1
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
2
|
Deng H, Talpur ZH, Wang K, Kang Y, Du Y, Xu D, Fan X, Li W. SERS determination of sodium saccharin content on the tipping paper of cigarettes using AgNP substrates prepared with a USB-power supply device. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4524-4532. [PMID: 37622388 DOI: 10.1039/d3ay00818e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A novel magnetic agitating heater powered by a USB port has been developed and applied to synthesize silver colloid substrate for surface-enhanced Raman scattering (SERS) detection of sodium saccharin content on the tipping paper of cigarettes. The heater device allows the convenient synthesis of the Ag colloid, and the reaction can be completed on-site in 15 min under mild conditions. The on-site synthesis of SERS substrate effectively avoided the need for storage and concerns regarding the poor stability and short lifespan of colloid substrates. The results demonstrated that the substrate obtained with the device could achieve SERS detection of Rhodamine 6G (R6G) at as low as 10-9 mol L-1 while maintaining a stable intensity with a relative standard deviation (RSD) of 5.52% (n = 5). Using the prepared substrate at the optimal conditions, the limit of detection of sodium saccharin (SS) was 1 mg L-1. By introducing an internal standard KSCN, a linear relationship was observed between the relative intensity at 708 cm-1 and the concentration of the SS in a range of 20-100 mg L-1 (R2 = 0.98). With the developed method, SS was directly extracted from the cigarette paper by immersing it in water, and the extracted solution was subsequently detected. The quantitative spike-recoveries were in the range of 95.5-116.7%, with RSD between 2.3-12.6%. The whole detection procedure including the on-site substrate preparation, took only about 30 min. This work opens new avenues for colloidal synthesis, and the detection method of SS on the cigarette paper also holds great promise in food safety applications.
Collapse
Affiliation(s)
- Huipeng Deng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Zakir H Talpur
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Kaijun Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yan Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yiping Du
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Dongmei Xu
- China Tobacco Jiangsu Industrial Co. Ltd, Nanjing, 210019, China
| | - Xinglong Fan
- China Tobacco Jiangsu Industrial Co. Ltd, Nanjing, 210019, China
| | - Wei Li
- China Tobacco Jiangsu Industrial Co. Ltd, Nanjing, 210019, China
| |
Collapse
|
3
|
Huang X, Fu R, Qiao S, Zhang J, Xianyu Y. Nanotechnology-based diagnostic methods for coronavirus: From nucleic acid extraction to amplification. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100289. [PMID: 36530849 PMCID: PMC9733970 DOI: 10.1016/j.biosx.2022.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The recent emergence of human coronaviruses (CoVs) causing severe acute respiratory syndrome (SARS) is posing a great threat to global public health. Therefore, the rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments, saving people's lives and preventing epidemics. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Applications of nucleic acid detection range from genotyping and genetic prognostics, to expression profiling and detection of infectious disease. The nucleic acid detection for infectious diseases is widely used, as evidenced by the widespread use of COVID-19 tests for the containment of the pandemic. Nanotechnology influences all medical disciplines and has been considered as an essential tool for novel diagnostics, nanotherapeutics, vaccines, medical imaging, and the utilization of biomaterials for regenerative medicine. In this review, the recent advances in the development of nanotechnology-based diagnostic methods for coronavirus, and their applications in nucleic acid detection are discussed in detail. The techniques for the amplification of nucleic acids are summarized, as well as the use of magnetic nanoparticles for nucleic acid extraction. Besides, current challenges and future prospects are proposed, along with the great potential of nanotechnology for the effective diagnosis of coronavirus.
Collapse
Affiliation(s)
- Xucheng Huang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ruijie Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Sai Qiao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yunlei Xianyu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Gao H, Wang ST, Hu F, Shen BB, Sun MF, Wang H, Li L, Fang WJ. Investigation of an Uncommon Artifact during Reducing Capillary Electrophoresis-Sodium Dodecyl Sulfate Analysis of a Monoclonal Antibody with Dynamic Light Scattering and Reversed Phase High-Performance Liquid Chromatography. Pharm Res 2022; 39:1959-1968. [PMID: 35701679 DOI: 10.1007/s11095-022-03303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
PURPOSES In reducing capillary electrophoresis sodium dodecyl sulfate (CE-SDS) analysis of a monoclonal antibody (mAb-1), the peak area ratio of heavy chain (HC) to light chain (LC) was out of balance, while multiple artifact peaks were observed following the migration of HC. The main purposes of this study were to describe the techniques utilized to eliminate this artifact and clarify the root cause for this interesting phenomenon. METHODS We optimized the CE-SDS analysis of mAb-1 by a vairety of techniques including changing the concentration of protein or replacing SDS with a more hydrophobic surfactant (i.e., sodium hexadecyl sulfate (SHS) or sodium tetradecyl sulfate (STS) instead of SDS) in sample and/or the sieving gel buffer. Dynamic light scattering (DLS) and reversed phase high-performance liquid chromatography (RP-HPLC) were used to study the protein-surfactant complex. RESULTS The artifact could be partially mitigated by reducing the protein concentration and replacing SDS with SHS or STS in the sample and/or the sieving gel buffer solutions. Due to replacing a more hydrophobic surfactant, the HC-surfactant complex formed was more resistant to dissociation, preventing additional hydrophobic HC-HC interaction and aggregation, thus eliminating the artifact problem. CONCLUSIONS DLS and RP-HPLC are powerful supplementary techniques in characterizing the protein-surfactant complex, and hydrophobic surfactants such as SHS and STS could afford more normal electropherograms during the analysis of mAbs.
Collapse
Affiliation(s)
- Han Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Si-Tao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Hu
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Bin-Bin Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min-Fei Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Haibin Wang
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Lei Li
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
5
|
Zhao Q, Shen T, Liu Y, Hu X, Zhao W, Ma Z, Li P, Zhu X, Zhang Y, Liu M, Yao S. Universal Nanoplatform for Formaldehyde Detection Based on the Oxidase-Mimicking Activity of MnO 2 Nanosheets and the In Situ Catalysis-Produced Fluorescence Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7303-7312. [PMID: 34160203 DOI: 10.1021/acs.jafc.1c01174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formaldehyde (HCHO) pollution is a scientific problem of general concern and has aroused wide attention. In this work, a fluorometric method for sensitive detection of formaldehyde was developed based on the oxidase-mimicking activity of MnO2 nanosheets in the presence of o-phenylenediamine (OPD). The MnO2 nanosheets were prepared by the bottom-up approach using manganese salt as the precursor, followed by the exfoliation with bovine serum albumin. The as-prepared MnO2 nanosheets displayed excellent oxidase-mimicking activity, and can be used as the nanoplatform for sensing in fluorometric analysis. OPD was used as a typical substrate because MnO2 nanosheets can catalyze the oxidation of OPD to generate yellow 2,3-diaminophenazine (DAP), which can emit bright yellow fluorescence at the wavelength of 560 nm. While in the presence of formaldehyde, the fluorescence was greatly quenched because formaldehyde can react with OPD to form Schiff bases that decreased the oxidation reaction of OPD to DAP. The main mechanism and the selectivity of the platform were studied. As a result, formaldehyde can be sensitively detected in a wide linear range of 0.8-100 μM with the detection limit as low as 6.2 × 10-8 M. The platform can be used for the detection of formaldehyde in air, beer, and various food samples with good performance. This work not only expands the application of MnO2 nanosheets in fluorescence sensing, but also provides a sensitive and selective method for the detection of formaldehyde in various samples via a new mechanism.
Collapse
Affiliation(s)
- Qixia Zhao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Tong Shen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yujiao Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaojun Hu
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha 410111, PR China
| | - Wenying Zhao
- Hunan Kaimei New Material Technology Co., Ltd, Yueyang 414600, PR China
| | - Zhangyan Ma
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
6
|
Lin B, Hui J, Mao H. Nanopore Technology and Its Applications in Gene Sequencing. BIOSENSORS-BASEL 2021; 11:bios11070214. [PMID: 34208844 PMCID: PMC8301755 DOI: 10.3390/bios11070214] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
In recent years, nanopore technology has become increasingly important in the field of life science and biomedical research. By embedding a nano-scale hole in a thin membrane and measuring the electrochemical signal, nanopore technology can be used to investigate the nucleic acids and other biomacromolecules. One of the most successful applications of nanopore technology, the Oxford Nanopore Technology, marks the beginning of the fourth generation of gene sequencing technology. In this review, the operational principle and the technology for signal processing of the nanopore gene sequencing are documented. Moreover, this review focuses on the applications using nanopore gene sequencing technology, including the diagnosis of cancer, detection of viruses and other microbes, and the assembly of genomes. These applications show that nanopore technology is promising in the field of biological and biomedical sensing.
Collapse
Affiliation(s)
- Bo Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-21-62511070-8707
| |
Collapse
|
7
|
Establishment of a reliable scheme for obtaining highly stable SERS signal of biological serum. Biosens Bioelectron 2021; 189:113315. [PMID: 34049082 DOI: 10.1016/j.bios.2021.113315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
As a rapid and non-destructive biological serum detection method, SERS technology was widely used in the screening and medical diagnosis of various diseases by combining the analysis of serum SERS spectrum and multivariate statistical algorithm. Because of the high complexity of serum components and the variability of SERS spectra, which often resulted in the phenomenon that the SERS spectrum of the same biological serum was significantly different due to the different test conditions. In this experiment, through the dilution treatment of the serum and the systematic test of the serum of all concentration gradients with lasers of wavelength of 785, 633 and 532 nm, the most suitable conditions for detecting the serum were investigated. The experimental results showed that only when the serum is diluted to low concentration (10 ppm), the SERS spectrum with high reproducibility and stability could be obtained, furthermore, the low concentration serum had weak tolerance to laser, and 532 nm laser was not suitable for serum detection. In this paper, a set of test scheme for obtaining highly stable serum SERS spectra was established by using high-performance gold nanoparticles (Au NPs) as the active substrate of SERS. Through comparative analysis of SERS spectrum of serum of normal people and cervical cancer, the reliability of the established low-concentration serum test program was verified, as well as its great potential advantages in disease screening and diagnosis.
Collapse
|
8
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
9
|
Jiang Z, Feng B, Xu J, Qing T, Zhang P, Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens Bioelectron 2020; 166:112471. [PMID: 32777726 PMCID: PMC7382337 DOI: 10.1016/j.bios.2020.112471] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.
Collapse
Affiliation(s)
- Zixin Jiang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Jin Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, Hunan Province, China.
| |
Collapse
|
10
|
Tian Y, Chen Y, Chen M, Song ZL, Xiong B, Zhang XB. Peroxidase-like Au@Pt nanozyme as an integrated nanosensor for Ag + detection by LSPR spectroscopy. Talanta 2020; 221:121627. [PMID: 33076154 DOI: 10.1016/j.talanta.2020.121627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Here we report the peroxidase-like Au@Pt nanozyme as an integrated nanosensor for selective detection of silver ions (Ag+), where the nanozyme plays the roles as both the signal trigger and reporter simultaneously. This method relies on two critical chemical reactions, including (1) the unique inhibitory effect of Ag+ on the nanozyme triggered H2O2 decomposition at weak acid environment and (2) H2O2 induced Ag+ reduction onto the nanozyme surface at basic environment, leading to a blueshift in the localized surface plasmonic resonance wavelength (LSPR λmax) of the nanosensor. With this simple strategy, we demonstrated the sensitive and selective detection of Ag+ over a dynamic range from 0.5 to 1000 μM with a limit of detection (LOD) of 500 nM by UV-visible spectroscopy, which is below the permitted level of Ag+ in drinking water by U.S. Environmental Protection Agency (EPA). This method also exhibits satisfying recovery efficiency for Ag+ detection both in tap water and spring water from the Yuelu Mountain. With this satisfying sensing performance and excellent stability of nanoprobes, this strategy is promising for the detection of Ag+ in environment monitoring and food safety analysis.
Collapse
Affiliation(s)
- Yueyue Tian
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yancao Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bin Xiong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao-Bing Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
11
|
Xu H, Ma W, Zhang T, Hu Y, Du G, Yang H, Li Y, Xu Y, Li R. Efficient inhibition of Salmonella on chestnuts via Fe3C/N-C bacteriostatic suspension prepared by electrochemical method. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Abstract
Electrospun fibers with different concentrations of polyacrylonitrile (PAN) were synthesized and the results are reported in this study. The aim was to obtain carbon nanofibers for manufacturing gas diffusion layers for proton exchange membrane (PEM) fuel cells. The electrospun fibers obtained were carbonized at 1200 °C, 1300 °C, and 1400 °C, in order to have nanofibers with more than 96% of carbon atoms. The scanning electron microscopy (SEM) results revealed an increase in the diameter from 400–700 nm at 1200 °C to 1000–1400 nm at 1300 °C and 1400 °C. The Raman measurements disclose a higher degree of crystallinity for the sample carbonized at elevated temperatures. The surface area was estimated from the Brunauer–Emmett–Teller (BET) method and the results revealed an increase from 40.69 m2g−1 to 66.89 m2g−1 and 89.92 m2g−1 as the carbonization temperature increased. Simultaneously, the pore volume increased with increasing carbonization temperature. The Fourier-transform infrared spectroscopy (FTIR) spectra reveal that during carbonization treatment, C≡N triple bonds are destroyed with the appearance of C=N double bonds. Decreasing the ID/IG intensities’ ratio from ~1.07 to ~1.00 denotes the defects reduction in carbonaceous materials due to the graphitization process. Therefore, the carbon fibers developed in optimum conditions are appropriate to be further used to produce gas diffusion layers for Proton-exchange membrane fuel cells (PEMFC).
Collapse
|
13
|
Kruchinin NY, Kucherenko MG. A Molecular Dynamics Simulation of Polyampholytic Polypeptides Associated with Atomic Clusters on the Surfaces of Metal-Like Nanoobjects. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Taha TH, Elnouby MS, Abu-Saied MA, Alamri S. The green exfoliation of graphite waste and its suitability for biosensor applications. RSC Adv 2020; 10:9347-9355. [PMID: 35497257 PMCID: PMC9050054 DOI: 10.1039/c9ra09602g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/05/2020] [Indexed: 11/21/2022] Open
Abstract
This work is concerned with the bio-exfoliation of graphite using a soil bacterium.
Collapse
Affiliation(s)
- Tarek H. Taha
- Environmental Biotechnology Department
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg El-Arab City
- Egypt
| | - Mohamed S. Elnouby
- Composite and Nanostructured Materials Research Department
- Advanced Technology and New Materials Research Institute
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg El-Arab City
- Egypt
| | - M. A. Abu-Saied
- Polymer Materials Research Department
- Advanced Technology and New Materials Research Institute
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg El-Arab City
- Egypt
| | - Saad Alamri
- Department of Biology
- College of Science
- King Khalid University
- Abha
- Saudi Arabia
| |
Collapse
|
15
|
Shahbazi N, Zare-Dorabei R. A Facile Colorimetric and Spectrophotometric Method for Sensitive Determination of Metformin in Human Serum Based on Citrate-Capped Gold Nanoparticles: Central Composite Design Optimization. ACS OMEGA 2019; 4:17519-17526. [PMID: 31656924 PMCID: PMC6812131 DOI: 10.1021/acsomega.9b02389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/27/2019] [Indexed: 05/10/2023]
Abstract
For the determination of Metformin in human serum, a facile colorimetric and spectrophotometric sensor was designed based on citrate-capped gold nanoparticles (citrate-GNPs). In this probe, the addition of Metformin to GNP solution generates a naked-eye color change resulting from the aggregation of GNPs. Study of this color conversion and quantity analysis of analyte is operated by spectrophotometric instruments. The three factors pH, time, and GNP ratio were selected to examine their effects on sensing results and their values optimization. The optimization of parameters was done by means of central composite design and one-at-a-time methods. The sensing results proved the highly selective and sensitive performance of the sensor for Metformin in a linear range of 6.25-133.3 ppm with a detection limit of 1.79 ppm. The relative standard deviation (RSD) of the reported method is 2.53%.
Collapse
Affiliation(s)
- Neda Shahbazi
- Research Laboratory of Spectrometry
& Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16844, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry
& Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16844, Iran
| |
Collapse
|
16
|
A dual (colorimetric and fluorometric) detection scheme for glutathione and silver (I) based on the oxidase mimicking activity of MnO 2 nanosheets. Mikrochim Acta 2019; 186:498. [PMID: 31270601 DOI: 10.1007/s00604-019-3613-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023]
Abstract
A fluorimetric and colorimetric method is described for the determination of glutathione (GSH) and silver (I). It is based on the use of MnO2 nanosheets that were prepared by solution mixing and exfoliation. They display oxidase-mimicking activity and can catalyze the oxidation of o-phenylenediamine (OPD) to form yellow 2,3-diaminophenazine (DAP) with an absorption maximum at 410 nm. DAP also has a yellow fluorescence (with a peak at 560 nm). The MnO2 nanosheets can be rapidly reduced to Mn2+ by GSH. This reduces the efficiency of the oxidase mimic MnO2 and causes a decrease in fluorescence and absorbance intensity. However, on addition of Ag+, a complex is formed with GSH. It prevents the destruction of MnO2 nanosheets so that the enzyme mimicking activity is retained. A dual-method for the determination of GSH and Ag(I) was developed. It has excellent sensitivity for GSH with lower detection limits of 62 nM (fluorimetric) and 0.94 μM (colorimetric). The respective data for Ag(I) are 70 nM and 1.15 μM. The assay was successfully applied to the determination of GSH and Ag(I) in spiked serum samples. Graphical abstract Schematic presentation of a method for colorimetric and fluorometric determination of glutathione (GSH) and silver(I). MnO2 nanosheets are reduced to Mn(II) by GSH. This reduces the enzyme-mimicking activity of MnO2 nanosheets and causes a decrease in fluorescence and absorbance. On addition of Ag(I), the enzyme-like activity is increasingly retained. A decrease in fluorescence and absorbance is not observed any longer.
Collapse
|
17
|
Lehner BAE, Janssen VAEC, Spiesz EM, Benz D, Brouns SJJ, Meyer AS, van der Zant HSJ. Creation of Conductive Graphene Materials by Bacterial Reduction Using Shewanella Oneidensis. ChemistryOpen 2019; 8:888-895. [PMID: 31312588 PMCID: PMC6610442 DOI: 10.1002/open.201900186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Graphene's maximized surface-to-volume ratio, high conductance, mechanical strength, and flexibility make it a promising nanomaterial. However, large-scale graphene production is typically cost-intensive. This manuscript describes a microbial reduction approach for producing graphene that utilizes the bacterium Shewanella oneidensis in combination with modern nanotechnology to enable a low-cost, large-scale production method. The bacterial reduction approach presented in this paper increases the conductance of single graphene oxide flakes as well as bulk graphene oxide sheets by 2.1 to 2.7 orders of magnitude respectively while simultaneously retaining a high surface-area-to-thickness ratio. Shewanella-mediated reduction was employed in conjunction with electron-beam lithography to reduce one surface of individual graphene oxide flakes. This methodology yielded conducting flakes with differing functionalization on the top and bottom faces. Therefore, microbial reduction of graphene oxide enables the development and up-scaling of new types of graphene-based materials and devices with a variety of applications including nano-composites, conductive inks, and biosensors, while avoiding usage of hazardous, environmentally-unfriendly chemicals.
Collapse
Affiliation(s)
- Benjamin A. E. Lehner
- Department of BionanoscienceDelft University of TechnologyVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Vera A. E. C. Janssen
- Department of Quantum NanoscienceDelft University of TechnologyLorentzweg 12628 CJ DelftNetherlands
| | - Ewa M. Spiesz
- Department of BionanoscienceDelft University of TechnologyVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Dominik Benz
- Department of Chemical EngineeringDelft University of TechnologyVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Stan J. J. Brouns
- Department of BionanoscienceDelft University of TechnologyVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Anne S. Meyer
- Department of BiologyUniversity of Rochester Rochester, NY, 14627United States of America
| | - Herre S. J. van der Zant
- Department of Quantum NanoscienceDelft University of TechnologyLorentzweg 12628 CJ DelftNetherlands
| |
Collapse
|
18
|
Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Ghorbani M, Aghamohammadhasan M, Shams A, Tajfirooz F, Pourhassan R, Bana Khosravi SR, Karimi E, Jampour A. Ultrasonic assisted magnetic dispersive solid phase microextraction for preconcentration of two nonsteroidal anti-inflammatory drugs in real water, biological and milk samples employing an experimental design. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Viscoelastic evaluation of epoxy nanocomposite based on carbon nanofiber obtained from electrospinning processing. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02707-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
|
22
|
Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019; 48:5717-5751. [DOI: 10.1039/c9cs00174c] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesis, bio-functionalization, and multifunctional activities of superparamagnetic-nanostructures have been extensively reviewed with a particular emphasis on their uses in a range of disease-specific biomarker detection and associated challenges.
Collapse
Affiliation(s)
- Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Department of Biochemistry & Molecular Biology
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| | - Muhammad Younus
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science & Technology
- Sylhet 3114
- Bangladesh
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- School of Mechanical and Mining Engineering
| | - Yoshio Bando
- International Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
- Institute of Molecular Plus
| | - Muhammad J. A. Shiddiky
- School of Environment and Sciences and Queensland Micro- and Nanotechnology Centre (QMMC)
- Griffith University
- QLD 4111
- Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| |
Collapse
|
23
|
Ren Z, Zhu X, Lv H, Liu H, He H, Zhang X, Wang S. A fluorescent method based on magnetic nanoparticles for detection of CGG trinucleotide repeat genes. NEW J CHEM 2019. [DOI: 10.1039/c8nj04686g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel fluorescent sensor based on magnetic nanoparticles as the separator and short report DNA was designed and prepared for the detection of d(CGG)ntrinucleotide repeats. The method exhibited high selectivity and sensitivity, and excellent linear correlation from 100 pM to 150 nM, which is useful for the early diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziqi Ren
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Youyi Road 368
- Wuchang
| | - Xiaoqian Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Youyi Road 368
- Wuchang
| | - Hehong Lv
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Youyi Road 368
- Wuchang
| | - Heng Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Youyi Road 368
- Wuchang
| | - Hanping He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Youyi Road 368
- Wuchang
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Youyi Road 368
- Wuchang
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Youyi Road 368
- Wuchang
| |
Collapse
|
24
|
Sohail MI, Waris AA, Ayub MA, Usman M, Zia ur Rehman M, Sabir M, Faiz T. Environmental application of nanomaterials: A promise to sustainable future. ENGINEERED NANOMATERIALS AND PHYTONANOTECHNOLOGY: CHALLENGES FOR PLANT SUSTAINABILITY 2019. [DOI: 10.1016/bs.coac.2019.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Klinghammer S, Uhlig T, Patrovsky F, Böhm M, Schütt J, Pütz N, Baraban L, Eng LM, Cuniberti G. Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas. ACS Sens 2018; 3:1392-1400. [PMID: 29888907 DOI: 10.1021/acssensors.8b00315] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Implementing large arrays of gold nanowires as functional elements of a plasmonic biosensor is an important task for future medical diagnostic applications. Here we present a microfluidic-channel-integrated sensor for the label-free detection of biomolecules, relying on localized surface plasmon resonances. Large arrays (∼1 cm2) of vertically aligned and densely packed gold nanorods to receive, locally confine, and amplify the external optical signal are used to allow for reliable biosensing. We accomplish this by monitoring the change of the optical nanostructure resonance in the presence of biomolecules within the tight focus area above the nanoantennas, combined with a surface treatment of the nanowires for a specific binding of the target molecules. As a first application, we detect the binding kinetics of two distinct DNA strands as well as the following hybridization of two complementary strands (cDNA) with different lengths (25 and 100 bp). Upon immobilization, a redshift of 1 nm was detected; further backfilling and hybridization led to a peak shift of additional 2 and 5 nm for 25 and 100 bp, respectively. We believe that this work gives deeper insight into the functional understanding and technical implementation of a large array of gold nanowires for future medical applications.
Collapse
|
26
|
Ghorbani M, Chamsaz M, Aghamohammadhasan M, Shams A. Ultrasonic assisted magnetic dispersive solid phase microextraction for pre concentration of serotonin–norepinephrine reuptake inhibitor drugs. Anal Biochem 2018; 551:7-18. [DOI: 10.1016/j.ab.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
|
27
|
Gupta N, Singh RS, Shah K, Prasad R, Singh M. Epitope imprinting of iron binding protein ofNeisseria meningitidisbacteria through multiple monomers imprinting approach. J Mol Recognit 2018; 31:e2709. [DOI: 10.1002/jmr.2709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/04/2018] [Accepted: 02/14/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Neha Gupta
- Department of Chemistry, MMV; Banaras Hindu University; Varanasi 221005 India
| | - Roop Shikha Singh
- Department of Chemistry, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Kavita Shah
- Institute of Environment and Sustainable Development; Banaras Hindu University; Varanasi 221005 India
| | - Rajniti Prasad
- Department of Pediatrics, Institute of Medical Sciences; Banaras Hindu University; Varanasi 221005 India
| | - Meenakshi Singh
- Department of Chemistry, MMV; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
28
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
29
|
Ngo HT, Freedman E, Odion RA, Strobbia P, De Silva Indrasekara AS, Vohra P, Taylor SM, Vo-Dinh T. Direct Detection of Unamplified Pathogen RNA in Blood Lysate using an Integrated Lab-in-a-Stick Device and Ultrabright SERS Nanorattles. Sci Rep 2018; 8:4075. [PMID: 29511216 PMCID: PMC5840326 DOI: 10.1038/s41598-018-21615-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/23/2018] [Indexed: 12/19/2022] Open
Abstract
Direct detection of genetic biomarkers in body fluid lysate without target amplification will revolutionize nucleic acid-based diagnostics. However, the low concentration of target sequences makes this goal challenging. We report a method for direct detection of pathogen RNA in blood lysate using a bioassay using surface-enhanced Raman spectroscopy (SERS)-based detection integrated in a "lab-in-a-stick" portable device. Two levels of signal enhancement were employed to achieve the sensitivity required for direct detection. Each target sequence was tagged with an ultrabright SERS-encoded nanorattle with ultrahigh SERS signals, and these tagged target sequences were concentrated into a focused spot for detection using hybridization sandwiches with magnetic microbeads. Furthermore, the washing process was automated by integration into a "lab-in-a-stick" portable device. We could directly detect synthetic target with a limit of detection of 200 fM. More importantly, we detected plasmodium falciparum malaria parasite RNA directly in infected red blood cells lysate. To our knowledge, this is the first report of SERS-based direct detection of pathogen nucleic acid in blood lysate without nucleic acid extraction or target amplification. The results show the potential of our integrated bioassay for field use and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hoan T Ngo
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Biomedical Engineering Department, International University, Vietnam National University-Ho Chi Minh City (VNU-HCMC), Ho Chi Minh City, Vietnam
| | - Elizabeth Freedman
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Medicine & Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Ren Abelard Odion
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Pietro Strobbia
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Agampodi Swarnapali De Silva Indrasekara
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Priya Vohra
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Division of Head and Neck Surgery and Communication Sciences, Duke University, Durham, NC, 27708, USA
| | - Steve M Taylor
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Medicine & Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
30
|
Lawal AT. Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 2018; 106:149-178. [PMID: 29414083 DOI: 10.1016/j.bios.2018.01.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed.
Collapse
|
31
|
Remião MH, Segatto NV, Pohlmann A, Guterres SS, Seixas FK, Collares T. The Potential of Nanotechnology in Medically Assisted Reproduction. Front Pharmacol 2018; 8:994. [PMID: 29375388 PMCID: PMC5768623 DOI: 10.3389/fphar.2017.00994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Reproductive medicine is a field of science which searches for new alternatives not only to help couples achieve pregnancy and preserve fertility, but also to diagnose and treat diseases which can impair the normal operation of the reproductive tract. Assisted reproductive technology (ART) is a set of methodologies applied to cases related to infertility. Despite being highly practiced worldwide, ART presents some challenges, which still require special attention. Nanotechnology, as a tool for reproductive medicine, has been considered to help overcome some of those impairments. Over recent years, nanotechnology approaches applied to reproductive medicine have provided strategies to improve diagnosis and increase specificity and sensitivity. For in vitro embryo production, studies in non-human models have been used to deliver molecules to gametes and embryos. The exploration of nanotechnology for ART would bring great advances. In this way, experiments in non-human models to test the development and safety of new protocols using nanomaterials are very important for informing potential future employment in humans. This paper presents recent developments in nanotechnology regarding impairments still faced by ART: ovary stimulation, multiple pregnancy, and genetic disorders. New perspectives for further use of nanotechnology in reproductive medicine studies are also discussed.
Collapse
Affiliation(s)
- Mariana H Remião
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Natalia V Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana Pohlmann
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia S Guterres
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana K Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
32
|
Zhang H, Liu X, Liu M, Gao T, Huang Y, Liu Y, Zeng W. Gene detection: An essential process to precision medicine. Biosens Bioelectron 2018; 99:625-636. [DOI: 10.1016/j.bios.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
|
33
|
Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene. Braz J Microbiol 2017; 49:320-328. [PMID: 29108975 PMCID: PMC5914203 DOI: 10.1016/j.bjm.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/20/2017] [Accepted: 09/11/2017] [Indexed: 11/23/2022] Open
Abstract
Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs) to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella. The results showed that the PagC polyclonal antiserum is of good specificity and the capture rate of 0.1 mg IMBs for Salmonella tended to be stable at the range of 70–74% corresponding to the concentrations between 101 and 104 CFU/mL. The method developed demonstrated high specificity for the positive Salmonella samples when compared to non-specific DNA samples, such as Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, and Yersinia pseudotuberculosis. The limit of detection of this assay was 18 CFU/mL. Detection and quantitative enumeration of Salmonella in samples of pork or milk shows good recoveries of 54.34% and 52.07%. In conclusion, the polyclonal antibody of recombinant PagC protein is effective to capture Salmonella from detected samples. The developed pagC antibody IMBs-qPCR method showed efficiency, sensitivity and specificity for 30 Salmonella detection, enabling detection within 10 h, which is a promising rapid method to detect Salmonella in emergency.
Collapse
|
34
|
Liu B, Ni H, Zhang D, Wang D, Fu D, Chen H, Gu Z, Zhao X. Ultrasensitive Detection of Protein with Wide Linear Dynamic Range Based on Core-Shell SERS Nanotags and Photonic Crystal Beads. ACS Sens 2017; 2:1035-1043. [PMID: 28750518 DOI: 10.1021/acssensors.7b00310] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Detection of proteins in a wide concentration range from fg mL-1 to sub mg mL-1 is a challenge in the high throughput analysis of precision medicine. Herein, we proposed a biosensor consisting of core-shell surface-enhanced Raman scattering (SERS) nanotags as labels and photonic crystal beads (PCBs) as carriers for ultrasensitive detection of proteins. In practice, Raman dyes (RDs) were embedded in the interface of gold core and silver shell in the bimetal nanoparticles to form SERS nanotags. It was found that the sensitivity was significantly improved due to the enhanced Raman signal by the coupling of the core-shell structure and linear dynamic range (LDR) was extended owing to the high surface to volume ratio of PCBs as well. In addition, we also demonstrated that the biosensor exhibited fine stability and low background, which has great application potential in the detection of protein biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongyuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
35
|
Westergaard Mulberg M, Taskova M, Thomsen RP, Okholm AH, Kjems J, Astakhova K. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods. Chembiochem 2017; 18:1599-1603. [PMID: 28681411 DOI: 10.1002/cbic.201700125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 11/11/2022]
Abstract
For decades the detection of nucleic acids and their interactions at low abundances has been a challenging task that has thus far been solved by enzymatic target amplification. In this work we aimed at developing efficient tools for amplification-free nucleic acid detection, which resulted in the synthesis of new fluorescent nanoparticles. Here, the fluorescent nanoparticles were made by simple and inexpensive radical emulsion polymerization of butyl acrylate in the presence of fluorescent dyes and additional functionalization reagents. This provided ultra-bright macrofluorophores of 9-84 nm mean diameter, modified with additional alkyne and amino groups for bioconjugation. By using click and NHS chemistries, the new nanoparticles were attached to target-specific DNA probes that were used in fluorimetry and fluorescence microscopy. Overall, these fluorescent nanoparticles and their oligonucleotide derivatives have higher photostability, brighter fluorescence and hence dramatically lower limits of target detection than the individual organic dyes. These properties make them useful in approaches directed towards ultrasensitive detection of nucleic acids, in particular for imaging and in vitro diagnostics of DNA.
Collapse
Affiliation(s)
- Mads Westergaard Mulberg
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| | - Maria Taskova
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| | - Rasmus P Thomsen
- Aarhus University, Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Anders H Okholm
- Aarhus University, Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jørgen Kjems
- Aarhus University, Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kira Astakhova
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Krejcova L, Richtera L, Hynek D, Labuda J, Adam V. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens Bioelectron 2017. [PMID: 28641203 DOI: 10.1016/j.bios.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed.
Collapse
Affiliation(s)
- Ludmila Krejcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, CZ-166 28 Prague, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Jan Labuda
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
37
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
38
|
Li MC, Chang YF, Wang HY, Lin YX, Kuo CC, Annie Ho JA, Lee CC, Su LC. An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing. Sci Rep 2017; 7:44555. [PMID: 28281689 PMCID: PMC5345092 DOI: 10.1038/srep44555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/08/2017] [Indexed: 12/20/2022] Open
Abstract
White-light scanning interferometry (WLSI) is often used to study the surface profiles and properties of thin films because the strength of the technique lies in its ability to provide fast and high resolution measurements. An innovative attempt is made in this paper to apply WLSI as a time-domain spectroscopic system for localized surface plasmon resonance (LSPR) sensing. A WLSI-based spectrometer is constructed with a breadboard of WLSI in combination with a spectral centroid algorithm for noise reduction and performance improvement. Experimentally, the WLSI-based spectrometer exhibits a limit of detection (LOD) of 1.2 × 10-3 refractive index units (RIU), which is better than that obtained with a conventional UV-Vis spectrometer, by resolving the LSPR peak shift. Finally, the bio-applicability of the proposed spectrometer was investigated using the rs242557 tau gene, an Alzheimer's and Parkinson's disease biomarker. The LOD was calculated as 15 pM. These results demonstrate that the proposed WLSI-based spectrometer could become a sensitive time-domain spectroscopic biosensing platform.
Collapse
Affiliation(s)
- Meng-Chi Li
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Ying-Feng Chang
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-Yi Wang
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Xen Lin
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Chien-Cheng Kuo
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chung Lee
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Li-Chen Su
- Department of Optoelectric Physics, Chinese Culture University, Taipei 11114, Taiwan
| |
Collapse
|
39
|
Wang Z, Zong S, Wang Z, Wu L, Chen P, Yun B, Cui Y. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques. NANOTECHNOLOGY 2017; 28:105501. [PMID: 28139463 DOI: 10.1088/1361-6528/aa527b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a novel microfluidic chip based method for the detection of micro RNA (miRNA) via the combination of fluorescence and surface enhanced Raman scattering (SERS) spectroscopies. First, silver nanoparticles (Ag NPs) are immobilized onto a glass slide, forming a SERS enhancing substrate. Then a specificially designed molecular beacon (MB) is attached to the SERS substrate. The 3' end of the MB is decorated with a thiol group to facilitate the attachment of the MB, while the 5' end of the MB is labeled with an organic dye 6-FAM, which is used both as the fluorophore and SERS reporter. In the absence of target miRNA, the MB will form a hairpin structure, making 6-FAM close to the Ag NPs. Hence, the fluorescence of 6-FAM will be quenched and the Raman signal of 6-FAM will be enhanced. On the contrary, with target miRNA present, hybridization between the miRNA and MB will unfold the MB and increase the distance between 6-FAM and the Ag NPs. Thus the fluorescence of 6-FAM will recover and the SERS signal of 6-FAM will decrease. So the target miRNA will simultaneously introduce opposite changing trends in the intensities of the fluorescence and SERS signals. By combining the opposite changes in the two optical spectra, an improved sensitivity and linearity toward the target miRNA is achieved as compared with using solely fluorescence or SERS. Moreover, introducing the microfluidic chip can reduce the reaction time, reagent dosage and complexity of detection. With the improved sensitivity and simplicity, we anticipate that the presented method can have great potential in the investigation of miRNA related diseases.
Collapse
|
40
|
The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens Bioelectron 2017; 89:224-233. [DOI: 10.1016/j.bios.2016.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/22/2016] [Accepted: 03/13/2016] [Indexed: 01/22/2023]
|
41
|
Wang L, Yang D, Lv JY, Yu D, Xin SJ. Application of carbon nanoparticles in lymph node dissection and parathyroid protection during thyroid cancer surgeries: a systematic review and meta-analysis. Onco Targets Ther 2017; 10:1247-1260. [PMID: 28280359 PMCID: PMC5338936 DOI: 10.2147/ott.s131012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose To investigate whether carbon nanoparticles (CNs) are helpful in identifying lymph nodes and metastatic lymph nodes and in parathyroid protection during thyroid cancer surgery. Methods English and Chinese literature in PubMed, Cochrane Database of Systematic Reviews, EMBASE, ClinicalTrials.gov, China Biology Medicine Database, China National Knowledge Infrastructure, China Master’s and Doctoral Theses Full-Text Database, Wanfang database, and Cqvip database were searched (till March 22, 2016). Randomized controlled trials (RCTs) that compared the use of CNs with a blank control in patients undergoing thyroid cancer surgery were included. Quality assessment and data extraction were performed, and a meta-analysis was conducted using RevMan 5.1 software. The primary outcomes were the number of retrieved central lymph nodes and metastatic lymph nodes, and the rate of accidental parathyroid removal. Results We obtained 149 relevant studies, and only 47 RCTs with 4,605 patients (CN group: n=2,197; blank control group: n=2,408) met the inclusion criteria. Compared with the control group, the CN group was associated with more retrieved lymph nodes/patient (weighted mean difference [WMD]: 3.39, 95% confidence interval [CI]: 2.73–4.05), more retrieved metastatic lymph nodes (WMD: 0.98, 95% CI: 0.61–1.35), lower rate of accidental parathyroid removal, and lower rates of hypoparathyroidism and hypocalcemia. However, the total metastatic rate of the retrieved lymph nodes did not differ between the groups (odds ratio: 1.13, 95% CI: 0.87–1.47, P=0.35). Conclusion CNs can improve the extent of neck dissection and protect the parathyroid glands during thyroid cancer surgery. And the number of identified metastatic lymph nodes can be simultaneously increased.
Collapse
Affiliation(s)
- Lun Wang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Dong Yang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jun-Yuan Lv
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Dan Yu
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Shi-Jie Xin
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
42
|
Liu J, Lu Y, Feng L, Wang S, Zhang S, Zhu X, Sheng L, Zhang S, Zhang X. Pinpoint the Positions of Single Nucleotide Polymorphisms by a Nanocluster Dimer. Anal Chem 2017; 89:2622-2627. [DOI: 10.1021/acs.analchem.6b04981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yuexiang Lu
- Institute
of Nuclear and New Energy Technology, Collaborative Innovation Center
of Advanced Nuclear Energy Technology, Beijing Key Lab of Radioactive
Waste Treatment, Tsinghua University, Beijing 100084, P. R. China
| | - Lu Feng
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Song Wang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Shixi Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xuewei Zhu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Linfeng Sheng
- State
Key Laboratory of Analytical Chemistry for Life Science, Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Sichun Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xinrong Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
43
|
Zhang L, Wang J, Liu F, Xiong Y, Liu Z, Jiang D, Li Y, Tu D, Wang Y, Pu X. Rapid detection of blaNDM-1 in multidrug-resistant organisms using a novel electrochemical biosensor. RSC Adv 2017. [DOI: 10.1039/c6ra27916c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The traditional detection methods of multidrug-resistant organisms (MDROs) are costly and comprise multiple steps. In this study, we successfully established a fast electrochemical method for blaNDM-1 in MDROs based on the LNA probes.
Collapse
|
44
|
Zhu X, Li J, Lv H, He H, Liu H, Zhang X, Wang S. Synthesis and characterization of a bifunctional nanoprobe for CGG trinucleotide repeat detection. RSC Adv 2017. [DOI: 10.1039/c7ra05268e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel bifunctional nanoprobe was designed and used in an electrochemical sensor to rapidly detect CGG trinucleotide repeats.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Jiao Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Hehong Lv
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Hanping He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Heng Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- PR China
| |
Collapse
|
45
|
|
46
|
Diao W, Tang M, Ding X, Zhang Y, Yang J, Cheng W, Mo F, Wen B, Xu L, Yan Y. Electrochemical DNA biosensor based on MNAzyme-mediated signal amplification. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1910-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Improving the sensitivity for DNA sensing based on double-anchored DNA modified gold nanoparticles. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5572-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Abstract
AbstractThe field of nanobiocatalysis has experienced a rapid growth due to recent advances in nanotechnology. However, biocatalytic processes are often limited by the lack of stability of the enzymes and their short lifetime. Therefore, immobilization is key to the successful implementation of industrial processes based on enzymes. Immobilization of enzymes on functionalized nanostructured materials could give higher stability to nanobiocatalysts while maintaining free enzyme activity and easy recyclability under various conditions. This review will discuss recent developments in nanobiocatalysis to improve the stability of the enzyme using various nanostructured materials such as mesoporous materials, nanofibers, nanoparticles, nanotubes, and individual nanoparticles enzymes. Also, this review summarizes the recent evolution of nanostructured biocatalysts with an emphasis on those formed with polymers. Based on the synthetic procedures used, established methods fall into two important categories: “grafting onto” and “grafting from”. The fundamentals of each method in enhancing enzyme stability and the use of these new nanobiocatalysts as tools for different applications in different areas are discussed.
Collapse
|
49
|
Novel Signal-Enhancing Approaches for Optical Detection of Nucleic Acids—Going beyond Target Amplification. CHEMOSENSORS 2015. [DOI: 10.3390/chemosensors3030224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|