1
|
Fan C, Lai J, Zhou X, Liu Y, Shao Z, Di K, You F, Ding L, Wang K. A bioetching-induced visualized-organic photoelectrochemical transistor dual-signal mode sensor for alkaline phosphatase detection. Chem Commun (Camb) 2024; 60:4581-4584. [PMID: 38576349 DOI: 10.1039/d4cc01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A study of an integrated OPECT biosensor gate and the EC color-changing region on the same chip was carried out, achieving sensitive detection through bioetching-induced signal changes. Enzymatic bioetching enables specific alkaline phosphatase (ALP) detection by catalyzing the production of CdS, which modulates the channel current and generates a visual signal.
Collapse
Affiliation(s)
- Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xilong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuanhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhiying Shao
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, PR China
| | - Kezuo Di
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Fuheng You
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lijun Ding
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Chen C, La M, Yi X, Huang M, Xia N, Zhou Y. Progress in Electrochemical Immunosensors with Alkaline Phosphatase as the Signal Label. BIOSENSORS 2023; 13:855. [PMID: 37754089 PMCID: PMC10526794 DOI: 10.3390/bios13090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical immunosensors have shown great potential in clinical diagnosis, food safety, environmental protection, and other fields. The feasible and innovative combination of enzyme catalysis and other signal-amplified elements has yielded exciting progress in the development of electrochemical immunosensors. Alkaline phosphatase (ALP) is one of the most popularly used enzyme reporters in bioassays. It has been widely utilized to design electrochemical immunosensors owing to its significant advantages (e.g., high catalytic activity, high turnover number, and excellent substrate specificity). In this work, we summarized the achievements of electrochemical immunosensors with ALP as the signal reporter. We mainly focused on detection principles and signal amplification strategies and briefly discussed the challenges regarding how to further improve the performance of ALP-based immunoassays.
Collapse
Affiliation(s)
- Changdong Chen
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| | - Ming La
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Mengjie Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yanbiao Zhou
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| |
Collapse
|
3
|
Sun Y, Yue T, Yuan Y, Shi Y. Unlabeled fluorescence ELISA using yellow emission carbon dots for the detection of
Alicyclobacillus acidoterrestris
in apple juice. EFOOD 2023. [DOI: 10.1002/efd2.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Yuhan Sun
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an China
| | - Yahong Yuan
- College of Food Science and Technology Northwest University Xi'an China
| | - Yiheng Shi
- School of Food Science and Engineering Shaanxi University of Science and Technology Xi'an China
| |
Collapse
|
4
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
5
|
Biological modulating organic photoelectrochemical transistor through in situ enzymatic engineering of photoactive gate for sensitive detection of serum alkaline phosphatase. Biosens Bioelectron 2022; 218:114752. [DOI: 10.1016/j.bios.2022.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022]
|
6
|
Díez-Buitrago B, Fernández-San Argimiro FJ, Lorenzo J, Bijelic G, Briz N, Pavlov V. Design of a photoelectrochemical lab-on-a-chip immunosensor based on enzymatic production of quantum dots in situ. Analyst 2022; 147:3470-3477. [DOI: 10.1039/d0an01950j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a new photoelectrochemical immunoassay based on a microfluidic device. Its operation employs enzymatic generation of CdS quantum dots.
Collapse
Affiliation(s)
- Beatriz Díez-Buitrago
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
- Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009 Donostia-San Sebastián, Spain
| | | | - Jaione Lorenzo
- Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009 Donostia-San Sebastián, Spain
| | - Goran Bijelic
- Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009 Donostia-San Sebastián, Spain
| | - Nerea Briz
- Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009 Donostia-San Sebastián, Spain
| | - Valeri Pavlov
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| |
Collapse
|
7
|
Ye W, Li L, Feng Z, Tu B, Hu Z, Xiao X, Wu T. Sensitive detection of alkaline phosphatase based on terminal deoxynucleotidyl transferase and endonuclease IV-assisted exponential signal amplification. J Pharm Anal 2021; 12:692-697. [PMID: 36105169 PMCID: PMC9463482 DOI: 10.1016/j.jpha.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
|
8
|
|
9
|
Shi Y, Sun Y, Qu X, Zhou L, Yue T, Yuan Y. Preparation of species-specific monoclonal antibody and development of fluorescence immunoassay based on fluorescence resonance energy transfer of carbon dots for accurate and sensitive detection of Alicyclobacillus acidoterrestris in apple juice. Food Chem 2021; 347:129069. [PMID: 33493839 DOI: 10.1016/j.foodchem.2021.129069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
The growth and metabolism of Alicyclobacillus acidoterrestris can lead to the spoilage of commercial fruit juice. Existing methods have some drawbacks such as complex sample pretreatment, skilled technician requirement, reduced sensitivity and specificity. Herein, a novel fluorescence immunoassay was developed using a monoclonal antibody (mAb) against A. acidoterrestris as the sensing element and carbon dots (CDs) as the signal response unit. The CDs can be quenched via fluorescence resonance energy transfer (FRET) by the oxidization product of p-phenylenediamine (PPD), a chromogenic substrate of horseradish peroxidase (HRP). This approach showed enhanced accuracy and sensitivity with relatively low limit of detection (LOD) of 6.16 × 102 CFU mL-1. Moreover, apple juice contaminated with 1 CFU mL-1 of A. acidoterrestris can be identified after 24 h enrichment. This fluorescence immunoassay could serve as a powerful tool for laboratory identification and on-site inspection of A. acidoterrestris, reducing the adverse effect on the quality of fruit juice.
Collapse
Affiliation(s)
- Yiheng Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yuhan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Xiaowei Qu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Lei Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Techonology, Northwest University, Xi'an 710069, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
10
|
Ma S, Yang Q, Zhang W, Xiao G, Wang M, Cheng L, Zhou X, Zhao M, Ji J, Zhang J, Yue Z. Silver nanoclusters and carbon dots based light-addressable sensors for multichannel detections of dopamine and glutathione and its applications in probing of parkinson's diseases. Talanta 2020; 219:121290. [PMID: 32887032 DOI: 10.1016/j.talanta.2020.121290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a common neurological disease caused by nerve cells degradation which leads to extremely low level of dopamine (DA) in patients. Therefore, ultrasensitive DA detection is particularly important for the assessment and treatment of Parkinson's patients. In this research, photoelectrochemical (PEC) sensors based on Ag44(SR)30 nanoclusters (AgNCs) with 5-mercapto-2-nitrobenzoic acid (MNBA) ligands were first developed for ultrasensitive and selective detection of DA. Then, hybrid nanomaterials by introducing graphene oxide (GO) and silver nanoparticles (AgNPs) into AgNCs were used to enhance sensing properties. AgNCs/AgNPs/GO based PEC sensors achieved high sensitivity (7.476 nA/μM) and low limit of detection (LOD, S/N = 3, 53 nM) in the linear range 0.16-6 μM DA concentration. Besides DA, PD causes the concentration change of other analytes, such as glutathione (GSH). Multichannel detections of different analytes can provide more information in studying PD. Therefore, carbon dots (CDs) based PEC sensors were designed and achieved high sensing performances on GSH detection. Then, AgNCs/AgNPs/GO and CDs based PEC sensors were combined and extended into light-addressable sensors for multichannel detections of DA and GSH. Algorithms were used to solve interference problems to improve the measurement accuracy of DA and GSH in complex solution. Finally, PD biological model samples from mice were measured by light-addressable sensors. The relationships between the DA and GSH concentration and the PD stage were proved. Our designed light-addressable sensors exhibited advantages of multichannel detection, high sensitivity, fast response and so on. In the future, it can be expanded to detect more biological molecules to provide more information on studying PD.
Collapse
Affiliation(s)
- Song Ma
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Qiaochun Yang
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Wenwen Zhang
- Department of Life Science, Nankai University, Tianjin, 300071, China.
| | - Gang Xiao
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Mingliang Wang
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Linyang Cheng
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Xin Zhou
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Meng Zhao
- School of Electro-Mechanical Engineering, Xidian University, Xi'an, 710071, China.
| | - Jing Ji
- School of Electro-Mechanical Engineering, Xidian University, Xi'an, 710071, China.
| | - Jun Zhang
- Department of Life Science, Nankai University, Tianjin, 300071, China.
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, China.
| |
Collapse
|
11
|
Xu R, Du Y, Leng D, Liu L, Li Y, Ren X, Fan D, Wang H, Wei Q. Antigen down format photoelectrochemical analysis supported by fullerene functionalized Sn 3O 4. Chem Commun (Camb) 2020; 56:7455-7458. [PMID: 32495763 DOI: 10.1039/d0cc02933e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, a smart competitive-type photoelectrochemical (PEC) sensor based on an antigen-down (Ag-down) format for procalcitonin (PCT) detection is proposed. A fullerene sensitized flower-like Sn3O4 nano-structure is used as the photoactive platform, and FeS2 is labeled on the secondary antibody as a signal adjusting element. The sensor exhibits excellent sensitivity and great stability.
Collapse
Affiliation(s)
- Rui Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vitamin B6 cofactors conjugated ovalbumin-stabilized gold nanoclusters: Application in alkaline phosphatase activity detection and generating white-light emission. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Mora-Sanz V, Saa L, Briz N, Möller M, Pavlov V. Antibody-Directed Synthesis of Catalytic Nanoclusters for Bioanalytical Assays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28993-28999. [PMID: 32501677 DOI: 10.1021/acsami.0c05229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthesis of atomic nanoclusters (NCs) using proteins as a scaffold has attracted great attention. Usually, the synthetic conditions for the synthesis of NCs stabilized with proteins require extreme pH values or temperature. These harsh reaction conditions cause the denaturation of the proteins and end up in the loss of their biological functions. Until now, there are no examples of the use of antibodies as NC stabilizers. In this work, we present the first method for the synthesis of catalytic NCs that uses antibodies for the stabilization of NCs. Anti-BSA IgG was used as a model to demonstrate that it is possible to use an antibody as a scaffold for the synthesis of semiconductor and metallic NCs with catalytic properties. The synthesis of antibodies modified with NCs is carried out under nondenaturing conditions, which do not affect the antibody structure. The resulting antibodies still maintain the affinity for target antigens and protein G. The catalytic properties of the anti-BSA IgG modified with NCs can be used to the quantification of bovine serum albumin (BSA) in a direct sandwich enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Verónica Mora-Sanz
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia San Sebastián 20014, Spain
- Tecnalia, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastián, Paseo Mikeletegi 2, Donostia-San Sebastian 20009, Spain
| | - Laura Saa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia San Sebastián 20014, Spain
| | - Nerea Briz
- Tecnalia, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastián, Paseo Mikeletegi 2, Donostia-San Sebastian 20009, Spain
| | - Marco Möller
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia San Sebastián 20014, Spain
| | - Valeri Pavlov
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia San Sebastián 20014, Spain
| |
Collapse
|
14
|
Dong B, Li H, Mujtaba Mari G, Yu X, Yu W, Wen K, Ke Y, Shen J, Wang Z. Fluorescence immunoassay based on the inner-filter effect of carbon dots for highly sensitive amantadine detection in foodstuffs. Food Chem 2019; 294:347-354. [DOI: 10.1016/j.foodchem.2019.05.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 01/06/2023]
|
15
|
Çakıroğlu B, Özacar M. A Photoelectrochemical Biosensor Fabricated using Hierarchically Structured Gold Nanoparticle and MoS
2
on Tannic Acid Templated Mesoporous TiO
2. ELECTROANAL 2019. [DOI: 10.1002/elan.201900433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bekir Çakıroğlu
- Sakarya University, BiomedicalMagnetic and Semiconductor Materials Research Center (BIMAS-RC) 54187 Sakarya Turkey
| | - Mahmut Özacar
- Sakarya University, BiomedicalMagnetic and Semiconductor Materials Research Center (BIMAS-RC) 54187 Sakarya Turkey
- Sakarya University, Science & Arts FacultyDepartment of Chemistry 54187 Sakarya Turkey
| |
Collapse
|
16
|
Gu T, Gu M, Liu YL, Dong Y, Zhu LB, Li Z, Wang GL, Zhao WW. In situ chemical redox and functionalization of graphene oxide: toward new cathodic photoelectrochemical bioanalysis. Chem Commun (Camb) 2019; 55:10072-10075. [PMID: 31378796 DOI: 10.1039/c9cc03877a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This report outlines the first exploration of graphene oxide (GO) itself as a light harvesting material with an innovative in situ chemical redox and functionalization (CRF) strategy for versatile and high-throughput cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Tiantian Gu
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Guo J, Gao M, Song Y, Lin L, Zhao K, Tian T, Liu D, Zhu Z, Yang CJ. An Allosteric-Probe for Detection of Alkaline Phosphatase Activity and Its Application in Immunoassay. Front Chem 2018; 6:618. [PMID: 30619826 PMCID: PMC6299030 DOI: 10.3389/fchem.2018.00618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023] Open
Abstract
A fluorescence strategy for alkaline phosphatase (ALP) assay in complicated samples with high sensitivity and strong stability is developed based on an allosteric probe (AP). This probe consists of two DNA strands, a streptavidin (SA) aptamer labeled by fluorophore and its totally complementary DNA (cDNA) with a phosphate group on the 5′ end. Upon ALP introduction, the phosphate group on the cDNA is hydrolyzed, leaving the unhydrolyzed cDNA sequence for lambda exonuclease (λ exo) digestion and releasing SA aptamer for binding to SA beads, which results in fluorescence enhancement of SA beads that can be detected by flow cytometry or microscopy. We have achieved a detection limit of 0.012 U/mL with a detection range of 0.02~0.15 U/mL in buffer and human serum. These figures of merit are better than or comparable to those of other methods. Because the fluorescence signal is localized on the beads, they can be separated to remove fluorescence background from complicated biological systems. Notably, the new strategy not only applies to ALP detection with simple design, easy operation, high sensitivity, and good compatibility in complex solution, but also can be utilized in ALP-linked immunosorbent assays for the detection of a wide range of targets.
Collapse
Affiliation(s)
- Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Mingxuan Gao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Kaifeng Zhao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Dan Liu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Cao JT, Wang B, Dong YX, Wang Q, Ren SW, Liu YM, Zhao WW. Photogenerated Hole-Induced Chemical Redox Cycling on Bi 2S 3/Bi 2Sn 2O 7 Heterojunction: Toward General Amplified Split-Type Photoelectrochemical Immunoassay. ACS Sens 2018; 3:1087-1092. [PMID: 29851336 DOI: 10.1021/acssensors.8b00332] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This work reports the elegant bridging of enzymatic generation of electron donor with photogenerated hole-induced chemical redox cycling amplification (RCA) for innovative photoelectrochemical (PEC) immunoassay, by the aid of a heterojunction photoelectrode with split-type strategy. Specifically, the system was exemplified by the alkaline phosphatase (ALP) catalytic generation of ascorbic acid (AA), the redox cycling of AA by tris (2-carboxyethyl) phosphine (TCEP) as reductant, and the use of a novel Bi2S3/Bi2Sn2O7 heterojunction and myoglobin (Myo) as the photoelectrode and the target, respectively. After the immunoreaction and ALP-induced production of AA, the subsequent oxidation of AA by the photogenerated holes of the Bi2S3/Bi2Sn2O7 heterojunction could be cycled via the regeneration of AA by TCEP from the oxidized product of dehydroascorbic acid, leading to easy signal amplification for the sensitive immunoassay of Myo in real samples. It is believed that this work provided a basis for further design and development of general RCA-based PEC immunoassays.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Bing Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Xiang Dong
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Qian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Yang T, Li Q, Wen W, Hu L, He W, Liu H. Cadmium sulfide quantum dots/poly(acrylic acid-co-acrylic amide) composite hydrogel synthesized by gamma irradiation. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Zang Y, Ju Y, Hu X, Zhou H, Yang Z, Jiang J, Xue H. WS2 nanosheets-sensitized CdS quantum dots heterostructure for photoelectrochemical immunoassay of alpha-fetoprotein coupled with enzyme-mediated biocatalytic precipitation. Analyst 2018; 143:2895-2900. [DOI: 10.1039/c8an00551f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A sensitive photoelectrochemical immunoassay for AFP was developed via signal enhancement of WS2/CdS heterojunction and signal quenching of enzyme-mediated biocatalytic precipitation.
Collapse
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Yun Ju
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Xin Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Hui Zhou
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Jingjing Jiang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| |
Collapse
|
22
|
Díez-Buitrago B, Briz N, Liz-Marzán LM, Pavlov V. Biosensing strategies based on enzymatic reactions and nanoparticles. Analyst 2018; 143:1727-1734. [DOI: 10.1039/c7an02067h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Application of new nanomaterials to detection of enzymatic activities allows the development of new sensitive and selective bioanalytical assays based on enzymes for recognition and signal amplification.
Collapse
Affiliation(s)
| | - Nerea Briz
- Tecnalia
- 20009 Donostia-San Sebastián
- Spain
| | - Luis M. Liz-Marzán
- CIC BiomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Ikerbasque
- Basque Foundation for Science
| | | |
Collapse
|
23
|
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
24
|
Yan P, Xu L, Cheng X, Qian J, Li H, Xia J, Zhang Q, Hua M, Li H. Photoelectrochemical monitoring of phenol by metallic Bi self-doping BiOI composites with enhanced photoelectrochemical performance. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Shu J, Tang D. Current Advances in Quantum-Dots-Based Photoelectrochemical Immunoassays. Chem Asian J 2017; 12:2780-2789. [DOI: 10.1002/asia.201701229] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Shu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province); Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province); State Key Laboratory of Photocatalysis on Energy and Environment; Department of Chemistry; Fuzhou University; Fuzhou 350108 People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province); Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province); State Key Laboratory of Photocatalysis on Energy and Environment; Department of Chemistry; Fuzhou University; Fuzhou 350108 People's Republic of China
| |
Collapse
|
26
|
Barroso J, Díez-Buitrago B, Saa L, Möller M, Briz N, Pavlov V. Specific bioanalytical optical and photoelectrochemical assays for detection of methanol in alcoholic beverages. Biosens Bioelectron 2017; 101:116-122. [PMID: 29055193 DOI: 10.1016/j.bios.2017.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022]
Abstract
Methanol is a poison which is frequently discovered in alcoholic beverages. Innovative methods to detect methanol in alcoholic beverages are being constantly developed. We report for the first time a new strategy for the detection of methanol using fluorescence spectroscopy and photoelectrochemical (PEC) analysis. The analytical system is based on the oxidation of cysteine (CSH) with hydrogen peroxide (H2O2) enzymatically generated by alcohol oxidase (AOx). H2O2 oxidizes capping agent CSH, modulating the growth of CSH-stabilized cadmium sulphide quantum dots (CdS QDs). Disposable screen-printed carbon electrodes (SPCEs) modified with a conductive osmium polymer (Os-PVP) complex were employed to quantify resulting CdS QDs. This polymer facilitates the "wiring" of in situ enzymatically generated CdS QDs, which photocatalyze oxidation of 1-thioglycerol (TG), generating photocurrent as the readout signal. Likewise, we proved that our systems did not suffer from interference by ethanol. The PEC assays showed better sensitivity than conventional methods, covering a wide range of potential applications for methanol quantification.
Collapse
Affiliation(s)
- Javier Barroso
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain
| | - Beatriz Díez-Buitrago
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain; Tecnalia, Paseo Mikeletegi, San Sebastián 20009, Spain
| | - Laura Saa
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain
| | - Marco Möller
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain
| | - Nerea Briz
- Tecnalia, Paseo Mikeletegi, San Sebastián 20009, Spain.
| | - Valeri Pavlov
- Biosensing Laboratory. CIC biomaGUNE. Paseo Miramón 182, San Sebastián 20014, Spain.
| |
Collapse
|
27
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
28
|
Lv S, Zhang K, Lin Z, Tang D. Novel photoelectrochemical immunosensor for disease-related protein assisted by hemin/G-quadruplex-based DNAzyme on gold nanoparticles to enhance cathodic photocurrent on p-CuBi2O4 semiconductor. Biosens Bioelectron 2017; 96:317-323. [DOI: 10.1016/j.bios.2017.05.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
|
29
|
Zhang Y, Li Y, Zhang C, Zhang Q, Huang X, Yang M, Shahzad SA, Lo KKW, Yu C, Jiang S. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets. Anal Bioanal Chem 2017; 409:4771-4778. [DOI: 10.1007/s00216-017-0420-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 11/29/2022]
|
30
|
Yang X, Li X, Zhang L, Gong J. Electrospun template directed molecularly imprinted nanofibers incorporated with BiOI nanoflake arrays as photoactive electrode for photoelectrochemical detection of triphenyl phosphate. Biosens Bioelectron 2017; 92:61-67. [DOI: 10.1016/j.bios.2017.01.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
31
|
Wang H, Zhang Q, Yin H, Wang M, Jiang W, Ai S. Photoelectrochemical immunosensor for methylated RNA detection based on g-C 3N 4/CdS quantum dots heterojunction and Phos-tag-biotin. Biosens Bioelectron 2017; 95:124-130. [PMID: 28433859 DOI: 10.1016/j.bios.2017.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
N6-methyladenosine (m6A) is an enigmatic and abundant internal modification in eukaryotic messenger RNA (mRNA), which could affect various aspects of RNA metabolism and mRNA translation. Herein, a novel photoelectrochemical (PEC) immunosensor was constructed for m6A detection based on the inhibition of Cu2+ to the photoactivity of g-C3N4/CdS quantum dots (g-C3N4/CdS) heterojunction, where g-C3N4/CdS heterojunction was used as photoactive material, anti-m6A antibody as recognition unit for m6A-containing RNA, Phos-tag-biotin as link unit and avidin functionalized CuO as PEC signal indicator. When CuO was captured on electrode through biotin-avidin affinity reaction and then treated with HCl, Cu2+ could be released and CuxS would be formed based on the selective interaction between CdS and Cu2+, leading the photocurrent obviously decreased. Under the optimal detection conditions, the PEC biosensor displayed a linear range of 0.01-10nM and a low detection limit of 3.53 pM for methylated RNA determination. Furthermore, the developed method could also be used to detect the expression level of m6A methylated RNA in serum samples of breast cancer patient before and after operative treatment. The proposed assay strategy has a great potential for detecting the expression methylation level of RNA in real sample.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qihai Zhang
- Department of pediatric orthopedics, Tai'an Central Hospital, Tai'an 271000, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Minghui Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Wenjing Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
32
|
Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 2017; 94:207-218. [PMID: 28285198 DOI: 10.1016/j.bios.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed methodology that provides an exquisite route for innovative biomolecular detection. Quantum dots (QDs) are semiconductor nanocrystals with unique photophysical properties that have attracted tremendous attentions among the analytical community. QDs-based PEC bioanalysis comprises an important research hotspot in the field of PEC bioanalysis due to its combined advantages and potentials. Currently, it has ignited increasing interests as demonstrated by increased research papers. This review aims to cover the most recent advances in this field. With the discussion of recent examples of QDs-PEC bioanalysis from the literatures, special emphasis will be placed on work reporting on fundamental advances in the signaling strategies of QDs-based PEC bioanalysis from 2013 to now. Future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
33
|
Visible photoelectrochemical sensing platform by in situ generated CdS quantum dots decorated branched-TiO 2 nanorods equipped with Prussian blue electrochromic display. Biosens Bioelectron 2017; 89:859-865. [DOI: 10.1016/j.bios.2016.09.106] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
|
34
|
Lin Z, Li M, Lv S, Zhang K, Lu M, Tang D. In situ synthesis of fluorescent polydopamine nanoparticles coupled with enzyme-controlled dissolution of MnO2 nanoflakes for a sensitive immunoassay of cancer biomarkers. J Mater Chem B 2017; 5:8506-8513. [DOI: 10.1039/c7tb02291c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new fluorescence/visual immunosensing strategy was designed for the AFP detection coupling enzyme-controlled formation of polydopamine and dissolution of MnO2 nanoflakes.
Collapse
Affiliation(s)
- Zhenzhen Lin
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Meijin Li
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Shuzhen Lv
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Kangyao Zhang
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Minghua Lu
- Institute of Environmental and Analytical Science
- School of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Dianping Tang
- Key Laboratory of Analytic Science for Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
35
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
36
|
Zhao WW, Yu XD, Xu JJ, Chen HY. Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. NANOSCALE 2016; 8:17407-17414. [PMID: 27738694 DOI: 10.1039/c6nr05011e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed technique for innovative biomolecular detection. Quantum dots (QDs) with unique photophysical properties are key components in realization of various exquisite PEC bioanalyses. Particularly, significant progress has been made in the QD-based PEC bioanalysis. In this work, we briefly summarize the most recent and important developments in the use of traditional and newly emerging QDs for novel PEC bioanalytical applications. The future prospects in this dynamic field are also highlighted.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| |
Collapse
|
37
|
Displacement-type amperometric immunosensing platform for sensitive determination of tumour markers. Biosens Bioelectron 2016; 82:112-8. [DOI: 10.1016/j.bios.2016.03.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 11/16/2022]
|
38
|
Yan P, Xu L, Xia J, Huang Y, Qiu J, Xu Q, Zhang Q, Li H. Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites. Talanta 2016; 156-157:257-264. [DOI: 10.1016/j.talanta.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
|