3
|
Yaroshenko I, Kirsanov D, Marjanovic M, Lieberzeit PA, Korostynska O, Mason A, Frau I, Legin A. Real-Time Water Quality Monitoring with Chemical Sensors. SENSORS 2020; 20:s20123432. [PMID: 32560552 PMCID: PMC7349867 DOI: 10.3390/s20123432] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Water quality is one of the most critical indicators of environmental pollution and it affects all of us. Water contamination can be accidental or intentional and the consequences are drastic unless the appropriate measures are adopted on the spot. This review provides a critical assessment of the applicability of various technologies for real-time water quality monitoring, focusing on those that have been reportedly tested in real-life scenarios. Specifically, the performance of sensors based on molecularly imprinted polymers is evaluated in detail, also giving insights into their principle of operation, stability in real on-site applications and mass production options. Such characteristics as sensing range and limit of detection are given for the most promising systems, that were verified outside of laboratory conditions. Then, novel trends of using microwave spectroscopy and chemical materials integration for achieving a higher sensitivity to and selectivity of pollutants in water are described.
Collapse
Affiliation(s)
- Irina Yaroshenko
- Institute of Chemistry, St. Petersburg State University, Mendeleev Center, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (I.Y.); (A.L.)
| | - Dmitry Kirsanov
- Institute of Chemistry, St. Petersburg State University, Mendeleev Center, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (I.Y.); (A.L.)
- Correspondence: ; Tel.: +7-921-333-1246
| | - Monika Marjanovic
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria; (M.M.); (P.A.L.)
| | - Peter A. Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria; (M.M.); (P.A.L.)
| | - Olga Korostynska
- Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University, 0166 Oslo, Norway;
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway;
| | - Alex Mason
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway;
- Animalia AS, Norwegian Meat and Poultry Research Centre, P.O. Box 396, 0513 Økern, Oslo, Norway
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Ilaria Frau
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Andrey Legin
- Institute of Chemistry, St. Petersburg State University, Mendeleev Center, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (I.Y.); (A.L.)
| |
Collapse
|
4
|
Parvizian BA, Zhou C, Fernando S, Crimmins BS, Hopke PK, Holsen TM. Concentrations and Long-Term Temporal Trends of Hexabromocyclododecanes (HBCDD) in Lake Trout and Walleye from the Great Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6134-6141. [PMID: 32298100 DOI: 10.1021/acs.est.0c00605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hexabromocyclododecane (HBCDD) is a hazardous, persistent, bioaccumlative brominated flame retardant. To investigate how its use has affected the Great Lakes, total HBCDD (∑HBCDD) concentrations and temporal trends in homogenized whole fish samples from the Great Lakes region (1978 to 2016) were determined. ∑HBCDD concentrations (ng/g ww) for each lake are Erie (0.49-2.60), Ontario (3.12-8.90), Michigan (3.91-9.01), Superior (5.69-13.1), and Huron (5.57-13.7). Early years (1978 to 1992) showed no significant trend. However, recent trends (2004 to 2016) suggest concentrations are increasing in Lakes Erie and Ontario, decreasing in Lakes Superior and Michigan, and not changing in Lake Huron. Decreasing trends for Lakes Superior and Michigan are likely the result of decreased usage of the compound globally, regionally, and locally. For the other lakes, increasing or zero trends are consistent with food web changes due to invasive species and climate change, which has caused more intense storms and less ice cover leading to increased sediment resuspension.
Collapse
Affiliation(s)
- Bita Alipour Parvizian
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Chuanlong Zhou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Sujan Fernando
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, United States
| | | | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, United States
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Thomas M Holsen
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, United States
| |
Collapse
|
5
|
Tousova Z, Oswald P, Slobodnik J, Blaha L, Muz M, Hu M, Brack W, Krauss M, Di Paolo C, Tarcai Z, Seiler TB, Hollert H, Koprivica S, Ahel M, Schollée JE, Hollender J, Suter MJF, Hidasi AO, Schirmer K, Sonavane M, Ait-Aissa S, Creusot N, Brion F, Froment J, Almeida AC, Thomas K, Tollefsen KE, Tufi S, Ouyang X, Leonards P, Lamoree M, Torrens VO, Kolkman A, Schriks M, Spirhanzlova P, Tindall A, Schulze T. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017. [PMID: 28629112 DOI: 10.1016/j.scitotenv.2017.06.032] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Growing concern about the adverse environmental and human health effects of a wide range of micropollutants requires the development of novel tools and approaches to enable holistic monitoring of their occurrence, fate and effects in the aquatic environment. A European-wide demonstration program (EDP) for effect-based monitoring of micropollutants in surface waters was carried out within the Marie Curie Initial Training Network EDA-EMERGE. The main objectives of the EDP were to apply a simplified protocol for effect-directed analysis, to link biological effects to target compounds and to estimate their risk to aquatic biota. Onsite large volume solid phase extraction of 50 L of surface water was performed at 18 sampling sites in four European river basins. Extracts were subjected to effect-based analysis (toxicity to algae, fish embryo toxicity, neurotoxicity, (anti-)estrogenicity, (anti-)androgenicity, glucocorticoid activity and thyroid activity), to target analysis (151 organic micropollutants) and to nontarget screening. The most pronounced effects were estrogenicity, toxicity to algae and fish embryo toxicity. In most bioassays, major portions of the observed effects could not be explained by target compounds, especially in case of androgenicity, glucocorticoid activity and fish embryo toxicity. Estrone and nonylphenoxyacetic acid were identified as the strongest contributors to estrogenicity, while herbicides, with a minor contribution from other micropollutants, were linked to the observed toxicity to algae. Fipronil and nonylphenol were partially responsible for the fish embryo toxicity. Within the EDP, 21 target compounds were prioritized on the basis of their frequency and extent of exceedance of predicted no effect concentrations. The EDP priority list included 6 compounds, which are already addressed by European legislation, and 15 micropollutants that may be important for future monitoring of surface waters. The study presents a novel simplified protocol for effect-based monitoring and draws a comprehensive picture of the surface water status across Europe.
Collapse
Affiliation(s)
- Zuzana Tousova
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic; Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Peter Oswald
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic
| | - Jaroslav Slobodnik
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Melis Muz
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Meng Hu
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Martin Krauss
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Carolina Di Paolo
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Zsolt Tarcai
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Sanja Koprivica
- Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Jennifer E Schollée
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Anita O Hidasi
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Kristin Schirmer
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Manoj Sonavane
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Selim Ait-Aissa
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Nicolas Creusot
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Francois Brion
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Jean Froment
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway
| | - Ana Catarina Almeida
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway
| | - Kevin Thomas
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Keesels Road, Coopers Plains 4108, Australia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, Post Box 5003, N-1432 Ås, Norway
| | - Sara Tufi
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Xiyu Ouyang
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Pim Leonards
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Marja Lamoree
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Victoria Osorio Torrens
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Annemieke Kolkman
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Merijn Schriks
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Vitens drinking water company, P.O Box 1205, 8001 BE Zwolle, The Netherlands
| | | | - Andrew Tindall
- WatchFrog S. A., 1 rue Pierre Fontaine, 91000 Evry, France
| | - Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|