract
Food intake is the primary method for obtaining energy and component materials in the human being. Humans evaluate the quality of food by combining various facets of information, such as an item of food's appearance, smell, taste, and texture in the mouth. Recently, bioelectronic noses and tongues have been reported that use human olfactory and taste receptors as primary recognition elements, and nanoelectronics as secondary signal transducers. Bioelectronic sensors that mimic human olfaction and gustation have sensitively and selectively detected odor and taste molecules from various food samples, and have been applied to food quality assessment. The portable and multiplexed bioelectronic nose and tongue are expected to be used as next-generation analytical tools for rapid on-site monitoring of food quality. In this review, we summarize recent progress in the bioelectronic nose and tongue using olfactory and taste receptors, and discuss the potential applications and future perspectives in the food industry.
Collapse
Affiliation(s)
- Manki Son
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tai Hyun Park
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
12
|
Biomimetic Sensors for the Senses: Towards Better Understanding of Taste and Odor Sensation. SENSORS 2017; 17:s17122881. [PMID: 29232897 PMCID: PMC5750803 DOI: 10.3390/s17122881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022]
Abstract
Taste and smell are very important chemical senses that provide indispensable information on food quality, potential mates and potential danger. In recent decades, much progress has been achieved regarding the underlying molecular and cellular mechanisms of taste and odor senses. Recently, biosensors have been developed for detecting odorants and tastants as well as for studying ligand-receptor interactions. This review summarizes the currently available biosensing approaches, which can be classified into two main categories: in vitro and in vivo approaches. The former is based on utilizing biological components such as taste and olfactory tissues, cells and receptors, as sensitive elements. The latter is dependent on signals recorded from animals' signaling pathways using implanted microelectrodes into living animals. Advantages and disadvantages of these two approaches, as well as differences in terms of sensing principles and applications are highlighted. The main current challenges, future trends and prospects of research in biomimetic taste and odor sensors are discussed.
Collapse
|
13
|
Light-addressable potentiometric sensor with gold nanoparticles enhancing enzymatic silver deposition for 1,5-anhydroglucitol determination. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Wu F, Campos I, Zhang DW, Krause S. Biological imaging using light-addressable potentiometric sensors and scanning photo-induced impedance microscopy. Proc Math Phys Eng Sci 2017; 473:20170130. [PMID: 28588418 DOI: 10.1098/rspa.2017.0130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/07/2017] [Indexed: 11/12/2022] Open
Abstract
Light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) use photocurrent measurements at electrolyte-insulator-semiconductor substrates for spatio-temporal imaging of electrical potentials and impedance. The techniques have been used for the interrogation of sensor arrays and the imaging of biological systems. Sensor applications range from the detection of different types of ions and the label-free detection of charged molecules such as DNA and proteins to enzyme-based biosensors. Imaging applications include the temporal imaging of extracellular potentials and dynamic concentration changes in microfluidic channels and the lateral imaging of cell surface charges and cell metabolism. This paper will investigate the current state of the art of the measurement technology with a focus on spatial and temporal resolution and review the biological applications, these techniques have been used for. An outlook on future developments in the field will be given.
Collapse
Affiliation(s)
- Fan Wu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Inmaculada Campos
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - De-Wen Zhang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, Sichuan, People's Republic of China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
15
|
Yan K, Xiong Y, Wu S, Bentley WE, Deng H, Du Y, Payne GF, Shi XW. Electro-molecular Assembly: Electrical Writing of Information into an Erasable Polysaccharide Medium. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19780-6. [PMID: 27420779 DOI: 10.1021/acsami.6b07036] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report that information can be written into an erasable hydrogel medium by precisely imposing controlled electrical signals that trigger supramolecular self-assembly. We prepare the medium from a blend of two stimuli-responsive self-assembling polysaccharides agarose (thermally responsive) and chitosan (pH-responsive). Upon cooling the blend, agarose forms the hydrogel medium while the embedded chitosan chains can be induced to self-assemble in response to imposed pH cues. Importantly, these triggering pH-cues can be imposed electrically (by inserted electrodes) enabling complex messages (e.g., self-assembled multilayers) to be written within the hydrogel medium. The reversibility of these self-assembly mechanisms allow the written information, and the medium itself, to be erased. These physicochemical properties enable this dual responsive medium to encrypt information, while the responsiveness of this structural information and the biocompatibility of the medium suggest uses for accessing/reporting information in diverse life science applications, such as foods, cosmetics, medicine, and the environment.
Collapse
Affiliation(s)
- Kun Yan
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan, 430079, China
| | - Yuan Xiong
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan, 430079, China
| | - Si Wu
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan, 430079, China
| | - William E Bentley
- Fischell Department of Bioengineering and Institute of Bioscience and Biotechnology Research, University of Maryland , College Park, Maryland 20742, United States
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan, 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan, 430079, China
| | - Gregory F Payne
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan, 430079, China
- Fischell Department of Bioengineering and Institute of Bioscience and Biotechnology Research, University of Maryland , College Park, Maryland 20742, United States
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan, 430079, China
| |
Collapse
|
16
|
Wu C, Lillehoj PB, Wang P. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review. Analyst 2016; 140:7048-61. [PMID: 26308143 DOI: 10.1039/c5an01288k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.
Collapse
Affiliation(s)
- Chunsheng Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | |
Collapse
|
17
|
Liang J, Guan M, Huang G, Qiu H, Chen Z, Li G, Huang Y. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:185-91. [PMID: 27040210 DOI: 10.1016/j.msec.2016.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 11/18/2022]
Abstract
A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V)=0.00714ChIgG (μg/mL)-0.0147 with a correlation coefficient of 0.9968 over a range 0-150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications.
Collapse
Affiliation(s)
- Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Mingyuan Guan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guoyin Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hengming Qiu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zhengcheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yong Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|
18
|
Wang J, Wu F, Watkinson M, Zhu J, Krause S. "Click" Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9646-9654. [PMID: 26274063 DOI: 10.1021/acs.langmuir.5b02069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two potential strategies for chemically patterning alkyne-terminated self-assembled monolayers (SAMs) on oxide-free silicon or silicon-on-sapphire (SOS) substrates were investigated and compared. The patterned surfaces were validated using a light-addressable potentiometric sensor (LAPS) for the first time. The first strategy involved an integration of photolithography with "click" chemistry. Detailed surface characterization (i.e. water contact angle, ellipsometry, AFM, and XPS) and LAPS measurements showed that photoresist processing not only decreases the coverage of organic monolayers but also introduces chemically bonded contaminants on the surfaces, thus significantly reducing the quality of the SAMs and the utility of "click" surface modification. The formation of chemical contaminants in photolithography was also observed on carboxylic acid- and alkyl-terminated monolayers using LAPS. In contrast, a second approach combined microcontact printing (μCP) with "click" chemistry; that is azide (azido-oligo(ethylene glycol) (OEG)-NH2) inks were printed on alkyne-terminated SAMs on silicon or SOS through PDMS stamps. The surface characterization results for the sample printed with a flat featureless PDMS stamp demonstrated a nondestructive and efficient method of μCP to perform "click" reactions on alkyne-terminated, oxide-free silicon surfaces for the first time. For the sample printed with a featured PDMS stamp, LAPS imaging showed a good agreement with the pattern of the PDMS stamp, indicating the successful chemical patterning on non-oxidized silicon and SOS substrates and the capability of LAPS to image the molecular patterns with high sensitivity.
Collapse
Affiliation(s)
- Jian Wang
- School of Engineering and Materials Science and ‡School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| | - Fan Wu
- School of Engineering and Materials Science and ‡School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| | - Michael Watkinson
- School of Engineering and Materials Science and ‡School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| | - Jingyuan Zhu
- School of Engineering and Materials Science and ‡School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| | - Steffi Krause
- School of Engineering and Materials Science and ‡School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| |
Collapse
|
19
|
Du L, Zou L, Zhao L, Wang P, Wu C. Biomimetic chemical sensors using bioengineered olfactory and taste cells. Bioengineered 2014; 5:326-30. [PMID: 25482234 DOI: 10.4161/bioe.29762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.
Collapse
Affiliation(s)
- Liping Du
- a Biosensor National Special Laboratory; Key Laboratory for Biomedical Engineering of Ministry of Education; Department of Biomedical Engineering; Zhejiang University; Hangzhou, China
| | | | | | | | | |
Collapse
|