1
|
Pham H, Kumar M, Martinez AR, Ali M, Lowery RG. Development and validation of a generic methyltransferase enzymatic assay based on an SAH riboswitch. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100161. [PMID: 38788976 PMCID: PMC11188199 DOI: 10.1016/j.slasd.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Methylation of proteins and nucleic acids plays a fundamental role in epigenetic regulation, and discovery of methyltransferase (MT) inhibitors is an area of intense activity. Because of the diversity of MTs and their products, assay methods that detect S-adenosylhomocysteine (SAH) - the invariant product of S-adenosylmethionine (SAM)-dependent methylation reactions - offer some advantages over methods that detect specific methylation events. However, direct, homogenous detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group. Moreover, MTs are slow enzymes and many have submicromolar affinities for SAM; these properties translate to a need for detection of SAH at low nanomolar concentrations in the presence of excess SAM. To meet these needs, we leveraged the exquisite molecular recognition properties of a naturally occurring SAH-sensing RNA aptamer, or riboswitch. By splitting the riboswitch into two fragments, such that SAH binding induces assembly of a trimeric complex, we engineered sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time resolved Förster resonance energy transfer (TR-FRET) signals. The split riboswitch configuration, called the AptaFluor™ SAH Methyltransferase Assay, allows robust detection of SAH (Z' > 0.7) at concentrations below 10 nM, with overnight signal stability in the presence of typical MT assay components. The AptaFluor assay tolerates diverse MT substrates, including histones, nucleosomes, DNA and RNA, and we demonstrated its utility as a robust, enzymatic assay method for several methyltransferases with SAM Km values < 1 µM. The assay was validated for HTS by performing a pilot screen of 1,280 compounds against the SARS-CoV-2 RNA capping enzyme, nsp14. By enabling direct, homogenous detection of SAH at low nanomolar concentrations, the AptaFluor assay provides a universal platform for screening and profiling MTs at physiologically relevant SAM concentrations.
Collapse
Affiliation(s)
- Ha Pham
- BellBrook Labs, Madison, WI, USA
| | | | | | | | | |
Collapse
|
2
|
Sivagnanam S, Mahato P, Das P. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Org Biomol Chem 2023; 21:3942-3983. [PMID: 37128980 DOI: 10.1039/d3ob00209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP), one of the biological anions, plays a crucial role in several biological processes including energy transduction, cellular respiration, enzyme catalysis and signaling. ATP is a bioactive phosphate molecule, recognized as an important extracellular signaling agent. Apart from serving as a universal energy currency for various cellular events, ATP is also considered a factor responsible for numerous physiological activities. It regulates cellular metabolism by breaking phosphoanhydride bonds. Several diseases have been reported widely based on the levels and behavior of ATP. The variation of ATP concentration usually causes a foreseeable impact on mitochondrial physiological function. Mitochondrial dysfunction is responsible for the occurrence of many severe diseases such as angiocardiopathy, malignant tumors and Parkinson's disease. Therefore, there is high demand for developing a sensitive, fast-responsive, nontoxic and versatile detection platform for the detection of ATP. To this end, considerable efforts have been employed by several research groups throughout the world to develop specific and sensitive detection platforms to recognize ATP. Although a repertoire of optical chemosensors (both colorimetric and fluorescent) for ATP has been developed, many of them are not arrayed appropriately. Therefore, in this present review, we focused on the design and sensing strategy of some chemosensors including metal-free, metal-based, sequential sensors, aptamer-based sensors, nanoparticle-based sensors etc. for ATP recognition via diverse binding mechanisms.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| | - Prasenjit Mahato
- Department of Chemistry, Raghunathpur College, Sidho-Kanho-Birsha University, Purulia, West Bengal-723133, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
3
|
Stabilizing liquid crystal droplets with hydrogel films and its application in monitoring adenosine triphosphate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Ratiometric fluorescence and visual sensing of ATP based on gold nanocluster-encapsulated metal-organic framework with a smartphone. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Nandimandalam M, Costantini F, Lovecchio N, Iannascoli L, Nascetti A, de Cesare G, Caputo D, Manetti C. Split Aptamers Immobilized on Polymer Brushes Integrated in a Lab-on-Chip System Based on an Array of Amorphous Silicon Photosensors: A Novel Sensor Assay. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7210. [PMID: 34885364 PMCID: PMC8658169 DOI: 10.3390/ma14237210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Innovative materials for the integration of aptamers in Lab-on-Chip systems are important for the development of miniaturized portable devices in the field of health-care and diagnostics. Herein we highlight a general method to tailor an aptamer sequence in two subunits that are randomly immobilized into a layer of polymer brushes grown on the internal surface of microfluidic channels, optically aligned with an array of amorphous silicon photosensors for the detection of fluorescence. Our approach relies on the use of split aptamer sequences maintaining their binding affinity to the target molecule. After binding the target molecule, the fragments, separately immobilized to the brush layer, form an assembled structure that in presence of a "light switching" complex [Ru(phen)2(dppz)]2+, emit a fluorescent signal detected by the photosensors positioned underneath. The fluorescent intensity is proportional to the concentration of the target molecule. As proof of principle, we selected fragments derived from an aptamer sequence with binding affinity towards ATP. Using this assay, a limit of detection down to 0.9 µM ATP has been achieved. The sensitivity is compared with an assay where the original aptamer sequence is used. The possibility to re-use both the aptamer assays for several times is demonstrated.
Collapse
Affiliation(s)
- Manasa Nandimandalam
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
| | - Francesca Costantini
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
- CREA-DC Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Nicola Lovecchio
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Lorenzo Iannascoli
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851/881, 00138 Rome, Italy;
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851/881, 00138 Rome, Italy;
| | - Giampiero de Cesare
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Domenico Caputo
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Cesare Manetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
| |
Collapse
|
6
|
Chen M, Li Y, Li P, Guo W, Yang Y, Wu X, Ye Y, Huang J. Ligation-dependent rolling circle amplification method for ATP determination with high selectivity and sensitivity. Analyst 2021; 146:6605-6614. [PMID: 34586110 DOI: 10.1039/d1an01115d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is highly demanded to develop methods for the reliable detection of ATP, which plays an extremely important role in clinical diagnosis, biomedical engineering, and food chemistry. However, the methods currently available for ATP sensing strongly rely on the utilization of expensive and sophisticated instruments or the use of ATP aptamers with mediocre sensitivity and selectivity. To circumvent these drawbacks, we herein propose an efficient method for ATP detection by integrating highly specific ATP-dependent ligation reaction with dual-stage signal amplification techniques executed by rolling circle amplification (RCA) and the subsequently fabricated DNAzymes ready for the catalytic cleavage and fluorescence signal generation from molecular beacons (MBs). The detection limit is down to 35 pM with a linear range from 0.05 nM to 200 nM. More importantly, the sensing strategy can effectively discriminate ATP from its analogues and the results from the spiked human serum albumin (HSA) samples further confirm the reliability for practical applications. Considering the high sensitivity and selectivity, wash-free and isothermal convenience, and the simplicity in probe design, the strategy reported herein paves a new avenue for the effective determination of ATP and other biomolecules in fundamental and applied research.
Collapse
Affiliation(s)
- Mingjian Chen
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yang Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Peng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Wanni Guo
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yuxin Yang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yu Ye
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Health Care Group, Huangshi 435002, P. R. China. .,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi 435002, P. R. China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China. .,Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, P. R. China
| |
Collapse
|
7
|
Shariati M, Vaezjalali M, Sadeghi M. Ultrasensitive and easily reproducible biosensor based on novel doped MoS 2 nanowires field-effect transistor in label-free approach for detection of hepatitis B virus in blood serum. Anal Chim Acta 2021; 1156:338360. [PMID: 33781462 DOI: 10.1016/j.aca.2021.338360] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
An ultrasensitive field-effect transistor (FET) for hepatitis B virus deoxyribonucleic acid (HBV DNA) detection in label free approach and easily reproducible setup was reported. The fabricated FET biosensor was materialized by ZnO doped MoS2 nanowires (NWs). This report introduced a novel structure of the MoS2 in bio-sensing approach. Because of unique electrical and structural properties of MoS2, HBV biosensor could demonstrate the high sensitivity and showed the detection limit of 1 fM. The MoS2 NWs fabrication was materialized through ZnO based vapor-liquid-solid (VLS) technique. The fabricated device could measure the DNA targets in a linear concentration range from 0.5 pM to 50 μM. The dynamic response time of FET biosensor was 25 s. The functionality of the NWs biosensor for label-free measurements could be repeated for several times without any significant malfunction and biosensor could retain 96% of its initial response after eight weeks maintenance. The HBV biosensor showed high selectivity by discrimination the complementary DNA oligonucleotides from non-complementary and the mismatch (1, 2 and 3 bases) oligonucleotides. The materialized platform was desirably reproduced for HBV concentrations in human serum. The specificity of the biosensor was evaluated against several different types of DNAs and the fabricated device showed the outstanding performance. In order to optimize the device functionality, the biosensor was checked for two different human samples and device could distinguish the samples from each other in the same manner.
Collapse
Affiliation(s)
- Mohsen Shariati
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran.
| |
Collapse
|
8
|
Zhou X, Li J, Tan LL, Li Q, Shang L. Novel perylene probe-encapsulated metal-organic framework nanocomposites for ratiometric fluorescence detection of ATP. J Mater Chem B 2021; 8:3661-3666. [PMID: 31999287 DOI: 10.1039/c9tb02319d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine triphosphate (ATP) plays an important role in various biological processes and the ATP level is closely associated with many diseases. Herein, a novel ratiometric fluorescence assay for ATP was developed based on the excimer-monomer transfer of a perylene probe. By encapsulating a perylene probe, N,N'-bis(6-caproic acid)-3,4:9,10-perylenediimide (PDI), into zeolitic imidazolate framework-8 (ZIF-8) nanocrystals, fluorescent nanocomposites (PDI@ZIF-8) with significant excimer emission of the perylene probe were prepared for the first time. The presence of ATP will trigger the decomposition of PDI@ZIF-8 due to much stronger coordination between ATP and Zn2+ than that of 2-methylimidazole and Zn2+. As a result, the encapsulated PDI probes were released, leading to significantly increased monomer emission accompanying the decrease in the excimer emission. The excimer-monomer transition signal was utilized for ratiometric ATP sensing and its potential application for detecting ATP in cell lysates was also successfully demonstrated.
Collapse
Affiliation(s)
- Xiaomeng Zhou
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | | | | | | | | |
Collapse
|
9
|
Zhao Z, Yang H, Zhao W, Deng S, Zhang K, Deng R, He Q, Gao H, Li J. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range. J Mater Chem B 2021; 8:3623-3630. [PMID: 31934712 DOI: 10.1039/c9tb02388g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Programmed biosensors with tunable quantification range and sensitivity would greatly broaden their application in medical diagnosis, food safety and environmental analysis. Herein, we proposed a graphene-nucleic acid biointerface-engineered biosensor, allowing target molecules to be detected with adjustable dynamic ranges and sensitivities. The biosensors were programmed by simply tuning the poly A tail of aptamer probes. The tuning of the poly A tail would allow the interaction between aptamer probes and graphene oxide (GO) to be modulated, in turn programing the competitive binding processes of aptamer probes to target molecules and GO. The biosensors, termed affinity-tunable aptasensors (atAptasensors) could be easily tuned with different dynamic ranges by using aptamer probes with different tail lengths, and the dynamic range could be extended to be over 3 orders by a combined use of multiple aptamer probes. Remarkably, the specificity of aptamer probes could be increased by increasing the interaction between aptamer probes and GO. Reliability of atAptasensor for ATP detection was tested in serum and milk samples, and we also applied atAptasensor for culture-independent analysis of microorganism pollution.
Collapse
Affiliation(s)
- Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhao L, Liu Y, Zhang Z, Wei J, Xie S, Li X. Fibrous testing papers for fluorescence trace sensing and photodynamic destruction of antibiotic-resistant bacteria. J Mater Chem B 2021; 8:2709-2718. [PMID: 32149315 DOI: 10.1039/d0tb00002g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The increasing prevalence of antibiotic-resistant bacteria needs rapid identification and efficient destruction routes. This study proposes testing paper derived from electrospun fibrous mats and aggregation-induced emission (AIE) probes for trace sensing and simultaneous destruction of antibiotic-resistant E. coli. Aptamers are conjugated on fibers for selective capture of E. coli, and the capture capability can be regenerated via rinsing with salt solution. Hydroxyl tetraphenylethene (TPE) is linked with two cephalosporin molecules to construct TPE-Cep probes, and the fluorescence emission is turned on specifically in the presence of β-lactamase, which is a critical marker for screening resistant bacteria. Fibrous mats are lit up only in the presence of antibiotic-resistant bacteria, and the fluorescence intensity changes could be statistically fitted into an equation for quantitative analysis. Fibrous strips display apparent color changes from blue to green for a visual readout of bacterial levels, and the limit of detection (LOD) is much lower than those of previous paper substrates. In addition, the TPE-Cep probes could produce reactive oxygen species (ROS) under room light illumination to kill the captured bacteria. Thus, the integration of aptamer-grafted electrospun fibers and functional AIE probes provides potential for selective capture, trace imaging and photodynamic destruction of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China. and School of Bioscience and Technology, Chengdu Medical College, Chengdu 610031, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| |
Collapse
|
11
|
Pellas V, Hu D, Mazouzi Y, Mimoun Y, Blanchard J, Guibert C, Salmain M, Boujday S. Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. BIOSENSORS 2020; 10:E146. [PMID: 33080925 PMCID: PMC7603250 DOI: 10.3390/bios10100146] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Nanoparticles made of coinage metals are well known to display unique optical properties stemming from the localized surface plasmon resonance (LSPR) phenomenon, allowing their use as transducers in various biosensing configurations. While most of the reports initially dealt with spherical gold nanoparticles owing to their ease of synthesis, the interest in gold nanorods (AuNR) as plasmonic biosensors is rising steadily. These anisotropic nanoparticles exhibit, on top of the LSPR band in the blue range common with spherical nanoparticles, a longitudinal LSPR band, in all respects superior, and in particular in terms of sensitivity to the surrounding media and LSPR-biosensing. However, AuNRs synthesis and their further functionalization are less straightforward and require thorough processing. In this paper, we intend to give an up-to-date overview of gold nanorods in LSPR biosensing, starting from a critical review of the recent findings on AuNR synthesis and the main challenges related to it. We further highlight the various strategies set up to coat AuNR with a silica shell of controlled thickness and porosity compatible with LSPR-biosensing. Then, we provide a survey of the methods employed to attach various bioreceptors to AuNR. Finally, the most representative examples of AuNR-based LSPR biosensors are reviewed with a focus put on their analytical performances.
Collapse
Affiliation(s)
- Vincent Pellas
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - David Hu
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yacine Mazouzi
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yoan Mimoun
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Juliette Blanchard
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Clément Guibert
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| |
Collapse
|
12
|
Peteu SF, Russell SA, Galligan JJ, Swain GM. An Electrochemical ATP Biosensor with Enzymes Entrapped within a PEDOT Film. ELECTROANAL 2020. [DOI: 10.1002/elan.202060397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Serban F. Peteu
- Department of Chemistry Michigan State University Department of Chemistry 578 S. Shaw Lane East Lansing MI 48824-1322 USA
| | - Skye A. Russell
- Department of Chemistry Michigan State University Department of Chemistry 578 S. Shaw Lane East Lansing MI 48824-1322 USA
| | - James J. Galligan
- Department of Pharmacology and Toxicology Michigan State University B440 Life Sciences Building East Lansing MI 48824-1317 USA
- Neuroscience Program, Giltner Hall 293 Farm Lane, Room 108 East Lansing MI 48824-1101 USA
| | - Greg M. Swain
- Department of Chemistry Michigan State University Department of Chemistry 578 S. Shaw Lane East Lansing MI 48824-1322 USA
- Neuroscience Program, Giltner Hall 293 Farm Lane, Room 108 East Lansing MI 48824-1101 USA
| |
Collapse
|
13
|
Li J, Wang H, Li Z, Su Z, Zhu Y. Preparation and Application of Metal Nanoparticals Elaborated Fiber Sensors. SENSORS 2020; 20:s20185155. [PMID: 32927607 PMCID: PMC7570743 DOI: 10.3390/s20185155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
In recent years, surface plasmon resonance devices (SPR, or named plamonics) have attracted much more attention because of their great prospects in breaking through the optical diffraction limit and developing new photons and sensing devices. At the same time, the combination of SPR and optical fiber promotes the development of the compact micro-probes with high-performance and the integration of fiber and planar waveguide. Different from the long-range SPR of planar metal nano-films, the local-SPR (LSPR) effect can be excited by incident light on the surface of nano-scaled metal particles, resulting in local enhanced light field, i.e., optical hot spot. Metal nano-particles-modified optical fiber LSPR sensor has high sensitivity and compact structure, which can realize the real-time monitoring of physical parameters, environmental parameters (temperature, humidity), and biochemical molecules (pH value, gas-liquid concentration, protein molecules, viruses). In this paper, both fabrication and application of the metal nano-particles modified optical fiber LSPR sensor probe are reviewed, and its future development is predicted.
Collapse
Affiliation(s)
- Jin Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China
- Correspondence:
| | - Haoru Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhi Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhengcheng Su
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Yue Zhu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| |
Collapse
|
14
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
15
|
Ning Z, Zheng Y, Pan D, Zhang Y, Shen Y. Coupling aptazyme and catalytic hairpin assembly for cascaded dual signal amplified electrochemiluminescence biosensing. Biosens Bioelectron 2019; 150:111945. [PMID: 31818762 DOI: 10.1016/j.bios.2019.111945] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 01/22/2023]
Abstract
Developing reliable and sensitive detection methods for adenosine triphosphate (ATP) is vital for both clinical diagnosis and food safety. In this work, by coupling aptazyme- and catalytic hairpin assembly (CHA)-based signal amplification and electrochemiluminescence (ECL), an ultrasensitive biosensor for sensing ATP was fabricated using Ru(bpy)32+-doped silica nanoparticles (RuSiO2) as ECL probes and a ferrocene-functionalized hairpin DNA (hairpin-Fc) as quencher. The aptazyme-triggered cleavage of the DNA substrate and the CHA reaction both led to the circular release of trigger DNA, resulting in a significant dual signal amplification, with unprecedented enhancement up to 940-fold. Moreover, the bioconjugation of the DNA substrate with Au@Fe3O4 facilitated the separation and purification of the released trigger DNA, and effectively reduced the background signal. As a result, the as-prepared ECL biosensor exhibited a much lower detection limit of 0.054 pM for ATP, compared to those in previous reports, and showed high reliability for ATP detection in both spiked serum samples and Staphylococcus aureus. This work offers a new perspective for designing nucleic acid-based signal amplification for detecting ATP in bacterial analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
16
|
|
17
|
Zhang Y, Chen Y, Man T, Huang D, Li X, Zhu H, Li Z. High resolution non-invasive intraocular pressure monitoring by use of graphene woven fabrics on contact lens. MICROSYSTEMS & NANOENGINEERING 2019; 5:39. [PMID: 31636929 PMCID: PMC6799840 DOI: 10.1038/s41378-019-0078-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/18/2019] [Accepted: 05/28/2019] [Indexed: 05/04/2023]
Abstract
Monitoring intracorporal pressures are important for health care and diagnosis. In this work, a contact lens tonometer employing graphene woven fabrics (GWFs), which indicate great sensibility of resistance to strain, flexibility, stretchability, transparency, and biocompatibility, is proposed for real-time monitoring intraocular pressure (IOP) with high resolution. The mechanical properties of the device during the deformation were analyzed, and the sensitivity of the fabricated device was tested on a mimic human eyeball. In vitro experiments on porcine eyes were executed to test the effectiveness of the device. The change rate of resistance under different IOP was tested. Also, the relationship between the current changes and IOP variation when keeping the voltage constant for different devices was obtained. The contact lens tonometers with GWFs as high-resolution sensing element have shown a promising prospective to realize the low-cost disposable sensing contact lens with lower power.
Collapse
Affiliation(s)
- Yushi Zhang
- 1School of Information Engineering, Minzu University of China, 100081 Beijing, China
- 2National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Yufeng Chen
- 2National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Tianxing Man
- 2National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Dong Huang
- 2National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Xiao Li
- 3Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
| | - Hongwei Zhu
- 3Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
- 4Center for Nano and Micro Mechanics (CNMM), Tsinghua University, 100084 Beijing, China
| | - Zhihong Li
- 2National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, 100871 Beijing, China
- 4Center for Nano and Micro Mechanics (CNMM), Tsinghua University, 100084 Beijing, China
| |
Collapse
|
18
|
Kaur H, Shorie M. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. NANOSCALE ADVANCES 2019; 1:2123-2138. [PMID: 36131986 PMCID: PMC9418768 DOI: 10.1039/c9na00153k] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/28/2019] [Indexed: 05/06/2023]
Abstract
Nanomaterials have been exploited extensively to fabricate various biosensors for clinical diagnostics and food & environmental monitoring. These materials in conjugation with highly specific aptamers (next-gen antibody mimics) have enhanced the selectivity, sensitivity and rapidness of the developed aptasensors for numerous targets ranging from small molecules such as heavy metal ions to complex matrices containing large entities like cells. In this review, we highlight the recent advancements in nanomaterial based aptasensors from the past five years also including the basics of conventionally used detection methodologies that paved the way for futuristic sensing techniques. The aptasensors have been categorised based upon these detection techniques and their modifications viz., colorimetric, fluorometric, Raman spectroscopy, electro-chemiluminescence, voltammetric, impedimetric and mechanical force-based sensing of a multitude of targets are discussed in detail. The bio-interaction of these numerous nanomaterials with the aptameric component and that of the complete aptasensor with the target have been studied in great depth. This review thus acts as a compendium for nanomaterial based aptasensors and their applications in the field of clinical and environmental diagnosis.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Institute of Nano Science and Technology Mohali 160062 India
| | - Munish Shorie
- Institute of Nano Science and Technology Mohali 160062 India
| |
Collapse
|
19
|
Label-Free Direct Detection of Saxitoxin Based on a Localized Surface Plasmon Resonance Aptasensor. Toxins (Basel) 2019; 11:toxins11050274. [PMID: 31096619 PMCID: PMC6563244 DOI: 10.3390/toxins11050274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Seafood is an emerging health food, and interest in improving the quality of seafood is increasing. Saxitoxin (STX) is a neurotoxin produced by marine dinoflagellates that is accumulated in seafood. It can block the neuronal transmission between nerves and muscle cell membranes, resulting in the disturbance of neuromuscular transmission and subsequent voluntary muscle paralysis. Here, we developed a new aptamer for the detection of STX using graphene oxide–systematic evolution of ligands by exponential enrichment (GO-SELEX). Furthermore, we confirmed sensitivity and selectivity of the developed aptamer specific to STX using a localized surface plasmon resonance (LSPR) sensor. The sensing chip was fabricated by fixing the new STX aptamer immobilized on the gold nanorod (GNR) substrate. The STX LSPR aptasensor showed a broad, linear detection range from 5 to 10,000 μg/L, with a limit of detection (LOD) of 2.46 μg/L (3σ). Moreover, it was suitable for the detection of STX (10, 100, and 2000 μg/L) in spiked mussel samples and showed a good recovery rate (96.13–116.05%). The results demonstrated that the new STX aptamer-modified GNR chip was sufficiently sensitive and selective to detect STX and can be applied to real samples as well. This LSPR aptasensor is a simple, label-free, cost-effective sensing system with a wide detectable range.
Collapse
|
20
|
Li D, Wang S, Wang L, Zhang H, Hu J. A simple colorimetric probe based on anti-aggregation of AuNPs for rapid and sensitive detection of malathion in environmental samples. Anal Bioanal Chem 2019; 411:2645-2652. [PMID: 30877346 DOI: 10.1007/s00216-019-01703-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 11/29/2022]
Abstract
In this study, a simple colorimetric probe was developed for rapid and highly sensitive detection of malathion based on gold nanoparticles (AuNPs) anti-aggregation mechanism. A certain amount of NaOH can cause the aggregation of citrate-stabilized AuNPs due to the electrostatic interactions, and the color of AuNP solution changes from wine-red to gray. While in the presence of malathion, malathion is easily hydrolyzed in a strong alkali environment (pH > 9), followed by the production of a mass of negative charges, and thus the aggregated AuNPs turns to well-dispersed and the color of AuNP solution changes from gray to wine-red. This characteristic change can be visualized with the naked eye and quantitatively detected by an ultraviolet-visible (UV-Vis) spectrometer. Under optimized conditions, this probe exhibited a linear response to malathion in the concentration range of 0.05-0.8 μM with a limit of detection (LOD) down to 11.8 nM. The probe also showed good specificity for malathion detection in the presence of other interfering pesticide residues. Furthermore, the probe was successfully employed to detect malathion in environmental samples, with a recovery of 94-107% and a relative standard deviation (RSD) less than 8%. The results demonstrated that the proposed colorimetric probe based on anti-aggregation of AuNPs could be used for quantitative analysis of malathion and provided great potential for malathion determination in environmental samples.
Collapse
Affiliation(s)
- Dongxian Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shun Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ling Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 45002, China
| |
Collapse
|
21
|
Sergelen K, Liedberg B, Knoll W, Dostálek J. A surface plasmon field-enhanced fluorescence reversible split aptamer biosensor. Analyst 2018; 142:2995-3001. [PMID: 28744534 DOI: 10.1039/c7an00970d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surface plasmon field-enhanced fluorescence is reported for the readout of a heterogeneous assay that utilizes low affinity split aptamer ligands. Weak affinity ligands that reversibly interact with target analytes hold potential for facile implementation in continuous monitoring biosensor systems. This functionality is not possible without the regeneration of more commonly used assays relying on high affinity ligands and end-point measurement. In fluorescence-based sensors, the use of low affinity ligands allows avoiding this step but it imposes a challenge associated with the weak optical response to the specific capture of the target analyte which is also often masked by a strong background. The coupling of fluorophore labels with a confined field of surface plasmons is reported for strong amplification of the fluorescence signal emitted from the sensor surface and its efficient discrimination from the background. This optical scheme is demonstrated for time-resolved analysis of chosen model analytes - adenoside and adenosine triphosphate - with a split aptamer that exhibits an equilibrium affinity binding constant between 0.73 and 1.35 mM. The developed biosensor enables rapid and specific discrimination of target analyte concentration changes from low μM to mM in buffer as well as in 10% serum.
Collapse
Affiliation(s)
- K Sergelen
- BioSensor Technologies, AIT-Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | |
Collapse
|
22
|
Zhang L, Li X, Wang Y, Sun K, Chen X, Chen H, Zhou J. Reproducible Plasmonic Nanopyramid Array of Various Metals for Highly Sensitive Refractometric and Surface-Enhanced Raman Biosensing. ACS OMEGA 2018; 3:14181-14187. [PMID: 30411061 PMCID: PMC6217687 DOI: 10.1021/acsomega.7b02016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Localized surface plasmon resonance (LSPR) biosensors show great potential for practical/commercial use in clinical diagnosis, home healthcare, environmental analysis, and public healthcare. However, two main issues, that is, low refractometric sensitivity and low reproducibility (large-area uniformity and batch-to-batch consistency), hinder the extensive applications of LSPR biosensors. Therefore, plasmonic nanostructures with high sensitivity and excellent reproducibility are desirable for preparing reliable LSPR sensors. Herein, we have fabricated plasmonic nanopyramid arrays (NPAs) for several batches with reproducible morphology and optical properties by elastic soft lithography and metal thermal evaporation. NPAs of various metals (i.e., Al, Au, and Ag) were also prepared by thermal evaporation with the according metals. The transmission spectra of these NPAs showed several narrow LSPR peaks in the visible-infrared wavelength region. The refractometric sensitivities of the LSPR peaks were systematically studied, and high refractometric sensitivities of 774.0, 472.8, and 421.0 nm/RIU were achieved on Al, Au, and Ag NPAs, respectively. To demonstrate the potential of the NPAs for multiplex applications, we first applied this highly sensitive Al NPA biosensor to monitoring the process of proliferation of HeLa cancer cells, in situ and in real time. Then, we demonstrated that the Au NPA was able to identify the absorbed analytes on its surface through the surface-enhanced Raman scattering spectrum. In addition, the finite difference time domain simulations were performed to reveal the electromagnetic field enhancement on NPAs. Because of the properties of high sensitivity and excellent reproducibility of the metal NPA LSPR substrates, as well as the simplicity and cost efficiency of the fabrication method, our proposed work will accelerate the practical use of LSPR sensors.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuemeng Li
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangyang Wang
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kang Sun
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuexian Chen
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanjun Chen
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhua Zhou
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Abstract
INTRODUCTION Bioanalytical sensing based on the principle of localized surface plasmon resonance experiences is currently an extremely rapid development. Novel sensors with new kinds of plasmonic transducers and innovative concepts for the signal development as well as read-out principles were identified. This review will give an overview of the development of this field. Areas covered: The focus is primarily on types of transducers by preparation or dimension, factors for optimal sensing concepts and the critical view of the usability of these devices as innovative sensors for bioanalytical applications. Expert commentary: Plasmonic sensor devices offer a high potential for future biosensing given that limiting factors such as long-time stability of the transducers, the required high sensitivity and the cost-efficient production are addressed. For higher sensitivity, the design of the sensor in shape and material has to be combined with optimal enhancement strategies. Plasmonic nanoparticles from bottom-up synthesis with a post-synthetic processing show a high potential for cost-efficient sensor production. Regarding the measurement principle, LSPRi offers a large potential for multiplex sensors and can provide a high-throughput as well as highly paralleled sensing. The main trends are expected towards optimal LSPR concepts which represent cost-efficient and robust point-of-care solutions, and the use of multiplexed devices for clinical applications.
Collapse
Affiliation(s)
- Andrea Csáki
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| | - Ondrej Stranik
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| | - Wolfgang Fritzsche
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| |
Collapse
|
24
|
Zou M, Li D, Yuan R, Xiang Y. A target-responsive autonomous aptamer machine biosensor for enzyme-free and sensitive detection of protein biomarkers. J Mater Chem B 2018; 6:4146-4150. [DOI: 10.1039/c8tb00610e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Target-triggered operation of an aptamer machine leads to amplified and highly sensitive detection of protein biomarkers.
Collapse
Affiliation(s)
- Mengqi Zou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
25
|
Gopinath SCB, Perumal V, Balakrishnan S, Md Arshad MK, Lakshmipriya T, Haarindraprasad R, Hashim U. Aptamer-based determination of ATP by using a functionalized impedimetric nanosensor and mediation by a triangular junction transducer. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
A highly sensitive and widely adaptable plasmonic aptasensor using berberine for small-molecule detection. Biosens Bioelectron 2017; 97:292-298. [PMID: 28618365 DOI: 10.1016/j.bios.2017.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/04/2023]
Abstract
Localized surface plasmon resonance (LSPR) biosensors allow label-free detection of small molecules in molecular binding events; however, they are limited by a relatively low sensitivity and narrow dynamic range. Here, we report highly sensitive small-molecule detection by LSPR peak shift exploiting the G-quadruplex (GQx) structure-binding characteristic of known GQx binders to enhance the LSPR signal of a plasmonic aptasensor. Six known GQx binders (thiazole orange, malachite green, crystal violet, zinc protoporphyrin IX, thioflavin T, and berberine) were tested for their ability to enhance the LSPR signal. Among these, berberine (BER) induced the largest LSPR peak shift by interacting with the GQx structure formed by the aptamer/target binding event on a gold nanorod surface. This specific binding performance was confirmed by the fluorescence signal of BER and through repeated cycles of BER addition and washing on the plasmonic sensing chip. The proposed plasmonic aptasensor respectively showed limit of detection (LOD) of 0.56, 0.63, 0.87 and 1.05 pM for ochratoxin A, aflatoxin B1, adenosine triphosphate and potassium ions, which was 1000-fold higher than that in BER-free condition, and a wide dynamic range from 10 pM to 10μM. In addition, the proposed LSPR aptasensor could effectively be used to quantitatively analyze small molecules in real samples.
Collapse
|
27
|
Chen Z, Li H, Jia W, Liu X, Li Z, Wen F, Zheng N, Jiang J, Xu D. Bivalent Aptasensor Based on Silver-Enhanced Fluorescence Polarization for Rapid Detection of Lactoferrin in Milk. Anal Chem 2017; 89:5900-5908. [PMID: 28467701 DOI: 10.1021/acs.analchem.7b00261] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here we report a novel type of bivalent aptasensor based on silver-enhanced fluorescence polarization (FP) for detection of lactoferrin (Lac) in milk powder with high sensitivity and specificity. The novel two split aptamers were obtained from the aptamer reported in our previous SELEX (systematic evolution of ligands by exponential enrichment) selection, and their minimal structural units were optimized on the basis of their affinity and specificity. Also, dual binding sites of split aptamers were verified. The bivalent aptamers were modified to be linked with signal-molecule fluorescein isothiocyanate (FITC) and enhancer silver decahedral nanoparticles (Ag10NPs). The split aptamers could bind to different sites of Lac and assemble into a split-aptamers-target complex, narrowing the distance between Ag10NPs and FITC dye. As a result, Ag10NPs could produce a mass-augmented and metal-enhanced fluorescence (MEF) effect. In general, ternary amplification based on Ag10NPs, split aptamers, and the MEF effect all contributed to the significant increase of FP values. It was proved that the sensitivity of this assay was about 3 orders of magnitude over traditional aptamer-based homogeneous assays with a detection limit of 1.25 pM. Furthermore, this design was examined by actual milk powder with rapid and high-throughout detection.
Collapse
Affiliation(s)
- Zhu Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Wenchao Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Xiaohui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Zhoumin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Fang Wen
- Ministry of Agriculture-Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Nan Zheng
- Ministry of Agriculture-Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Jindou Jiang
- Dairy Quality Supervision and Testing Center, Ministry of Agriculture, Harbin 150090, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| |
Collapse
|
28
|
Qi W, Liu Z, Zhang W, Halawa MI, Xu G. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV). SENSORS (BASEL, SWITZERLAND) 2016; 16:s16101674. [PMID: 27754349 PMCID: PMC5087462 DOI: 10.3390/s16101674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Zr(IV) can form phosphate and Zr(IV) (-PO₃2--Zr4+-) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.
Collapse
Affiliation(s)
- Wenjing Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Zhongyuan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Mohamed Ibrahim Halawa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
29
|
Melaine F, Coilhac C, Roupioz Y, Buhot A. A nanoparticle-based thermo-dynamic aptasensor for small molecule detection. NANOSCALE 2016; 8:16947-16954. [PMID: 27714066 DOI: 10.1039/c6nr04868d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Small molecules (MW < 1000 Da) represent a large class of biomarkers of interest. Recently, a new class of biosensors has been emerging thanks to the recognition properties of aptamers, short DNA or RNA single strands, selected against such small molecular targets. Among them, an adenosine-specific aptamer has been largely described and used due to its remarkable affinity to this small target (KD = 6 μM). In this paper, we achieved the proof-of-principle of an aptasensor based on the thermodynamic follow-up of adenosine binding with engineered split-aptamer sequences. The detection is carried out by surface plasmon resonance imaging of split-aptamer micro-arrays, while signal amplification is ensured by gold nanoparticles (AuNPs). This original approach based on DNA sequence engineering and AuNP conjugation enabled us to reach limits of detection (LOD) 200 times lower than the KD measured in solution with the native aptamer (LOD = 30 nM).
Collapse
Affiliation(s)
- Feriel Melaine
- Université Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France. and CEA, INAC, SPrAM, F-38000 Grenoble, France and CNRS, SPrAM, F-38000 Grenoble, France
| | - Clothilde Coilhac
- Université Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France. and CEA, INAC, SPrAM, F-38000 Grenoble, France and CNRS, SPrAM, F-38000 Grenoble, France
| | - Yoann Roupioz
- Université Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France. and CEA, INAC, SPrAM, F-38000 Grenoble, France and CNRS, SPrAM, F-38000 Grenoble, France
| | - Arnaud Buhot
- Université Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France. and CEA, INAC, SPrAM, F-38000 Grenoble, France and CNRS, SPrAM, F-38000 Grenoble, France
| |
Collapse
|
30
|
Rajendran M, Dane E, Conley J, Tantama M. Imaging Adenosine Triphosphate (ATP). THE BIOLOGICAL BULLETIN 2016; 231:73-84. [PMID: 27638696 PMCID: PMC5063237 DOI: 10.1086/689592] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.
Collapse
Affiliation(s)
- Megha Rajendran
- Department of Chemistry, Purdue University, 560 Oval Drive, Box 68, West Lafayette, Indiana 47907; and
| | - Eric Dane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 76-211, Cambridge, Massachusetts 02139
| | - Jason Conley
- Department of Chemistry, Purdue University, 560 Oval Drive, Box 68, West Lafayette, Indiana 47907; and
| | - Mathew Tantama
- Department of Chemistry, Purdue University, 560 Oval Drive, Box 68, West Lafayette, Indiana 47907; and
| |
Collapse
|
31
|
Zhu S, Li H, Yang M, Pang SW. High sensitivity plasmonic biosensor based on nanoimprinted quasi 3D nanosquares for cell detection. NANOTECHNOLOGY 2016; 27:295101. [PMID: 27275952 DOI: 10.1088/0957-4484/27/29/295101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quasi three-dimensional (3D) plasmonic nanostructures consisting of Au nanosquares on top of SU-8 nanopillars and Au nanoholes on the bottom were developed and fabricated using nanoimprint lithography with simultaneous thermal and UV exposure. These 3D plasmonic nanostructures were used to detect cell concentration of lung cancer A549 cells, retinal pigment epithelial (RPE) cells, and breast cancer MCF-7 cells. Nanoimprint technology has the advantage of producing high uniformity plasmonic nanostructures for such biosensors. Multiple resonance modes were observed in these quasi 3D plasmonic nanostructures. The hybrid coupling of localized surface plasmon resonances and Fabry-Perot cavity modes in the quasi 3D nanostructures resulted in high sensitivity of 496 nm/refractive index unit. The plasmonic resonance peak wavelength and sensitivity could be tuned by varying the Au thickness. Resonance peak shifts for different cells at the same concentration were distinct due to their different cell area and confluency. The cell concentration detection limit covered a large range of 5 × 10(2) to 1 × 10(7) cells ml(-1) with these new plasmonic nanostructures. They also provide a large resonance peak shift of 51 nm for as little as 0.08 cells mm(-2) of RPE cells for high sensitivity cell detection.
Collapse
Affiliation(s)
- Shuyan Zhu
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong. Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
32
|
|
33
|
Lin DZ, Chuang PC, Liao PC, Chen JP, Chen YF. Increasing the spectral shifts in LSPR biosensing using DNA-functionalized gold nanorods in a competitive assay format for the detection of interferon-γ. Biosens Bioelectron 2016; 81:221-228. [PMID: 26954787 DOI: 10.1016/j.bios.2016.02.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 12/15/2022]
Abstract
We demonstrate an approach that utilizes DNA-functionalized gold nanorods (AuNRs) in an indirect competitive assay format to increase the spectra shift in localized surface plasmon resonance (LSPR) biosensing. We use interferon gamma (IFN-γ) as a model analyte to demonstrate the feasibility of our detection method. The LSPR chips with periodic gold nanodot arrays are fabricated using a thermal lithography process and are functionalized with IFN-γ aptamers for detection. The DNA-functionalized AuNRs and IFN-γ compete with each other to bind to the aptamers during detection, and the spectra shifts are mainly caused by the AuNRs rather than IFN-γ. When using our approach, the target molecules do not need to be captured by two capture ligands simultaneously during detection and thus do not require multiple binding sites. Both experiments and finite-difference time-domain (FDTD) simulations show that making the AuNRs as close to the chip surface as possible is very critical for increasing LSPR shifts, and the simulated results also show that the orientation of the AuNR affects the plasmon coupling between the gold nanodots on the chip surface and the nearby AuNRs. Although only the detection of IFN-γ is demonstrated in this study, we expect that the LSPR biosensing method can be applied to label-free detection of a variety of molecules as long as suitable aptamers are available.
Collapse
Affiliation(s)
- Ding-Zheng Lin
- Material and Chemical Research Laboratory, Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | - Po-Chun Chuang
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| | - Pei-Chen Liao
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jung-Po Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | - Yih-Fan Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan; Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
34
|
Maysinger D, Ji J, Hutter E, Cooper E. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Front Neurosci 2015; 9:480. [PMID: 26733793 PMCID: PMC4683200 DOI: 10.3389/fnins.2015.00480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei).
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Eliza Hutter
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Elis Cooper
- Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|