1
|
Zhang R, Wang Y, Wang X, Ren H, Du J, Yang Y, Hu X, Shi R, Zhang B, Li C, Lu S, Li Y, Liu Z, Hu P. Visual fluorescence detection of Listeria monocytogenes with CRISPR-Cas12a aptasensor. Anal Bioanal Chem 2024; 416:5779-5789. [PMID: 39212695 DOI: 10.1007/s00216-024-05497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Listeria monocytogenes (L. monocytogenes) is a prevalent food-borne pathogen that can cause listeriosis, which manifests as meningitis and other symptoms, potentially leading to fatal outcomes in severe cases. In this study, we developed an aptasensor utilizing carboxylated magnetic beads and Cas12a to detect L. monocytogenes. In the absence of L. monocytogenes, the aptamer maintains its spatial configuration, keeping the double-stranded DNA attached and preventing the release of a startup template and activation of Cas12a's trans-cleavage capability. Conversely, in the presence of L. monocytogenes, the aptamer undergoes a conformational change, releasing the double-stranded DNA to serve as a startup template, thereby activating the trans-cleavage capability of Cas12a. Consequently, as the concentration of L. monocytogenes increases, the observable brightness in a blue light gel cutter intensifies, leading to a rise in fluorescence intensity difference compared to the control. This Cas12a aptasensor demonstrates excellent sensitivity towards L. monocytogenes, with a lowest detection limit (LOD) of 57.15 CFU/mL and a linear range of 4×102 to 4×107 CFU/mL (R2=0.9858). Notably, the proposed Cas12a aptasensor exhibited outstanding selectivity and recovery in beef samples, and could be employed for precise monitoring. This Cas12a aptasensor not only provides a novel fluorescent and visual rapid detection method for L. monocytogenes but also offers simplicity, speed, and stability compared to previous detection methods. Furthermore, it is suitable for on-site detection of beef samples.
Collapse
Affiliation(s)
- Runze Zhang
- Department of Food and Biological Sciences, Yanbian University, No. 977, GongYuan Street, Yanji, 133002, Jilin, China
| | - Yuzhu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yongjie Yang
- Department of Food and Biological Sciences, Yanbian University, No. 977, GongYuan Street, Yanji, 133002, Jilin, China
| | - Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bo Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chengwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Beyazit F, Arica MY, Acikgoz-Erkaya I, Ozalp C, Bayramoglu G. Quartz crystal microbalance-based aptasensor integrated with magnetic pre-concentration system for detection of Listeria monocytogenes in food samples. Mikrochim Acta 2024; 191:235. [PMID: 38570380 PMCID: PMC10990998 DOI: 10.1007/s00604-024-06307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
A fast and accurate identification of Listeria monocytogenes. A new quartz crystal microbalance (QCM) aptasensor was designed for the specific and rapid detection of L. monocytogenes. Before detection of the target bacterium from samples in the QCM aptasensor, a magnetic pre-enrichment system was used to eliminate any contaminant in the samples. The prepared magnetic system was characterized using ATR-FTIR, SEM, VSM, BET, and analytical methods. The saturation magnetization values of the Fe3O4, Fe3O4@PDA, and Fe3O4@PDA@DAPEG particles were 57.2, 40.8, and 36.4 emu/g, respectively. The same aptamer was also immobilized on the QCM crystal integrated into QCM flow cell and utilized to quantitatively detect L. monocytogenes cells from the samples. It was found that a specific aptamer-magnetic pre-concentration system efficiently captured L. monocytogenes cells in a short time (approximately 10 min). The Fe3O4@PDA@DA-PEG-Apt particles provided selective isolation of L. monocytogenes from the bacteria-spiked media up to 91.8%. The immobilized aptamer content of the magnetic particles was 5834 µg/g using 500 ng Apt/mL. The QCM aptasensor showed a very high range of analytical performance to the target bacterium from 1.0 × 102 and 1.0 × 107 CFU/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were 148 and 448 CFU/mL, respectively, from the feeding of the QCM aptasensor flow cell with the eluent of the magnetic pre-concentration system. The reproducibility of the aptasensor was more than 95%. The aptasensor was very specific to L. monocytogenes compared to the other Listeria species (i.e., L. ivanovii, L. innocua, and L. seeligeri) or other tested bacteria such as Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The QCM aptasensor was regenerated with NaOH solution, and the system was reused many times.
Collapse
Affiliation(s)
- Fatma Beyazit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mehmet Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| | - Ilkay Acikgoz-Erkaya
- Department of Environmental Science, Faculty of Engineering and Architecture, Ahi Evran University, Kırsehir, Turkey
| | - Cengiz Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| |
Collapse
|
3
|
Vishwakarma A, Meganathan Y, Ramya M. Aptamer-based assay for rapid detection, surveillance, and screening of pathogenic Leptospira in water samples. Sci Rep 2023; 13:13379. [PMID: 37591900 PMCID: PMC10435560 DOI: 10.1038/s41598-023-40120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Leptospirosis is a potentially fatal waterborne infection caused by Leptospira interrogans, impacting both humans and animals in tropical regions. However, current diagnostic methods for detecting pathogenic Leptospira have sensitivity, cost, and time limitations. Therefore, there is a critical need for a rapid, sensitive, and cost-effective detection method. This study presents the development of an aptamer-based assay for pathogenic Leptospira detection. Aptamers targeting Leptospira were generated using the SELEX method and screened for binding affinity with major Leptospiral outer membrane proteins through in silico analysis. The aptamer with the highest binding affinity was selected for further evaluation. To enable visual detection, the aptamer was conjugated to gold nanoparticles (AuNPs), resulting in a colorimetric response in the presence of L. interrogans. The aptamer-AuNP-based colorimetric assay exhibited a detection limit of 57 CFU/mL and demonstrated high specificity and reproducibility in detecting pathogenic Leptospira in water samples. This aptamer-based assay represents a significant advancement in leptospirosis diagnostics, offering a rapid, sensitive, and cost-effective approach for detecting pathogenic Leptospira. Its potential for epidemiological applications, such as outbreak source identification and improved prevention, diagnosis, and treatment, particularly in resource-limited settings, highlights its importance in addressing the challenges associated with leptospirosis.
Collapse
Affiliation(s)
- Archana Vishwakarma
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India
| | - Yogesan Meganathan
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India
| | - Mohandass Ramya
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Kim SY, Lee JP, Shin WR, Oh IH, Ahn JY, Kim YH. Cardiac biomarkers and detection methods for myocardial infarction. Mol Cell Toxicol 2022; 18:443-455. [PMID: 36105117 PMCID: PMC9463516 DOI: 10.1007/s13273-022-00287-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Background A significant heart attack known as a myocardial infarction (MI) occurs when the blood supply to the heart is suddenly interrupted, harming the heart muscles due to a lack of oxygen. The incidence of myocardial infarction is increasing worldwide. A relationship between COVID-19 and myocardial infarction due to the recent COVID-19 pandemic has also been revealed. Objective We propose a biomarker and a method that can be used for the diagnosis of myocardial infarction, and an aptamer-based approach. Results For the diagnosis of myocardial infarction, an algorithm-based diagnosis method was developed using electrocardiogram data. A diagnosis method through biomarker detection was then developed. Conclusion Myocardial infarction is a disease that is difficult to diagnose based on the aspect of a single factor. For this reason, it is necessary to use a combination of various methods to diagnose myocardial infarction quickly and accurately. In addition, new materials such as aptamers must be grafted and integrated into new ways. Purpose of Review The incidence of myocardial infarction is increasing worldwide, and some studies are being conducted on the association between COVID-19 and myocardial infarction. The key to properly treating myocardial infarction is early detection, thus we aim to do this by offering both tools and techniques as well as the most recent diagnostic techniques. Recent Findings Myocardial infarction is diagnosed using an electrocardiogram and echocardiogram, which utilize cardiac signals. It is required to identify biomarkers of myocardial infarction and use biomarker-based ELISA, SPR, gold nanoparticle, and aptamer technologies in order to correctly diagnose myocardial infarction.
Collapse
Affiliation(s)
- Sang Young Kim
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, Ansan, 15435 Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| |
Collapse
|
5
|
Recent developments in application of nucleic acid aptamer in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Hu X, Li X, Yang H, Xu C, Xiong W, Guo X, Xie C, Zeng D. Active W Sites Promoted by Defect Engineering Enhanced C 2H 6S 3 Sensing Performance of WO 3 Nanosheets. ACS Sens 2022; 7:1894-1902. [PMID: 35734877 DOI: 10.1021/acssensors.2c00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defect engineering has received extensive attention as an effective method to tune the gas sensing properties of semiconductor materials. Here, defective WO3 (D-WO3) nanosheets were obtained by a simple hydrogenation process with a detection limit as low as 5 ppb for dimethyl trisulfide (DMTS) and a response of 2.3 times that of the initial WO3 nanosheets to 100 ppb DMTS. Importantly, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the partial loss of oxygen atoms in D-WO3 nanosheets, and density functional theory calculations found that the W sites near the oxygen defect showed higher adsorption energy for DMTS and transferred more electrons during the gas interaction, indicating that the active W site caused by oxygen atom loss can effectively enhance the reactivity of two-dimensional WO3 nanosheets. Different from the traditional oxygen defect model, this work reveals the positive effect of active metal sites on gas sensing for the first time, which is expected to provide an effective reference for the sensing application of defect engineering in metal oxides.
Collapse
Affiliation(s)
- Xiafen Hu
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiang Li
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Huimin Yang
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chengjia Xu
- Hubei Sanjiang Aerospace Jianghe Chemical Technology Co., Ltd. of China, Yichang 444200, People's Republic of China
| | - Weiqiang Xiong
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemistry Technology, Xiangyang 441003, People's Republic of China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemistry Technology, Xiangyang 441003, People's Republic of China
| | - Changsheng Xie
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Dawen Zeng
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
7
|
Ali Q, Zheng H, Rao MJ, Ali M, Hussain A, Saleem MH, Nehela Y, Sohail MA, Ahmed AM, Kubar KA, Ali S, Usman K, Manghwar H, Zhou L. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. CHEMOSPHERE 2022; 296:133773. [PMID: 35114264 DOI: 10.1016/j.chemosphere.2022.133773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/22/2023]
Abstract
Phytopathogenic bacteria cause severe economic losses in agricultural production worldwide. The spread rates, severity, and emerging plant bacterial diseases have become serious threat to the sustainability of food sources and the fruit industry. Detection and diagnosis of plant diseases are imperative in order to manage plant diseases in field conditions, greenhouses, and food storage conditions as well as to maximize agricultural productivity and sustainability. To date, various techniques including, serological, observation-based, and molecular methods have been employed for plant disease detection. These methods are sensitive and specific for genetic identification of bacteria. However, these methods are specific for genetic identification of bacteria. Currently, the innovative biosensor-based disease detection technique is an attractive and promising alternative. A biosensor system involves biological recognition and transducer active receptors based on sensors used in plant-bacteria diagnosis. This system has been broadly used for the rapid diagnosis of plant bacterial pathogens. In the present review, we have discussed the conventional methods of bacterial-disease detection, however, the present review mainly focuses on the applications of different biosensor-based techniques along with point-of-care (POC), robotics, and cell phone-based systems. In addition, we have also discussed the challenges and limitations of these techniques.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, 210095, China.
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Junaid Rao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, PR China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA; Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Agha Mushtaque Ahmed
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tando Jam, Sindh, Pakistan
| | - Kashif Ali Kubar
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Balochistan, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Liu M, Yue F, Kong Q, Liu Z, Guo Y, Sun X. Aptamers against Pathogenic Bacteria: Selection Strategies and Apta-assay/Aptasensor Application for Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5477-5498. [PMID: 35471004 DOI: 10.1021/acs.jafc.2c01547] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic bacteria are primarily kinds of detrimental agents that cause mankind illness via contaminated food with traits of multiple types, universality, and low content. In view of the detection demands for rapidity, aptamer recognition factors emerged as a substitution for antibodies, which are short single strands of nucleic acid selected via in vitro. They display certain superiorities over antibodies, such as preferable stability, liable modification, and cost-efficiency. Taking advantage of the situation, numerous aptamers against pathogenic bacteria have been successfully selected and applied, yet there are still restrictions on commercial availability. In this review, the strategies/approaches to key sections in pathogen aptamers SELEX and post-SELEX are summarized and sorted out. Recently, optical, electrochemical, and piezoelectric aptamer-based assays or sensors dedicated to pathogen detection have been critically reviewed. Ultimately, the existing challenges and future trends in this field are proposed to further promote development prospects.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| |
Collapse
|
9
|
Shin WR, Park DY, Kim JH, Lee JP, Thai NQ, Oh IH, Sekhon SS, Choi W, Kim SY, Cho BK, Kim SC, Min J, Ahn JY, Kim YH. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:204. [PMID: 35477501 PMCID: PMC9044640 DOI: 10.1186/s12951-022-01391-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Background Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. Results For preparing the aptaprobe–GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. Conclusion Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01391-z.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Nguyen Quang Thai
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Shinyoung-dong 344-2, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
10
|
Jin Y, Yan R, Wang S, Wang X, Zhang X, Tang Y. Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination. Mikrochim Acta 2022; 189:96. [PMID: 35147788 DOI: 10.1007/s00604-022-05182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
A novel fluorescence platform was fabricated for enrofloxacin determination by using cDNA-modified dipeptide fluorescence nanoparticles (FDNP-cDNA) and aptamer-modified magnetic Fe3O4 nanoparticles (Fe3O4-Apt). The FDNP were prepared via tryptophan-phenylalanine self-assembling. When magnetic Fe3O4-Apt incubated with standard solution or sample extracts, the target enrofloxacin was selectively captured by the aptamer on the surface of the Fe3O4 nanoparticles. After removing interference by washing with phosphate-buffered saline, the FDNP-cDNA was added, which can bind to the aptamer on the surface of the Fe3O4 nanoparticles not occupied by the analyte. The higher the concentration of the target enrofloxacin in the standard or sample solution is, the less the FDNP-cDNA can be bound with the Fe3O4 nanoparticles, and the more the FDNP-cDNA can be observed in the supernatant. Fluorescence intensity (Ex/Em = 310/380 nm) increased linearly in the enrofloxacin concentration range 0.70 to 10.0 ng/mL with a detection limit of 0.26 ng/mL (S/N = 3). Good recoveries (88.17-99.30%) were obtained in spiked lake water, chicken, and eel samples with relative standard deviation of 2.7-6.2% (n = 3).
Collapse
Affiliation(s)
- Yuting Jin
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China
| | - Rongfang Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
11
|
Zhang X, Xu J, Yan C, Yao L, Shang H, Chen W. A Short- and Long-Range Fluorescence Resonance Energy Transfer-Cofunctionalized Fluorescence Quenching Collapsar Probe Regulates Amplified and Accelerated Detection of Salmonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14294-14301. [PMID: 34797054 DOI: 10.1021/acs.jafc.1c05780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate and rapid quantification of foodborne pathogens is of great significance for food safety and human health. In this work, we have successfully constructed a fluorescence quenching collapsar probe (FQCP) on the basis of a conventional aptamer-encoded molecular beacon (AEMB) and applied it for the detection of Salmonella. In structure, the FQCP is assembled by AEMBs in fours via specific streptavidin and biotin binding. Such a simple format makes the FQCP cofunctionalized with short- and long-range fluorescence resonance energy transfer (FRET) effects, thereby leading to a significantly suppressed inherent background fluorescence that is much lower than that of the conventional AEMB. Moreover, the FQCP exhibits superior biostability because of the blocking of its 3' terminal. The reaction kinetics of the FQCP for Salmonella recognition is obviously improved since the probe designed with four binding sites increases the probability to react with Salmonella. As a result, the FQCP-based sensing platform can rapidly output the target detection signal within 30 min associated with a greatly improved signal-to-noise ratio up to 32.4. The system was also demonstrated with a well antimatrix effect for ultrasensitive detection of Salmonella from tap water, milk, red bull, green tea, orange juice, and Coca-Cola. Our study provides insights into the facile tailoring of functional nucleic acids for amplified and mix-to-answer detection of foodborne pathogens, which could become a powerful analytical tool for straightforward sensing of pathogens in the fields of food safety analysis, clinical diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
- Xinlei Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Yan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P.R. China
| | - Li Yao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huijie Shang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
12
|
Zhu L, Hao H, Ding C, Gan H, Jiang S, Zhang G, Bi J, Yan S, Hou H. A Novel Photoelectrochemical Aptamer Sensor Based on CdTe Quantum Dots Enhancement and Exonuclease I-Assisted Signal Amplification for Listeria monocytogenes Detection. Foods 2021; 10:2896. [PMID: 34945447 PMCID: PMC8701101 DOI: 10.3390/foods10122896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
To achieve the rapid detection of Listeria monocytogenes, this study used aptamers for the original identification and built a photoelectrochemical aptamer sensor using exonuclease-assisted amplification. Tungsten trioxide (WO3) was used as a photosensitive material, was modified with gold nanoparticles to immobilize complementary DNA, and amplified the signal by means of the sensitization effect of CdTe quantum dots and the shearing effect of Exonuclease I (Exo I) to achieve high-sensitivity detection. This strategy had a detection limit of 45 CFU/mL in the concentration range of 1.3 × 101-1.3 × 107 CFU/mL. The construction strategy provides a new way to detect Listeria monocytogenes.
Collapse
Affiliation(s)
- Liangliang Zhu
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Chao Ding
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hanwei Gan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Shuting Jiang
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Gongliang Zhang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Jingran Bi
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Shuang Yan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongman Hou
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| |
Collapse
|
13
|
Li B, Feng D, Miao Y, Liang X, Gu L, Lan H, Gao S, Zhang Y, Deng Y, Geng L. The systemic characterization of aptamer cocktail for bacterial detection studied by graphene oxide-based fluorescence resonance energy transfer aptasensor. J Mol Recognit 2021; 34:e2934. [PMID: 34553439 DOI: 10.1002/jmr.2934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Aptamers have gained significant attention as the molecular recognition element to replace antibodies in sensor development and target delivery. Nevertheless, it is noteworthy that unlike the wide application of polyvalent antibodies, existing researches on the combined use of heterologous aptamers with similar recognition affinity and specificity for target detection were sporadic. Herein, first, the wide existence of polyaptamer for bacteria was revealed through the summary of existing literature. Furthermore, based on the establishment of a sensitive aptamer cocktail/graphene oxide fluorescence resonance energy transfer polyaptasensor with a detection limit as low as 10 CFU/ml, the systemic characterization of aptamer cocktails in bacterial detection was carried out by taking E. coli, Vi. parahemolyticus, S. typhimurium, and C. sakazakii as the assay targets. It was turned out that the polyaptasensors for C. sakazakii and S. typhimurium owned prevalence in the broader concentration range of target bacteria. While the polyaptasensors for E. coli and V. parahemolyticus outperformed monoaptasensor mainly in the lower concentration of target bacteria. The linear relationships between fluorescence recovery and the concentration of bacteria were also discussed. The different characteristics of the bacterial cellular membrane, including the binding affinity and the robustness to variation, are analyzed to be the main reason for the diverse detection performance of aptasensors. The study here enhances a sensor detection strategy with super sensitivity. More importantly, this systemic study on the aptamer cocktail in reference to antibodies will advance the in-depth understanding and rational design of aptamer based biological recognition, detection, and targeting.
Collapse
Affiliation(s)
- Baichang Li
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Dongwei Feng
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Yunfei Miao
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Xuewang Liang
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Le Gu
- Biological Detection Department, BOE Technology Group Co., Ltd., Beijing, China
| | - Hongying Lan
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Shimeng Gao
- College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yaxi Zhang
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- Department of Life, Beijing Institute of Technology, Beijing, China
| | - Lina Geng
- Department of Life, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M. Plasmonic biosensors for food control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
|
16
|
Wang W, Wang X, Cheng N, Luo Y, Lin Y, Xu W, Du D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116041] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Sidhu RK, Cavallaro ND, Pola CC, Danyluk MD, McLamore ES, Gomes CL. Planar Interdigitated Aptasensor for Flow-Through Detection of Listeria spp. in Hydroponic Lettuce Growth Media. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5773. [PMID: 33053744 PMCID: PMC7600482 DOI: 10.3390/s20205773] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Irrigation water is a primary source of fresh produce contamination by bacteria during the preharvest, particularly in hydroponic systems where the control of pests and pathogens is a major challenge. In this work, we demonstrate the development of a Listeria biosensor using platinum interdigitated microelectrodes (Pt-IME). The sensor is incorporated into a particle/sediment trap for the real-time analysis of irrigation water in a hydroponic lettuce system. We demonstrate the application of this system using a smartphone-based potentiostat for rapid on-site analysis of water quality. A detailed characterization of the electrochemical behavior was conducted in the presence/absence of DNA and Listeria spp., which was followed by calibration in various solutions with and without flow. In flow conditions (100 mL samples), the aptasensor had a sensitivity of 3.37 ± 0.21 k log-CFU-1 mL, and the LOD was 48 ± 12 CFU mL-1 with a linear range of 102 to 104 CFU mL-1. In stagnant solution with no flow, the aptasensor performance was significantly improved in buffer, vegetable broth, and hydroponic media. Sensor hysteresis ranged from 2 to 16% after rinsing in a strong basic solution (direct reuse) and was insignificant after removing the aptamer via washing in Piranha solution (reuse after adsorption with fresh aptamer). This is the first demonstration of an aptasensor used to monitor microbial water quality for hydroponic lettuce in real time using a smartphone-based acquisition system for volumes that conform with the regulatory standards. The aptasensor demonstrated a recovery of 90% and may be reused a limited number of times with minor washing steps.
Collapse
Affiliation(s)
- Raminderdeep K. Sidhu
- Department of Biological & Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Nicholas D. Cavallaro
- Agricultural & Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Cicero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Michelle D. Danyluk
- Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Eric S. McLamore
- Agricultural & Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
18
|
Docking Simulation and Sandwich Assay for Aptamer-Based Botulinum Neurotoxin Type C Detection. BIOSENSORS-BASEL 2020; 10:bios10080098. [PMID: 32806662 PMCID: PMC7460441 DOI: 10.3390/bios10080098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Aptamers are biomaterials that bind to a target molecule through a unique structure, and have high applicability in the diagnostic and medical fields. To effectively utilize aptamers, it is important to analyze the structure of the aptamer binding to the target molecule; however, there are difficulties in experimentally identifying this structure. In the modern pharmaceutical industry, computer-driven docking simulations that predict intermolecular binding models are used to select candidates that effectively bind target molecules. Botulinum toxin (BoNT) is the most poisonous neurotoxin produced from the Clostridium botulinum bacteria, and BoNT/C, one of the eight serotypes, causes paralysis in livestock. In this study, the aptamers that bound to BoNT/C were screened via the systematic evolution of ligands by exponential enrichment, and the binding affinity analysis and binding model were evaluated to select optimal aptamers. Based on surface plasmon resonance analysis and molecular operating environment docking simulation, a pair of aptamers that had high binding affinity to BoNT/C and were bound to different BoNT/C sites were selected. A sandwich assay based on this aptamer pair detected the BoNT/C protein to a concentration as low as ~0.2 ng Ml-1. These results show that docking simulations are a useful strategy for screening aptamers that bind to specific targets.
Collapse
|
19
|
Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020; 21:ijms21145074. [PMID: 32708376 PMCID: PMC7404326 DOI: 10.3390/ijms21145074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Aptamers have gained an increasing role as the molecular recognition element (MRE) in diagnostic assay development, since their first conception thirty years ago. The process to screen for nucleic acid-based binding elements (aptamers) was first described in 1990 by the Gold Laboratory. In the last three decades, many aptamers have been identified for a wide array of targets. In particular, the number of reports on investigating single-stranded DNA (ssDNA) aptamer applications in biosensing and diagnostic platforms have increased significantly in recent years. This review article summarizes the recent (2015 to 2020) progress of ssDNA aptamer research on bacteria, proteins, and lipids of bacterial origins that have implications for human infections. The basic process of aptamer selection, the principles of aptamer-based biosensors, and future perspectives will also be discussed.
Collapse
|
20
|
Shin WR, Lee MJ, Sekhon SS, Kim JH, Kim SC, Cho BK, Ahn JY, Kim YH. Aptamer-linked immobilized sorbent assay for detecting GMO marker, phosphinothricin acetyltransferase (PAT). Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Ledlod S, Areekit S, Santiwatanakul S, Chansiri K. Colorimetric aptasensor for detecting Salmonella spp., Listeria monocytogenes, and Escherichia coli in meat samples. FOOD SCI TECHNOL INT 2020; 26:430-443. [PMID: 31948282 DOI: 10.1177/1082013219899593] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we successfully developed a simple and rapid method for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli using gold nanoparticles and the aptamer aptasensor. We screened 25 specific DNA aptamer candidates against these pathogens using whole-cell Systematic Evolution of Ligands by EXponential enrichment. Among them, Ap6 was selected due to its low energy minimization values of -12.25 and -27.67 kcal/mol derived from MFold and RNAFold analysis, respectively. The assay presented in this study allowed the visual colorimetric detection of labeled colloidal gold nanoparticles as well as determination of UV absorbance at 625 and 525 nm under optimized conditions. The detection limit of this aptasensor was as less as 105 CFU/ml. A random investigation of 50 meat samples, including ham and chicken sausages, collected from the local market revealed 96% accuracy, 96% specificity, and 100% sensitivity of the assay. The colorimetric aptasensor can accomplish one-step detection without pre-culture, DNA extraction, and amplification. Hence, it is an easy, rapid, specific, and qualitative assay that can be used as a point-of-care testing to directly detect multiplex foodborne pathogens.
Collapse
Affiliation(s)
- Sudarat Ledlod
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand.,CPF Laboratory, CPF Food and Beverage Co., Ltd, Bangkok, Thailand.,CPF Research and Development Center Co., Ltd, Ayutthaya, Thailand
| | - Supatra Areekit
- Innovative Learning Center, Srinakharinwirot University, Bangkok, Thailand.,Center of Excellence in Biosensors, Srinakharinwirot University, Panyananthaphikkhu Chonprathan Medical Center, Nonthaburi, Thailand
| | - Somchai Santiwatanakul
- Center of Excellence in Biosensors, Srinakharinwirot University, Panyananthaphikkhu Chonprathan Medical Center, Nonthaburi, Thailand.,Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Kosum Chansiri
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand.,Center of Excellence in Biosensors, Srinakharinwirot University, Panyananthaphikkhu Chonprathan Medical Center, Nonthaburi, Thailand
| |
Collapse
|
22
|
Hills KD, Oliveira DA, Cavallaro ND, Gomes CL, McLamore ES. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst 2019. [PMID: 29541704 DOI: 10.1039/c7an02039b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate a sensing mechanism for rapid detection of Listeria monocytogenes in food samples using the actuation of chitosan-aptamer nanobrush borders. The bio-inspired soft material and sensing strategy mimic natural symbiotic systems, where low levels of bacteria are selectively captured from complex matrices. To engineer this biomimetic system, we first develop reduced graphene oxide/nanoplatinum (rGO-nPt) electrodes, and characterize the fundamental electrochemical behavior in the presence and absence of chitosan nanobrushes during actuation (pH-stimulated osmotic swelling). We then characterize the electrochemical behavior of the nanobrush when receptors (antibodies or DNA aptamers) are conjugated to the surface. Finally, we test various techniques to determine the most efficient capture strategy based on nanobrush actuation, and then apply the biosensors in a food product. Maximum cell capture occurs when aptamers conjugated to the nanobrush bind cells in the extended conformation (pH < 6), followed by impedance measurement in the collapsed nanobrush conformation (pH > 6). The aptamer-nanobrush hybrid material was more efficient than the antibody-nanobrush material, which was likely due to the relatively high adsorption capacity for aptamers. The biomimetic material was used to develop a rapid test (17 min) for selectively detecting L. monocytogenes at concentrations ranging from 9 to 107 CFU mL-1 with no pre-concentration, and in the presence of other Gram-positive cells (Listeria innocua and Staphylococcus aureus). Use of this bio-inspired material is among the most efficient for L. monocytogenes sensing to date, and does not require sample pretreatment, making nanobrush borders a promising new material for rapid pathogen detection in food.
Collapse
|
23
|
Jamil B, Atlas N, Qazi A, Uzair B. Theranostic Potential of Aptamers in Antimicrobial Chemotherapy. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Lv E, Ding J, Qin W. Potentiometric Detection of Listeria monocytogenes via a Short Antimicrobial Peptide Pair-Based Sandwich Assay. Anal Chem 2018; 90:13600-13606. [PMID: 30335975 DOI: 10.1021/acs.analchem.8b03809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peptide-based sandwich assays are promising tools in molecular detection, but may be restricted by the availability of "pairs" of affinity peptides. Herein, a new potentiometric sandwich assay for bacteria based on peptide pairs derived from an antimicrobial peptide (AMP) ligand is demonstrated. As a model, the original AMP with a well-defined structure for Listeria monocytogenes (LM) can be split into two fragments to serve as the peptide pairs for the sandwich assay. The recognition and binding of the short peptide pairs to the target can be verified by circular dichroism, flow cytometry, fluorometry, and optical microscopy. The potentiometric magnetic bead-based sandwich assay is designed by using horseradish peroxidase as a label. The enzyme can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 to induce a potential change on a polymeric membrane ion-selective electrode. Under optimal conditions, the concentration of LM can be determined potentiometrically in a linear range of 1.0 × 102 to 1.0 × 106 CFU mL-1 with a detection limit of 10 CFU mL-1 (3σ). The proposed sensing strategy expands the applications of peptides in the field of bioassays.
Collapse
Affiliation(s)
- Enguang Lv
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , People's Republic of China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , People's Republic of China
| |
Collapse
|
25
|
Liu Y, Wei Y, Cao Y, Zhu D, Ma W, Yu Y, Guo M. Ultrasensitive electrochemiluminescence detection of Staphylococcus aureus via enzyme-free branched DNA signal amplification probe. Biosens Bioelectron 2018; 117:830-837. [DOI: 10.1016/j.bios.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 02/01/2023]
|
26
|
Sekhon SS, Ahn G, Sekhon SS, Ahn JY, Kim YH. Bioengineered aptamer-nanoconjugates for cancer theragnosis. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0040-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Chen J, Huang Z, Luo Z, Yu Q, Xu Y, Wang X, Li Y, Duan Y. Multichannel-Structured Three-Dimensional Chip for Highly Sensitive Pathogenic Bacteria Detection Based on Fast DNA-Programmed Signal Polymerization. Anal Chem 2018; 90:12019-12026. [DOI: 10.1021/acs.analchem.8b02650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Wang H, Chi Z, Cong Y, Wang Z, Jiang F, Geng J, Zhang P, Ju P, Dong Q, Liu C. Development of a fluorescence assay for highly sensitive detection of Pseudomonas aeruginosa based on an aptamer-carbon dots/graphene oxide system. RSC Adv 2018; 8:32454-32460. [PMID: 35547676 PMCID: PMC9086370 DOI: 10.1039/c8ra04819c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022] Open
Abstract
An aptamer-based fluorescence assay for culture-independent detection of Pseudomonas aeruginosa was developed. This assay was enabled by highly specific aptamers conjugated with photoluminescent carbon dots (CDs) as the fluorescent probe and graphene oxide (GO) as the quencher. Specially, high-throughput sequencing was achieved during systematic evolution of ligands via exponential enrichment (SELEX) for accurate recognition of aptamers. This assay displayed high specificity towards P. aeruginosa and was resistant to interference by other ubiquitous bacteria including Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, and Clostridium perfringens. After the conditions were optimized, this assay achieved a wide detection range for P. aeruginosa varying from 101 CFU mL-1 to 107 CFU mL-1. Notably, it approached an excellent detection limit as low as 9 CFU mL-1. Therefore, this fluorescence assay was considered successfully developed for highly sensitive detection of P. aeruginosa. This assay also detected the contamination of P. aeruginosa in tap water and commercial bottled water, thereby suggesting its potential application in real water samples.
Collapse
Affiliation(s)
- Hongying Wang
- College of Marine Life Science, Ocean University of China Qingdao 266003 P. R. China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China Qingdao 266003 P. R. China
| | - Ying Cong
- College of Marine Life Science, Ocean University of China Qingdao 266003 P. R. China
| | - Zhuangzhuang Wang
- College of Marine Life Science, Ocean University of China Qingdao 266003 P. R. China
| | - Fei Jiang
- College of Marine Life Science, Ocean University of China Qingdao 266003 P. R. China
| | - Jiayue Geng
- College of Marine Life Science, Ocean University of China Qingdao 266003 P. R. China
| | - Peng Zhang
- Research Centre of Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences Qingdao 266001 P. R. China
| | - Peng Ju
- Key Laboratory of Marine Bioactive Substances and Analytical Technology, Marine Ecology Center, The First Institute of Oceanography, State Oceanic Administration (SOA) 6 Xianxialing Road Qingdao 266061 P. R. China
| | - Quanjiang Dong
- Central Laboratory and Department of Gastroenterology, Qingdao Municipal Hospital Qingdao 266071 P. R. China
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China Qingdao 266003 P. R. China
| |
Collapse
|
29
|
Wang L, Wang R, Wei H, Li Y. Selection of aptamers against pathogenic bacteria and their diagnostics application. World J Microbiol Biotechnol 2018; 34:149. [PMID: 30220026 DOI: 10.1007/s11274-018-2528-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Aptamers are short nucleotide sequences which can specifically bind to a variety of targets with high affinity. They are identified and selected via systematic evolution of ligands by exponential enrichment (SELEX). Compared to antibodies, aptamers offer several advantages including easy labeling, high stability and lower cost. Those advantages make it possible to be a potential for use as a recognition probe to replace antibody in the diagnostic field. This article is intended to provide a comprehensive review, which is focused on systemizing recent advancements concerning SELEX procedures, with special emphasis on the key steps in SELEX procedures. The principles of various aptamer-based detections of pathogenic bacteria and their application are discussed in detail, including colorimetric detection, fluorescence detection, electrochemical detection, lateral flow strip test, mass sensitive detection and PCR-based aptasensor. By discussing recent research and future trends based on many excellent publications and reviews, we attempt to give the readers a comprehensive view in the field of aptamer selection against pathogenic bacteria and their diagnostics application. Authors hope that this review will promote lively and valuable discussions in order to generate new ideas and approaches towards the development of aptamer-based methods for application in pathogenic bacteria diagnosis.
Collapse
Affiliation(s)
- Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.,Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ronghui Wang
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hua Wei
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Yanbin Li
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA. .,Center of Excellence for Poultry Science, University of Arkansas, 203 Engineering Hall, Fayetteville, AR, 72701, USA.
| |
Collapse
|
30
|
Lee SH, Ahn G, Kim MS, Jeong OC, Lee JH, Kwon HG, Kim YH, Ahn JY. Poly-adenine-Coupled LAMP Barcoding to Detect Apple Scar Skin Viroid. ACS COMBINATORIAL SCIENCE 2018; 20:472-481. [PMID: 30011183 DOI: 10.1021/acscombsci.8b00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apple Scar Skin Viroid (ASSVd), a nonprotein coding, circular RNA pathogen is relatively difficult to detect by immunoassay. We report here a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to improve selectivity for diagnostic use in detecting ASSVd in plants. ASSVd RT-LAMP was accelerated using loop primers and was found to be highly sensitive with a detection limit of 104 copies of cDNA-ASSVd within 30 min. Real-time LAMP and melting curve analysis could differentiate between the true-positive LAMP amplicons and false-positive nonspecific primer amplification products. The optimized RT-LAMP was then followed by the addition of nonthiolated AuNP:poly-adenine (A10)-ASSVd LAMP barcodes, showing a high authentication capacity with colorimetric changes. This type of barcoding assay is a potential alternative for rapid and multiple viroid diagnosis, providing for visible sensing in the field that can be applied to viroid-free planting.
Collapse
Affiliation(s)
- Se Hee Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Gna Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Myung-Su Kim
- Apple Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Gunwi 39000, Korea
| | - Ok Chan Jeong
- Department of Biomedical Engineering, Inje University, Gimhae, South Korea
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, South Korea
| | - Jong Hyun Lee
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, South Korea
| | - Hyuck Gi Kwon
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| |
Collapse
|
31
|
Shin WR, Sekhon SS, Rhee SK, Ko JH, Ahn JY, Min J, Kim YH. Aptamer-Based Paper Strip Sensor for Detecting Vibrio fischeri. ACS COMBINATORIAL SCIENCE 2018; 20:261-268. [PMID: 29553704 DOI: 10.1021/acscombsci.7b00190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aptamer-based paper strip sensor for detecting Vibrio fischeri was developed. Our method was based on the aptamer sandwich assay between whole live cells, V. fischeri and DNA aptamer probes. Following 9 rounds of Cell-SELEX and one of the negative-SELEX, V. fischeri Cell Aptamer (VFCA)-02 and -03 were isolated, with the former showing approximately 10-fold greater avidity (in the subnanomolar range) for the target cells when arrayed on a surface. The colorimetric response of a paper sensor based on VFCA-02 was linear in the range of 4 × 101 to 4 × 105 CFU/mL of target cell by using scanning reader. The linear regression correlation coefficient ( R2) was 0.9809. This system shows promise for use in aptamer-conjugated gold nanoparticle probes in paper strip format for in-field detection of marine bioindicating bacteria.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Sung-Keun Rhee
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jung Ho Ko
- College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona California 91766, United States
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jiho Min
- Department of Bioprocess Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| |
Collapse
|
32
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
33
|
Tip-enhanced Raman scattering of DNA aptamers for Listeria monocytogenes. Biointerphases 2018; 13:03C402. [PMID: 29724106 DOI: 10.1116/1.5022303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Optical detection and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. The authors investigate the vibrational signals of deoxyribonucleic acid aptamers specific to Listeria monocytogenes immobilized on gold substrates using tip-enhanced Raman scattering (TERS) spectroscopy and nanoscale imaging. The authors compare topographic and nano-optical signals and investigate the fluctuations of the position-dependent TERS spectra. They perform spatial TERS mapping with 3 nm step size and discuss the limitation of the resulting spatial resolution under the ambient conditions. TERS mapping provides information about the chemical composition and conformation of aptamers and paves the way to future label-free biosensing.
Collapse
|
34
|
Neethirajan S, Ragavan K, Weng X. Agro-defense: Biosensors for food from healthy crops and animals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Feng J, Dai Z, Tian X, Jiang X. Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. J Biotechnol 2017; 266:39-49. [PMID: 29242148 DOI: 10.1016/j.jbiotec.2017.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/27/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (Kd) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×103 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens.
Collapse
|
37
|
Vanegas DC, Gomes CL, Cavallaro ND, Giraldo‐Escobar D, McLamore ES. Emerging Biorecognition and Transduction Schemes for Rapid Detection of Pathogenic Bacteria in Food. Compr Rev Food Sci Food Saf 2017; 16:1188-1205. [DOI: 10.1111/1541-4337.12294] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Diana C. Vanegas
- Food Engineering Univ. del Valle 338 Ciudad Universitaria Meléndez Cali Colombia
| | - Carmen L. Gomes
- Biological & Agricultural Engineering Texas A&M Univ. 2117 TAMU, Scoates Hall 201 College Station TX 77843 U.S.A
| | - Nicholas D. Cavallaro
- Agricultural & Biological Engineering Univ. of Florida 1741 Museum Rd Gainesville FL 32606 U.S.A
| | | | - Eric S. McLamore
- Agricultural & Biological Engineering Univ. of Florida 1741 Museum Rd Gainesville FL 32606 U.S.A
| |
Collapse
|
38
|
Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Sekhon SS, Um HJ, Shin WR, Lee SH, Min J, Ahn JY, Kim YH. Aptabody-aptatope interactions in aptablotting assays. NANOSCALE 2017; 9:7464-7475. [PMID: 28530298 DOI: 10.1039/c7nr01827d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate an aptablotting assay method that involves direct and indirect aptabody recognition. Nanoscale single-stranded DNA aptamers against GST and DIG-tags are utilized as aptabodies (GST-2 and DIG-1, respectively), and the GST-2 aptabody binding site, or aptatope, as predicted by a MOE-docking simulation of the protein-aptamer complex, shows the interaction of the GST-2 aptabody at the catalytically active region. The aptabody-aptatope interaction was evaluated by an in vitro enzyme inhibitory analysis. The binding capacity of the GST-2 aptabody was assessed by dot-blot, EMSA and SDS-PAGE/electroblot analyses, and the results showed that the aptabodies interact with both the native mono-/dimeric form and the denatured GST form on a membrane. The use of aptabodies can overcome the obstacles of current immunoblot assays, and these molecules are easily assessable via ELISA systems. Moreover, the hybridization of aptabodies and antibodies (hybrid-aptablotting) may have considerable impacts on the design of bioassay platforms.
Collapse
Affiliation(s)
- Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | | | | | | | | | | | | |
Collapse
|
40
|
Song MS, Sekhon SS, Shin WR, Kim HC, Min J, Ahn JY, Kim YH. Detecting and Discriminating Shigella sonnei Using an Aptamer-Based Fluorescent Biosensor Platform. Molecules 2017; 22:molecules22050825. [PMID: 28513559 PMCID: PMC6154610 DOI: 10.3390/molecules22050825] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 11/16/2022] Open
Abstract
In this paper, a Whole-Bacteria SELEX (WB-SELEX) strategy was adopted to isolate specific aptamers against Shigella sonnei. Real-time PCR amplification and post-SELEX experiment revealed that the selected aptmers possessed a high binding affinity and specificity for S. sonnei. Of the 21 aptamers tested, the C(t) values of the SS-3 and SS-4 aptamers (Ct = 13.89 and Ct = 12.23, respectively) had the lowest value compared to other aptamer candidates. The SS-3 and SS-4 aptamers also displayed a binding affinity (KD) of 39.32 ± 5.02 nM and 15.89 ± 1.77 nM, respectively. An aptamer-based fluorescent biosensor assay was designed to detect and discriminate S. sonnei cells using a sandwich complex pair of SS-3 and SS-4. The detection of S. sonnei by the aptamer based fluorescent biosensor platform consisted of three elements: (1) 5’amine-SS-4 modification in a 96-well type microtiter plate surface (N-oxysuccinimide, NOS) as capture probes; (2) the incubation with S. sonnei and test microbes in functionalized 96 assay wells in parallel; (3) the readout of fluorescent activity using a Cy5-labeled SS-3 aptamer as the detector. Our platform showed a significant ability to detect and discriminate S. sonnei from other enteric species such as E. coli, Salmonella typhimurium and other Shigella species (S. flexneri, S. boydii). In this study, we demonstrated the feasibility of an aptamer sensor platform to detect S. sonnei in a variety of foods and pave the way for its use in diagnosing shigellosis through multiple, portable designs.
Collapse
Affiliation(s)
- Myeong-Sub Song
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| | - Hyung Cheol Kim
- Technology Transfer Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.
| | - Jiho Min
- Department of Bioprocess Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, Korea.
| |
Collapse
|
41
|
Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2028-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Wang W, Liu L, Song S, Xu L, Zhu J, Kuang H. Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1263986] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Jianping Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| |
Collapse
|
43
|
Zhang L, Huang R, Liu W, Liu H, Zhou X, Xing D. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 2016; 86:1-7. [PMID: 27318103 DOI: 10.1016/j.bios.2016.05.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/01/2023]
Abstract
Foodborne pathogens pose a significant threat to human health worldwide. The identification of foodborne pathogens needs to be rapid, accurate and convenient. Here, we constructed a nanoparticle cluster (NPC) catalyzed signal amplification biosensor for foodborne pathogens visual detection. In this work, vancomycin (Van), a glycopeptide antibiotic for Gram-positive bacteria, was used as the first molecular recognition agent to capture Listeria monocytogenes (L. monocytogenes). Fe3O4 NPC modified aptamer, was used as the signal amplification nanoprobe, specifically recognize to the cell wall of L. monocytogenes. As vancomycin and aptamer recognize L. monocytogenes at different sites, the sandwich recognition showed satisfied specificity. Compared to individual Fe3O4 nanoparticle (NP), NPC exhibit collective effect-enhanced catalytic activity for the color reaction of chromogenic substrate. The change in absorbance or color could represent the concentration of target. Using the Fe3O4 NPC-based signal amplification method, L. monocytogenes whole cells could be directly assayed within a linear range of 5.4×10(3)-10(8) cfu/mL and a visual limit of detection of 5.4×10(3) cfu/mL. Fe3O4 NPC-based method was more sensitive than the Fe3O4 NP-based method. All these attractive characteristics of highly sensitivity, visual and labor-saving, make the biosensor possess a potential application for foodborne pathogenic bacteria detection.
Collapse
Affiliation(s)
- Lisha Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Weipeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China.
| |
Collapse
|
44
|
Tu Z, Chen Q, Li Y, Xiong Y, Xu Y, Hu N, Tao Y. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Anal Biochem 2016; 493:1-7. [DOI: 10.1016/j.ab.2015.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
|
45
|
Toxicoproteomic approaches for analysis of microbial community inhabiting Asian dust particles. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0028-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics. Molecules 2015; 20:6866-87. [PMID: 25913927 PMCID: PMC6272696 DOI: 10.3390/molecules20046866] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 01/07/2023] Open
Abstract
Despite the great promise of nucleic acid aptamers in the areas of diagnostics and therapeutics for their facile in vitro development, lack of immunogenicity and other desirable properties, few truly successful aptamer-based products exist in the clinical or other markets. Core reasons for these commercial deficiencies probably stem from industrial commitment to antibodies including a huge financial investment in humanized monoclonal antibodies and a general ignorance about aptamers and their performance among the research and development community. Given the early failures of some strong commercial efforts to gain government approval and bring aptamer-based products to market, it may seem that aptamers are doomed to take a backseat to antibodies forever. However, the key advantages of aptamers over antibodies coupled with niche market needs that only aptamers can fill and more recent published data still point to a bright commercial future for aptamers in areas such as infectious disease and cancer diagnostics and therapeutics. As more researchers and entrepreneurs become familiar with aptamers, it seems inevitable that aptamers will at least be considered for expanded roles in diagnostics and therapeutics. This review also examines new aptamer modifications and attempts to predict new aptamer applications that could revolutionize biomedical technology in the future and lead to marketed products.
Collapse
|