1
|
Kumar S, Mohan A, Sharma NR, Kumar A, Girdhar M, Malik T, Verma AK. Computational Frontiers in Aptamer-Based Nanomedicine for Precision Therapeutics: A Comprehensive Review. ACS OMEGA 2024; 9:26838-26862. [PMID: 38947800 PMCID: PMC11209897 DOI: 10.1021/acsomega.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
In the rapidly evolving landscape of nanomedicine, aptamers have emerged as powerful molecular tools, demonstrating immense potential in targeted therapeutics, diagnostics, and drug delivery systems. This paper explores the computational features of aptamers in nanomedicine, highlighting their advantages over antibodies, including selectivity, low immunogenicity, and a simple production process. A comprehensive overview of the aptamer development process, specifically the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process, sheds light on the intricate methodologies behind aptamer selection. The historical evolution of aptamers and their diverse applications in nanomedicine are discussed, emphasizing their pivotal role in targeted drug delivery, precision medicine and therapeutics. Furthermore, we explore the integration of artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), Internet of Medical Things (IoMT), and nanotechnology in aptameric development, illustrating how these cutting-edge technologies are revolutionizing the selection and optimization of aptamers for tailored biomedical applications. This paper also discusses challenges in computational methods for advancing aptamers, including reliable prediction models, extensive data analysis, and multiomics data incorporation. It also addresses ethical concerns and restrictions related to AI and IoT use in aptamer research. The paper examines progress in computer simulations for nanomedicine. By elucidating the importance of aptamers, understanding their superiority over antibodies, and exploring the historical context and challenges, this review serves as a valuable resource for researchers and practitioners aiming to harness the full potential of aptamers in the rapidly evolving field of nanomedicine.
Collapse
Affiliation(s)
- Shubham Kumar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Neeta Raj Sharma
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Anil Kumar
- Gene
Regulation Laboratory, National Institute
of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Madhuri Girdhar
- Division
of Research and Development, Lovely Professional
University, Phagwara 144401, Punjab, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, MVJ4+R95 Jimma, Ethiopia
| | - Awadhesh Kumar Verma
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| |
Collapse
|
2
|
Abstract
Rapid and specific assaying of molecules that report on a pathophysiological condition, environmental pollution, or drug concentration is pivotal for establishing efficient and accurate diagnostic systems. One of the main components required for the construction of these systems is the recognition element (receptor) that can identify target analytes. Oligonucleotide switching structures, or aptamers, have been widely studied as selective receptors that can precisely identify targets in different analyzed matrices with minimal interference from other components in an antibody-like recognition process. These aptasensors, especially when integrated into sensing platforms, enable a multitude of sensors that can outperform antibody-based sensors in terms of flexibility of the sensing strategy and ease of deployment to areas with limited resources. Research into compounds that efficiently enhance signal transduction and provide a suitable platform for conjugating aptamers has gained huge momentum over the past decade. The multifaceted nature of conjugated polymers (CPs), notably their versatile electrical and optical properties, endows them with a broad range of potential applications in optical, electrical, and electrochemical signal transduction. Despite the substantial body of research demonstrating the enhanced performance of sensing devices using doped or nanostructure-embedded CPs, few reviews are available that specifically describe the use of conjugated polymers in aptasensing. The purpose of this review is to bridge this gap and provide a comprehensive description of a variety of CPs, from a historical viewpoint, underpinning their specific characteristics and demonstrating the advances in biosensors associated with the use of these conjugated polymers.
Collapse
Affiliation(s)
- Razieh Salimian
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| |
Collapse
|
3
|
Electrochemical biosensors based on conducting polymer composite and PAMAM dendrimer for the ultrasensitive detection of acetamiprid in vegetables. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022; 32:235-250. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aβ), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Niloufar Mollasalehi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.,Center for Innovation in Brain Science, Tucson, Arizona, USA
| | - Liberty Francois-Moutal
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - May Khanna
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Magnetic microparticle-based multimer detection system for the electrochemical detection of prion oligomers in sheep using a recyclable BDD electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Khoder R, Korri-Youssoufi H. E-DNA biosensors of M. tuberculosis based on nanostructured polypyrrole. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110371. [DOI: 10.1016/j.msec.2019.110371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/15/2019] [Accepted: 10/27/2019] [Indexed: 01/20/2023]
|
7
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
8
|
Yang R, Zou K, Zhang X, Du C, Chen J. A new photoelectrochemical immunosensor for ultrasensitive assay of prion protein based on hemin-induced photocurrent direction switching. Biosens Bioelectron 2019; 132:55-61. [PMID: 30852382 DOI: 10.1016/j.bios.2019.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 12/18/2022]
Abstract
As a significant biomarker of prion diseases, ultrasensitive assay of infectious isoform of prion (PrPSc) is highly desirable for early diagnostics of prion diseases. Herein, taking normal cellular form of prion (PrPC) as a model owing to a high risk of pathogenicity of PrPSc, a new photoelectrochemical immunosensor has been developed based on hemin-induced switching of photocurrent direction. In the presence of PrPC, nitrogen-doped porous carbon-hemin polyhedra labeled with secondary antibody were introduced onto the CdS-chitosan (CS) nanoparticles-modified indium-tin oxide (ITO) electrode via the antigen-antibody specific recognition. Because of the matched energy level between CdS and hemin, the high-efficiency switch of photocurrent direction of the ITO/CdS-CS photoelectrode from anodic to cathodic photocurrent was observed even at very low concentration (0.4 aM) of PrPC. Through changing the specific antibody, this method can be easily expanded to PrPSc assay. Such low detectable limit is very useful in the early diagnosis and screening of prion diseases. The developed method has also promising applications in bioanalysis, disease diagnostics, and clinical biomedicine.
Collapse
Affiliation(s)
- Ruiying Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Kang Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
Jalalian SH, Karimabadi N, Ramezani M, Abnous K, Taghdisi SM. Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Li X, Li J, Zhu C, Zhang X, Chen J. A new electrochemical immunoassay for prion protein based on hybridization chain reaction with hemin/G-quadruplex DNAzyme. Talanta 2018; 182:292-298. [PMID: 29501155 DOI: 10.1016/j.talanta.2018.01.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 11/29/2022]
Abstract
In this work, a new electrochemical immunosensor was developed for prion protein assay based on hybridization chain reaction (HCR) with hemin/G-quadruplex DNAzyme for signal amplification. In this amplification system, the hemin/G-quadruplex DNAzyme simultaneously mimicked the biocatalytic functions for H2O2 reduction and L-cysteine oxidation. In the presence of L-cysteine, the hemin/G-quadruplex catalyzed the oxidation of L-cysteine to L-cystine. At the same time, H2O2 was produced under the oxygen condition. Then, the hemin/G-quadruplex could quickly catalyze the reduction of H2O2, mimicking the catalytic performance of horseradish peroxidase (HRP). Under the optimal conditions, the immunosensor showed a wide linear response range from 0.5 pg/mL to 100 ng/mL with the low detection limit of 0.38 pg/mL (3σ). By changing the specific antibody, this strategy could be easily extended to detect the infectious isoform of prion (PrPSc) and other proteins. Based on its good analytical performance, the developed method shows great potential applications in diagnosis of prion diseases at presymptomatic stage and bioanalysis.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Junjing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Caixia Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
11
|
|
12
|
Bouvier-Müller A, Ducongé F. Nucleic acid aptamers for neurodegenerative diseases. Biochimie 2017; 145:73-83. [PMID: 29104136 DOI: 10.1016/j.biochi.2017.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
The increased incidence of neurodegenerative diseases represents a huge challenge for societies. These diseases are characterized by neuronal death and include several different pathologies, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, Huntington's disease and transmissible spongiform encephalopathies. Most of these pathologies are often associated with the aggregation of misfolded proteins, such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. However, the precise mechanisms that lead to neuronal dysfunction and death in these diseases remain poorly understood. Nucleic acid aptamers represent a new class of ligands that could be useful to better understand these diseases and develop better diagnosis and therapy. In this review, several of these aptamers are presented as well as their applications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Alix Bouvier-Müller
- CEA, Fundamental Research Division (DRF), Institute of Biology François Jacob (Jacob), Molecular Imaging Research Center, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; Neurodegenerative Diseases Laboratory, CNRS CEA UMR 9199, Fontenay-aux-Roses, France; Paris-Saclay University, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Ducongé
- CEA, Fundamental Research Division (DRF), Institute of Biology François Jacob (Jacob), Molecular Imaging Research Center, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; Neurodegenerative Diseases Laboratory, CNRS CEA UMR 9199, Fontenay-aux-Roses, France; Paris-Saclay University, Paris-Sud University, Fontenay-aux-Roses, France.
| |
Collapse
|
13
|
Urmann K, Modrejewski J, Scheper T, Walter JG. Aptamer-modified nanomaterials: principles and applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/bnm-2016-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractAptamers are promising alternative binders that can substitute antibodies in various applications. Due to the advantages of aptamers, namely their high affinity, specificity and stability, along with the benefits originating from the chemical synthesis of aptamers, they have attracted attention in various applications including their use on nanostructured material. This necessitates the immobilization of aptamers on a solid support. Since aptamer immobilization may interfere with its binding properties, the immobilization of aptamers has to be investigated and optimized. Within this review, we give general insights into the principles and factors controlling the binding affinity of immobilized aptamers. Specific features of aptamer immobilization on nanostructured surfaces and nanoparticles are highlighted and a brief overview of applications of aptamer-modified nanostructured materials is given.
Collapse
|
14
|
Affiliation(s)
- Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
15
|
Bizid S, Mlika R, Haj Saïd A, Chemli M, Korri Youssoufi H. Functionalization of MWCNTs with Ferrocene-poly(p-phenylene) and Effect on Electrochemical Properties: Application as a Sensing Platform. ELECTROANAL 2016. [DOI: 10.1002/elan.201600142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. Bizid
- Laboratory Interfaces and Advanced Materials, Faculty of Science of Monastir; University of Monastir; 5019 Monastir Tunisia
- Institut de Chimie Moléculaire et de Matériaux d'Orsay, Equipe de Chimie Bioorganique et Bioinorganique; University Paris-Sud; Bâtiment420 91405 Orsay France
| | - R. Mlika
- Laboratory Interfaces and Advanced Materials, Faculty of Science of Monastir; University of Monastir; 5019 Monastir Tunisia
| | - A. Haj Saïd
- Laboratory Interfaces and Advanced Materials, Faculty of Science of Monastir; University of Monastir; 5019 Monastir Tunisia
| | - M. Chemli
- Laboratory Interfaces and Advanced Materials, Faculty of Science of Monastir; University of Monastir; 5019 Monastir Tunisia
| | - H. Korri Youssoufi
- Institut de Chimie Moléculaire et de Matériaux d'Orsay, Equipe de Chimie Bioorganique et Bioinorganique; University Paris-Sud; Bâtiment420 91405 Orsay France
| |
Collapse
|
16
|
Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Miodek A, Mejri-Omrani N, Khoder R, Korri-Youssoufi H. Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: Application to DNA biosensor. Talanta 2016; 154:446-54. [DOI: 10.1016/j.talanta.2016.03.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
18
|
Hianik T. Affinity Biosensors for Detection Immunoglobulin E and Cellular Prions. Antibodies vs. DNA Aptamers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics; Comenius University; Mlynska dolina F1 842 48 Bratislava Slovakia
- OpenLab “DNA-Sensors” of Kazan Federal University; 18 Kremlevskaya Street Kazan 420008 Russian Federation
| |
Collapse
|
19
|
Miodek A, Lê HQA, Sauriat-Dorizon H, Korri-Youssoufi H. Streptavidin-polypyrrole Film as Platform for Biotinylated Redox Probe Immobilization for Electrochemical Immunosensor Application. ELECTROANAL 2016. [DOI: 10.1002/elan.201600139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Miodek
- ICMMO, CNRS, Univ. Paris Sud; Université Paris-Saclay; 91405 Cedex Orsay France
| | - Huu Quynh Anh Lê
- ICMMO, CNRS, Univ. Paris Sud; Université Paris-Saclay; 91405 Cedex Orsay France
- HoChiMinh University of Natural Ressources and Environment; VietNam
| | | | | |
Collapse
|
20
|
Yu P, Zhang X, Xiong E, Zhou J, Li X, Chen J. A label-free and cascaded dual-signaling amplified electrochemical aptasensing platform for sensitive prion assay. Biosens Bioelectron 2016; 85:471-478. [PMID: 27208480 DOI: 10.1016/j.bios.2016.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 01/18/2023]
Abstract
Prion proteins, as an important biomarker of prion disease, are responsible for the transmissible spongiform encephalopathies (a group of fatal neurodegenerative diseases). Hence, the sensitive detection of prion protein is very essential for biological studies and medical diagnostics. In this paper, a novel label-free and cascaded dual-signaling amplified electrochemical strategy was developed for sensitive and selective analysis of cellular prion protein (PrP(C)). The recognition elements included double-stranded DNA consisted of PrP(C)-binding aptamer (DNA1) and its partially complementary DNA (DNA2), and ordered mesoporous carbon probe (OMCP) fabricated by sealing the electroactive ferrocenecarboxylic acid (Fc) into its inner pores and then using single-stranded DNA (DNA3) as the gatekeeper. In the presence of PrP(C), DNA1 could bind the target protein and free DNA2. More importantly, DNA2 could hybridize with DNA3 to form a rigid duplex DNA and thus triggered the exonuclease III (Exo III) cleavage process to realize the DNA2 recycling, accompanied by opening more biogates and releasing more Fc. The released Fc could be further used as a competitive guest of β-cyclodextrin (β-CD) to displace the Rhodamine B (RhB) on the electrode. As a result, an amplified oxidation peak current of Fc (RhB) increased (decreased) with the increase of PrP(C) concentration. When "ΔI=ΔIFc+|ΔIRhB|" (ΔIFc and ΔIRhB were the change values of the oxidation peak currents of Fc and RhB, respectively.) was used as the response signal for quantitative determination of PrP(C), the detection limit was 7.6fM (3σ), which was much lower than that of the most reported methods for PrP(C) assay. This strategy provided a simple and sensitive approach for the detection of PrP(C) and has a great potential for bioanalysis, disease diagnostics, and clinical biomedicine applications.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jiawan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
21
|
Electrochemical DNA sensors and aptasensors based on electropolymerized materials and polyelectrolyte complexes. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Ganesh HV, Chow AM, Kerman K. Recent advances in biosensors for neurodegenerative disease detection. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty JL, Korri-Youssoufi H. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal Chim Acta 2016; 920:37-46. [PMID: 27114221 DOI: 10.1016/j.aca.2016.03.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/01/2016] [Accepted: 03/17/2016] [Indexed: 12/25/2022]
Abstract
Ochratoxin A (OTA) is a carcinogenic mycotoxin that contaminates food such as cereals, wine and beer; therefore it represents a risk for human health. Consequently, the allowed concentration of OTA in food is regulated by governmental organizations and its detection is of major agronomical interest. In the current study we report the development of an electrochemical aptasensor able to directly detect trace OTA without any amplification procedure. This aptasensor was constructed by coating the surface of a gold electrode with a film layer of modified polypyrrole (PPy), which was thereafter covalently bound to polyamidoamine dendrimers of the fourth generation (PAMAM G4). Finally, DNA aptamers that specifically binds OTA were covalently bound to the PAMAM G4 providing the aptasensor, which was characterized by using both Atomic Force Microscopy (AFM) and Surface Plasmon Resonance (SPR) techniques. The study of OTA detection by the constructed electrochemical aptasensor was performed using Electrochemical Impedance Spectroscopy (EIS) and revealed that the presence of OTA led to the modification of the electrical properties of the PPy layer. These modifications could be assigned to conformational changes in the folding of the aptamers upon specific binding of OTA. The aptasensor had a dynamic range of up to 5 μg L(-1) of OTA and a detection limit of 2 ng L(-1) of OTA, which is below the OTA concentration allowed in food by the European regulations. The efficient detection of OTA by this electrochemical aptasensor provides an unforeseen platform that could be used for the detection of various small molecules through specific aptamer association.
Collapse
Affiliation(s)
- Nawel Mejri-Omrani
- ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay, France; BAE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France; Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d'Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis, Tunisia
| | - Anna Miodek
- ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay, France
| | - Becem Zribi
- ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay, France
| | - Mouna Marrakchi
- Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d'Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis, Tunisia; Université de Tunis El Manar, Higher Institute of Applied Biological Sciences (ISSBAT), 1006 Tunis, Tunisia
| | - Moktar Hamdi
- Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d'Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis, Tunisia
| | - Jean-Louis Marty
- BAE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Hafsa Korri-Youssoufi
- ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay, France.
| |
Collapse
|
24
|
Trends in the Design and Development of Specific Aptamers Against Peptides and Proteins. Protein J 2016; 35:81-99. [DOI: 10.1007/s10930-016-9653-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Poly(amidoamine) (PAMAM): An emerging material for electrochemical bio(sensing) applications. Talanta 2016; 148:427-38. [DOI: 10.1016/j.talanta.2015.11.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022]
|
26
|
Zribi B, Roy E, Pallandre A, Chebil S, Koubaa M, Mejri N, Magdinier Gomez H, Sola C, Korri-Youssoufi H, Haghiri-Gosnet AM. A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. BIOMICROFLUIDICS 2016; 10:014115. [PMID: 26865908 PMCID: PMC4744232 DOI: 10.1063/1.4940887] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/14/2016] [Indexed: 05/20/2023]
Abstract
Herein we present a microfluidic-multiplexed platform that integrates electrochemical sensors based on carbon nanotubes associated with ferrocene as redox marker (carbon nanotube (CNT)/ferrocene) for direct detection of pathogenic viral DNA from Hepatitis C and genomic DNA from Mycobacterium tuberculosis in clinical isolates. By operating the fluidic device under high flow (150 μl/min), the formation of a very thin depletion layer at the sensor surface (δS = 230 nm) enhances the capture rate up to one DNA strand per second. By comparison, this capture rate is only 0.02 molecule/s in a static regime without flow. This fluidic protocol allows thus enhancing the limit of detection of the electrochemical biosensor from picomolar in bulk solution to femtomolar with a large dynamic range from 0.1 fM to 1 pM. Kinetics analysis also demonstrates an enhancement of the rate constant of electron transfer (kS) of the electrochemical process from 1 s(-1) up to 6 s(-1) thanks to the geometry of the miniaturized fluidic electrochemical cell. This microfluidic device working under high flow allows selective direct detection of a Mycobacterium tuberculosis (H37Rv) rpoB allele from clinical isolate extracted DNA. We envision that a microfluidic approach under high flow associated with a multiwall CNT/ferrocene sensor could find useful applications as the point-of-care for multi-target diagnostics of biomarkers in real samples.
Collapse
Affiliation(s)
| | - E Roy
- Laboratoire de Photonique et de Nanostructures (LPN), CNRS, Université Paris-Saclay , route de Nozay, F-91460 Marcoussis, France
| | | | - S Chebil
- Laboratoire de Photonique et de Nanostructures (LPN), CNRS, Université Paris-Saclay , route de Nozay, F-91460 Marcoussis, France
| | - M Koubaa
- Laboratoire de Physique des Matériaux, LPM FSS, Faculté des Sciences de Sfax, Université de Sfax , Sfax, Tunisia
| | - N Mejri
- Université Paris-Saclay , UMR-CNRS 8182, Institue de Chimie Moléculaires et Matériaux d'Orsay (ICMMO), Equipe de Chimie Bioorganique et Bioinorganique (ECBB), Bâtiment 420, 91405, Orsay, France
| | - H Magdinier Gomez
- UMR-CNRS 9198, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Saclay , Bat 400, 91405 Orsay, France
| | - C Sola
- UMR-CNRS 9198, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Saclay , Bat 400, 91405 Orsay, France
| | - H Korri-Youssoufi
- Université Paris-Saclay , UMR-CNRS 8182, Institue de Chimie Moléculaires et Matériaux d'Orsay (ICMMO), Equipe de Chimie Bioorganique et Bioinorganique (ECBB), Bâtiment 420, 91405, Orsay, France
| | - A-M Haghiri-Gosnet
- Laboratoire de Photonique et de Nanostructures (LPN), CNRS, Université Paris-Saclay , route de Nozay, F-91460 Marcoussis, France
| |
Collapse
|
27
|
Improving platelet transfusion safety: biomedical and technical considerations. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 14:109-22. [PMID: 26674828 DOI: 10.2450/2015.0042-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
Abstract
Platelet concentrates account for near 10% of all labile blood components but are responsible for more than 25% of the reported adverse events. Besides factors related to patients themselves, who may be particularly at risk of side effects because of their underlying illness, there are aspects of platelet collection and storage that predispose to adverse events. Platelets for transfusion are strongly activated by collection through disposal equipment, which can stress the cells, and by preservation at 22 °C with rotation or rocking, which likewise leads to platelet activation, perhaps more so than storage at 4 °C. Lastly, platelets constitutively possess a very large number of bioactive components that may elicit pro-inflammatory reactions when infused into a patient. This review aims to describe approaches that may be crucial to minimising side effects while optimising safety and quality. We suggest that platelet transfusion is complex, in part because of the complexity of the "material" itself: platelets are highly versatile cells and the transfusion process adds a myriad of variables that present many challenges for preserving basal platelet function and preventing dysfunctional activation of the platelets. The review also presents information showing--after years of exhaustive haemovigilance--that whole blood buffy coat pooled platelet components are extremely safe compared to the gold standard (i.e. apheresis platelet components), both in terms of acquired infections and of immunological/inflammatory hazards.
Collapse
|
28
|
Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion. Sci Rep 2015; 5:16015. [PMID: 26531259 PMCID: PMC4631995 DOI: 10.1038/srep16015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-β-cyclodextrins (MWCNTs-β-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between β-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to β-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of β-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160 fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis.
Collapse
|
29
|
Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors. SENSORS 2015; 15:25015-32. [PMID: 26426017 PMCID: PMC4634408 DOI: 10.3390/s151025015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.
Collapse
|
30
|
Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssoufi H. E-DNA Sensor of Mycobacterium tuberculosis Based on Electrochemical Assembly of Nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem 2015; 87:9257-64. [DOI: 10.1021/acs.analchem.5b01761] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anna Miodek
- CNRS
UMR-8182, Institut de Chimie Moléculaire et de Matériaux
d’Orsay, Equipe de Chimie Bioorganique et Bioinorganique, Université Paris-Sud, Bâtiment 420, 91405 Orsay, France
| | - Nawel Mejri
- CNRS
UMR-8182, Institut de Chimie Moléculaire et de Matériaux
d’Orsay, Equipe de Chimie Bioorganique et Bioinorganique, Université Paris-Sud, Bâtiment 420, 91405 Orsay, France
| | - Michel Gomgnimbou
- Institut
of Integrative Cell Biology, Orsay, CEA-CNRS-Université Paris-Sud, UMR9198, Bâtiment
400, 91405 Orsay, France
| | - Christophe Sola
- Institut
of Integrative Cell Biology, Orsay, CEA-CNRS-Université Paris-Sud, UMR9198, Bâtiment
400, 91405 Orsay, France
| | - Hafsa Korri-Youssoufi
- CNRS
UMR-8182, Institut de Chimie Moléculaire et de Matériaux
d’Orsay, Equipe de Chimie Bioorganique et Bioinorganique, Université Paris-Sud, Bâtiment 420, 91405 Orsay, France
| |
Collapse
|
31
|
Qian J, Jiang L, Yang X, Yan Y, Mao H, Wang K. Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density. Analyst 2015; 139:5587-93. [PMID: 25166740 DOI: 10.1039/c4an01116c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A series of gold nanoparticles (AuNPs) that were covalently bound to 2-aminothiophenol-functionalized reduced graphene oxide (Au-ATP-rGO) composites have been synthesized with well-dispersed and controllable surface coverage of AuNPs. Aptamer immobilization capacity studies demonstrated that the surface density of AuNPs played a key role in increasing the amount of anchoring aptamers to enhance the sensitivity of affinity based detection. With the composites possessing dense surface coverage of AuNPs as a versatile signal amplified platform, a label-free aptasensor for the sensitive and selective detection of small molecules (ochratoxin A in this case) has been developed using electrochemical impedance spectroscopy (EIS). A wide linear range of 0.1-200 ng mL(-1) was obtained with a low detection limit of 0.03 ng mL(-1) (S/N = 3). This work provides a universal strategy for the sensitive detection of a variety of targets in a truly label-free manner by means of changing the corresponding aptamer. The promising platform based on the combination of Au-ATP-rGO composites, EIS technique, and aptamers would have great potential applications in clinical diagnosis, environmental analysis, and food safety monitoring.
Collapse
Affiliation(s)
- Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
McConnell EM, Holahan MR, DeRosa MC. Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic Acid Ther 2015; 24:388-404. [PMID: 25296265 DOI: 10.1089/nat.2014.0492] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oligonucleotide aptamers are short, synthetic, single-stranded DNA or RNA able to recognize and bind to a multitude of targets ranging from small molecules to cells. Aptamers have emerged as valuable tools for fundamental research, clinical diagnosis, and therapy. Due to their small size, strong target affinity, lack of immunogenicity, and ease of chemical modification, aptamers are an attractive alternative to other molecular recognition elements, such as antibodies. Although it is a challenging environment, the central nervous system and related molecular targets present an exciting potential area for aptamer research. Aptamers hold promise for targeted drug delivery, diagnostics, and therapeutics. Here we review recent advances in aptamer research for neurotransmitter and neurotoxin targets, demyelinating disease and spinal cord injury, cerebrovascular disorders, pathologies related to protein aggregation (Alzheimer's, Parkinson's, and prions), brain cancer (glioblastomas and gliomas), and regulation of receptor function. Challenges and limitations posed by the blood brain barrier are described. Future perspectives for the application of aptamers to the central nervous system are also discussed.
Collapse
Affiliation(s)
- Erin M McConnell
- 1 Department of Chemistry, Carleton University , Ottawa, Ontario, Canada
| | | | | |
Collapse
|
33
|
Castillo G, Spinella K, Poturnayová A, Šnejdárková M, Mosiello L, Hianik T. Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.12.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Mao Y, Liu J, He D, He X, Wang K, Shi H, Wen L. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing. Talanta 2015; 143:381-387. [PMID: 26078174 DOI: 10.1016/j.talanta.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 12/27/2022]
Abstract
Owing to its diversified structures, high affinity, and specificity for binding a wide range of non-nucleic acid targets, aptamer is a useful molecular recognition tool for the design of various biosensors. Herein, we report a new signal-on electrochemical biosensing platform which is based on an aptamer/target binding-induced strand displacement and triple-helix forming. The biosensing platform is composed of a signal transduction probe (STP) modified with a methylene blue (MB) and a sulfhydryl group, a triplex-forming oligonucleotides probe (TFO) and a target specific aptamer probe (Apt). Through hybridization with the TFO probe and the Apt probe, the self-assembled STP on Au electrode via Au-S bonding keeps its rigid structure. The MB on the STP is distal to the Au electrode surface. It is eT off state. Target binding releases the Apt probe and liberates the end of the MB tagged STP to fold back and form a triplex-helix structure with TFO (STP/TFO/STP), allowing MB to approach the Au electrode surface and generating measurable electrochemical signals (eT ON). As test for the feasibility and universality of this signal-on electrochemical biosensing platform, two aptamers which bind to adenosine triphosphate (ATP) and human α-thrombin (Tmb), respectively, are selected as models. The detection limit of ATP was 7.2 nM, whereas the detection limit of Tmb was 0.86 nM.
Collapse
Affiliation(s)
- Yinfei Mao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Jinquan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Dinggen He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China.
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Li Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| |
Collapse
|
35
|
Justino CI, Freitas AC, Pereira R, Duarte AC, Rocha Santos TA. Recent developments in recognition elements for chemical sensors and biosensors. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Gatard S, Deraedt C, Rapakousiou A, Sonet D, Salmon L, Ruiz J, Astruc D. New Polysilyl Dendritic Precursors of Triazolylferrocenyl and Triazolylcobalticenium Dendrimers—Comparative Electrochemical Study and Stabilization of Small, Catalytically Active Pd Nanoparticles. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sylvain Gatard
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
- ICMR,
UMR CNRS No. 7312, University of Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Christophe Deraedt
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Amalia Rapakousiou
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Dorian Sonet
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Lionel Salmon
- LCC,
CNRS and University of Toulouse (UPS, INP), 31077 Toulouse, France
| | - Jaime Ruiz
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| |
Collapse
|
37
|
Styrene Sulphonic Acid Doped Polyaniline Based Immunosensor for Highly Sensitive Impedimetric Sensing of Atrazine. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.09.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Erdem A, Congur G, Mese F. Electrochemical Detection of Activated Protein C Using an Aptasensor Based on PAMAM Dendrimer Modified Pencil Graphite Electrodes. ELECTROANAL 2014. [DOI: 10.1002/elan.201400354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Evtugyn G, Porfireva A, Stepanova V, Sitdikov R, Stoikov I, Nikolelis D, Hianik T. Electrochemical Aptasensor Based on Polycarboxylic Macrocycle Modified with Neutral Red for Aflatoxin B1 Detection. ELECTROANAL 2014. [DOI: 10.1002/elan.201400328] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|