1
|
Mun SH, Choi KM, Shin D, Kim M, Kim T, Kim DJ, Jung JH. The enzymatic and transcriptional adverse effects of hull in-water cleaning discharge on juvenile rockfish (Sebastes schlegeli). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107191. [PMID: 39626511 DOI: 10.1016/j.aquatox.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 02/11/2025]
Abstract
The hull in-water cleaning (IWC) process creates chemical contaminants, including antifouling paint particle mixtures that are directly discharged into the coastal environment. Recent attention has also been paid to the international regulation of ship hull cleaning discharges in environmental media. However, few studies have investigated the adverse effects or toxic pathways on resident marine species. In this study, we evaluated the chemical concentration of IWC discharge in situ and its toxic effects on juvenile rockfish (Sebastes schlegeli), a major coastal fishery resource, using enzymatic and transcriptomic studies. Zinc (8.05 ± 0.96 to 189.96 ± 47.76 μg/L) was the most abundant substance in IWC discharge, followed by copper (0.87 ± 0.19 to 1.97 ± 0.60 μg/L). No mortality was observed after 7 days of exposure in any experimental group; however, reactive oxygen species and acetylcholinesterase activity varied in juvenile rockfish exposed to the highest concentration of IWC discharge (10-fold-diluted IWC discharge). The immune and detoxification systems in juvenile rockfish exposed to IWC discharge were also significantly affected in juvenile rockfish exposed to 10-fold-diluted IWC discharge (zinc: 189.96 ± 47.76 μg/L, copper: 1.97 ± 0.60 μg/L). The expression of genes related to oxidative stress, including Cu/Zn-SOD, GST, and CAT, increased significantly in fish in all the exposure groups. Specifically, brain transcriptomic analysis revealed disturbances in the nervous system and homeostatic processes. Although lethal toxicity was not significantly affected, these findings indicate the potential hazard posed by sub-lethal concentrations of IWC discharge to juvenile fish, which are at a high-level in the food chain. Our enzymatic and transcriptomic results showed that Zn-dominant IWC discharge exposure may cause neuronal and immune toxicity in marine fish species, providing relevant insights into the management of hull IWC discharge to protect coastal ecosystems against chemical contaminants.
Collapse
Affiliation(s)
- Seong Hee Mun
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, South Korea
| | - Kwang-Min Choi
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, South Korea
| | - Dongju Shin
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, South Korea
| | - Moonkoo Kim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, South Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - Taekhyun Kim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, South Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - Dae-Jung Kim
- Aquaculture Industry Institute, South Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Yeosu 59780, South Korea
| | - Jee-Hyun Jung
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, South Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
2
|
Yuan J, Feng Y, Hu Q, Kuang J, Cheng Z. A Ratio Fluorescence Method Based on Dual Emissive Copper Nanoclusters for the Detection of Vanillin. J Fluoresc 2025; 35:987-995. [PMID: 38231366 DOI: 10.1007/s10895-024-03582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
In this study, a novel double-emission fluorescence probe at 340 and 400 nm was synthesized by one-pot method using phenylalanine (Phe) and ascorbic acid (AA) as stabilizing and reducing agents. It was found that the fluorescence intensity of the probe at 400 nm could be controlled by controlling the temperature within a certain range, and the ratio of double-emission fluorescence probe could be further regulated. Under the optimal conditions, the fluorescence intensity at 340 nm decreased significantly, while it only showed a slight decrease at 400 nm, which constituted the ratio fluorescence probe. The synthesized fluorescence probe showed good linearity in the range of 0.2-32 μM, and its detection limit was 63.4 nM. Moreover, the method was successfully employed to determine VA in vanilla drink and perfumes, and corresponding results were consistent with those of HPLC.
Collapse
Affiliation(s)
- Jingxue Yuan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Yao Feng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Qingqing Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Jianhua Kuang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.
- Institute of Applied Chemistry, China West Normal University, Nanchong, 637002, China.
| |
Collapse
|
3
|
Ghinaiya NV, Mehta VN, Jha S, Park TJ, Kailasa SK. Synthesis of Greenish-Yellow Fluorescent Copper Nanocluster for the Selective and Sensitive Detection of Fipronil Pesticide in Vegetables and Grain Samples. J Fluoresc 2024; 34:2583-2592. [PMID: 37843695 DOI: 10.1007/s10895-023-03464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
In this paper, a new synthetic route is introduced for the synthesis of high-luminescent greenish-yellow fluorescent copper nanoclusters (PVP@A. senna-Cu NCs) using Avaram senna (A. senna) and polyvinylpyrrolidone (PVP) as templates. A. senna plant extract mainly contains variety of phytochemicals including glycosides, sugars, saponins, phenols, and terpenoids that show good pharmacological activities such as anti-inflammatory, antioxidant, and antidiabetic. PVP is a stable and biocompatible polymer that is used as a stabilizing agent for the synthesis of PVP@A. senna-Cu NCs. The size, surface functionality, and element composition of the fabricated Cu NCs were confirmed by various analytical techniques. The as-prepared greenish-yellow fluorescent Cu NCs exhibit significant selectivity towards fipronil, thereby favoring to assay fipronil pesticide with good linearity in the range of 3.0-30 μM with a detection limit of 65.19 nM. More importantly, PVP@A. senna-Cu NCs are successfully applied to assay fipronil in vegetable and grain samples.
Collapse
Affiliation(s)
- Nirav Vajubhai Ghinaiya
- Department of Chemistry, Sardar Vallbhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Vaibhavkumar N Mehta
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat, 395007, Gujarat, India
| | - Sanjay Jha
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat, 395007, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallbhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
4
|
Li J, Lan X, Liu X. Short-Peptide-Modified Copper Nanoclusters as a Fluorescent Probe for the Specific Detection of Ascorbic Acid. SENSORS (BASEL, SWITZERLAND) 2024; 24:6974. [PMID: 39517872 PMCID: PMC11548526 DOI: 10.3390/s24216974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Metal nanoclusters assembled using short peptides as templates exhibit significant potential for development and application in the fields of catalysis and biomedicine, owing to their distinctive electronic structure, favorable optical properties, and biocompatibility. Among them, tripeptides exhibit a simpler structure and greater flexibility, enabling them to readily co-assemble with other functional components to create novel materials with significant application value. They can be assembled with copper ions to synthesize highly efficient luminescent nanoclusters, which can serve as an effective fluorescent probe. Here, we report a method for the synthesis of copper nanoclusters (Cu NCs) using tripeptides as templates, which also act as stabilizers and reducing agents. The synthesis conditions and properties were explored and optimized. Under optimal conditions, the Cu NCs exhibit excellent stability and are strongly fluorescent. The Cu NCs can detect 0.1-1.0 μmol/L of ascorbic acid with a low detection limit of 0.075 μmol/L, demonstrating high sensitivity and offering significant application potential for the trace of ascorbic acid in various substances. It also provides new ideas for the assembly of metal nanoclusters and the construction of fluorescent probe sensing platforms.
Collapse
Affiliation(s)
| | | | - Xingcen Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Chen Q, Cao P, Wang Y, Yuan J, Wu P. Spontaneous Formation of Ultrasmall Noble Metal Nanoparticles on Cobalt-Based Layered Double Hydroxide for Electrochemical and Environmental Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310380. [PMID: 38189520 DOI: 10.1002/smll.202310380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Supported noble metal nanoparticles (NMNPs) are appealing for energy and environment catalysis. To facilitate the loading of NMNPs, in situ reduction of Mn+ on the support with extra reductants/surfactants is adopted, but typically results in aggregated NMNPs with uneven size distributions or blocked active sites of the NMNPs. Herein, the use of cobalt layered double hydroxide (Co-LDH) is proposed as both support and reductant for the preparation of supported NMNPs with ultrasmall sizes and even distributions. The resultant Co-LDH-supported NMNPs exhibit excellent catalytic performance and stability. For example, Ir/Co-LDH displays a low overpotential of 188 mV (10 mA cm-2) for electrocatalytic oxygen evolution reaction and a long-term stability over 100 h (100 mA cm-2) in overall water splitting. Ru/Co-LDH can achieve a 4-nitrophenol reduction with high rate of 0.36 min-1 and S2- detection with low limit of detection (LOD) of 0.34 µm. Overall, this work provides a green and effective strategy to fabricate supported NMNPs with greatly improved catalytic performances.
Collapse
Affiliation(s)
- Qian Chen
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Yihuan Rd, Chengdu, 610064, China
| | - Peisheng Cao
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yanying Wang
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Yihuan Rd, Chengdu, 610064, China
| | - Jing Yuan
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Peng Wu
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Yihuan Rd, Chengdu, 610064, China
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Huang Y, Chen S, Huang W, Zhuang X, Zeng J, Rong M, Niu L. Visualized test of environmental water pollution and meat freshness: Design of Au NCs-CDs-test paper/PVA film for ratiometric fluorescent sensing of sulfide. Food Chem 2024; 432:137292. [PMID: 37657332 DOI: 10.1016/j.foodchem.2023.137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Hydrogen sulfide (H2S) is an environmental pollutant, and also the major released gas during the decay of meat products. To protect the ecological environment and human health, the establishment of a swift, convenient, and accurate detection method for H2S becomes essential. However, existing methods are still suffering from complex synthesis, high toxicity, poor visualization, and high detection limit. Herein, Au NCs-CDs nanocomposite-based test paper and polyvinyl alcohol (PVA) film are combined with a smartphone for sensitive and specific sulfide visualized monitoring. After the addition of sulfide, the fluorescence color changes from orange to green, achieving a quantitative linearity towards sulfide from 5 nM to 30 μM, with a low detection limit of 4.20 nM. The proposed method shows practicability in natural water samples. Furthermore, distinct fluorescence color variation is shown towards H2S originating from spoiled meat, showing the potential application prospect of Au NCs-CDs-PVA film as a meat freshness detector.
Collapse
Affiliation(s)
- Yi Huang
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shiming Chen
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Huang
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoting Zhuang
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiahao Zeng
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mingcong Rong
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Li Niu
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Tseng W, Wang I, Aiyu L, Hsieh M, Tseng W. Blue‐green
emission of
pepsin‐stabilized
copper nanoclusters ultrafast detection of hemoglobin in human urine. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Bin Tseng
- College of Ecology and Resource Engineering Wuyi University Jiangmen China
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| | - Ing‐Ting Wang
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| | - Lin Aiyu
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| | - Ming‐Mu Hsieh
- Department of Chemistry National Kaohsiung Normal University Kaohsiung Taiwan
| | - Wei‐Lung Tseng
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
- School of Pharmacy, College of Pharmacy Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
8
|
Lin HJ, Wang CC, Kou HS, Cheng CW, Wu SM. Stable Luminescent Poly(Allylaminehydrochloride)-Templated Copper Nanoclusters for Selectively Turn-Off Sensing of Deferasirox in β-Thalassemia Plasma. Pharmaceuticals (Basel) 2021; 14:1314. [PMID: 34959714 PMCID: PMC8706525 DOI: 10.3390/ph14121314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023] Open
Abstract
Highly stable and facile one-pot copper nanoclusters (Cu NCs) coated with poly(allylamine hydrochloride) (PAH) have been synthesized for selectively sensing deferasirox (DFX) in β-thalassemia plasma. DFX is an important drug used for treating iron overloading in β-thalassemia, but needs to be monitored due to certain toxicity. In this study, the PAH-Cu NCs showed highly stable fluorescence with emission wavelengths at 450 nm. The DFX specifically interacted with the copper nanocluster to turn off the fluorescence of the PAH-Cu NCs, and could be selectively quantified through the fluorescence quenching effect. The linear range of DFX in plasma analyzed by PAH-Cu NCs was 1.0-100.0 µg/mL (r = 0.985). The relative standard deviation (RSD) and relative error (RE) were lower than 6.51% and 7.57%, respectively, showing excellent reproducibility of PAH-Cu NCs for sensing DFX in plasma. This method was also successfully applied for an analysis of three clinical plasma samples from β-thalassemia patients taking DFX. The data presented high similarity with that obtained through a capillary electrophoresis method. According to the results, the PAH-Cu NCs could be used as a tool for clinically sensing DFX in human plasma for clinical surveys.
Collapse
Affiliation(s)
- Hung-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hwang-Shang Kou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Cheng-Wei Cheng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Shou-Mei Wu
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Taiwan Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan
| |
Collapse
|
9
|
Park SM, Saini S, Park JE, Singh N, Jang DO. A benzothiazole-based receptor for colorimetric detection of Cu2+ and S2− ions in aqueous media. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zeng HH, Yu K, Huang J, Liu F, Zhang ZY, Chen SP, Zhang F, Guan SP, Qiu L. Ratiometric fluorescence detection of sulfide ions based on lanthanide coordination polymer using guanosine diphosphate as ligand. Colloids Surf B Biointerfaces 2021; 204:111796. [PMID: 33933879 DOI: 10.1016/j.colsurfb.2021.111796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
The efficiency of energy transfer from guanine nucleotide to terbium ion (Tb3+) is affected by the phosphate group significantly. Compared with the biomolecules 5'-GMP (guanosine monophosphate), guanosine diphosphate (GDP) exhibits better sensitize ability to Tb3+ ions luminescence. Assisted with the carboxycoumarin ligand, we synthesized a more stable optical Coumarin@GDP-Tb polymer with the characteristic emission peaks located on 440 nm and 545 nm in this work. The Coumarin@GDP-Tb polymer is not only rich in metal binding sites, but also maintains a moderate ionic binding force, which helps metal ions to bind or leave it easily. Experiment result shows that Coumarin@GDP-Tb polymer has the appropriate binding force for Fe2+ ions, which can be destroyed by sulfur ions (S2-) as the formation of FeS precipitation. Based on this, Coumarin@GDP-Tb was designed as the ratio fluorescence probe for sulfur ions detection, where the fluorescence at 545 nm can be selectively quenched by Fe2+ ions, while that at 440 nm was unaffected, in the presence of S2- ions, the quenched fluorescence can be recovered remarkably. With the increasing S2- ions from 0.1-45 μM, the ratio of fluorescence intensity at 545 nm to 440 nm (F545/F440) is linear to S2- concentration, and the detection limit of S2- was calculated to be 0.073 μM. Contrast to those fluorescence probes with single wavelength emission, Coumarin@GDP-Tb displays a comparable sensitivity, the introduced self-adjust wavelength improved the detection accuracy efficiently. The above 98.1 % recovery rates of S2- ions in the actual water sample demonstrated the practicability of Coumarin@GDP-Tb fluorescence probe.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China.
| | - Kun Yu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Jian Huang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fang Liu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Zhi-Yi Zhang
- Jiangxi Institute of Analyzing and Testing, Nanchang, 330029, China
| | - Shi-Ping Chen
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fei Zhang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Shu-Ping Guan
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Li Qiu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| |
Collapse
|
11
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
12
|
Zhang JH, Zhang ZT, Ou YJ, Zhang F, Meng J, Wang G, Fang ZL, Li Y. Red-emitting GSH-Cu NCs as a triplet induced quenched fluorescent probe for fast detection of thiol pollutants. NANOSCALE 2020; 12:19429-19437. [PMID: 32959864 DOI: 10.1039/d0nr04645k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thiol compounds exist widely on the Earth and have certain significance in the fields of the circulation of the sulfur element and industrial production. However, the odor and biological toxicity of thiol compounds make them pollutants that seriously threaten the environmental safety and the living quality of human. In this study, a novel triplet induced fluorescence "turn-off" strategy was designed for the detection of thiol pollutants via a glutathione-stabilized copper nanocluster (GSH-Cu NC) probe. The as-prepared GSH-Cu NCs not only have small size and good water-solubility, but also exhibit strong red-emitting fluorescence at 630 nm, which could be quenched quantitatively with the increase of the concentration of thiol pollutants. So they were employed to detect thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), 2-mercaptoethanol (ME) and 2-(diethylamino)ethanethiol (2-AT) in a wide linear range of 1-100 μM with detection limits of 0.73 μM, 0.43 μM, 0.37 μM, and 0.69 μM, respectively. This method was successfully applied to detect the above thiol pollutants in lake water with good recoveries. Moreover, their further application was also expanded as luminous test strips based on the excellent fluorescence characteristics of GSH-Cu NCs for fast real-time detection of thiol pollutants.
Collapse
Affiliation(s)
- Jun-Hua Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zi-Tong Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yang-Jing Ou
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Fei Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Jie Meng
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zhao-Lin Fang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yan Li
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
13
|
Song S, Zhao Y, Li Y, Yang X, Wang D, Wen Z, Yang M, Lin Q. pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. Talanta 2020; 221:121621. [PMID: 33076149 DOI: 10.1016/j.talanta.2020.121621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
Abstract
The profiling of bacterial metabolism is of great significance in practical applications. Therefore, the development of ultrasensitive and highly selective probe for bacterial metabolism detection and imaging is extremely desirable. Herein, a novel dual-emission pH-response bacterial metabolism detection and imaging probe is successfully developed. This probe consists of large-sized and easily separated SiO2 microspheres, copper nanoclusters (Cu NCs) with red emission, and carbon dots (CDs) with blue emission through in-situ self-assembly. In this system, the fluorescence of Cu NCs is sensitive to pH change due to their obvious aggregation-induced emission enhancement (AIEE) property, while the blue fluorescence of CDs remained almost stable. Therefore, red fluorescence and blue fluorescence are compounded with different fluorescence intensity at different pH values, and their fluorescence ratio is also different. By observation of composite fluorescence color, the visual colorimetric pH detection can be realized with the change of pH value of 0.2 units. Utilizing this system, we are able to detect bacterial metabolism with high signal-to-noise ratio, and it can also be used for bacterial metabolic imaging. Therefore, the pH-responsive Cu NCs-based dual-emission ratiometric fluorescent probe we constructed can provide new ideas for bacterial detection, antimicrobial sterilization, and biological imaging.
Collapse
Affiliation(s)
- Shanliang Song
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University Changchun, 130012, PR China; College of Physics and Optoelectronic Engineering, Centre for AIE Research, School of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, PR China
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University Changchun, 130012, PR China
| | - Yang Li
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, Jilin, PR China
| | - Xudong Yang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, PR China.
| | - Dong Wang
- College of Physics and Optoelectronic Engineering, Centre for AIE Research, School of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, PR China.
| | - Zhuoqi Wen
- Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Minghui Yang
- Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University Changchun, 130012, PR China.
| |
Collapse
|
14
|
Bao J, Xu S, Zhao L, Peng G, Lu H. Colorimetric and fluorescent dual-mode strategy for sensitive detection of sulfide: Target-induced horseradish peroxidase deactivation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118296. [PMID: 32320918 DOI: 10.1016/j.saa.2020.118296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution caused by sulfide compounds has become a major problem for public health. Hence, accurate detection of sulfide anions (S2-) level is valuable and vital for environmental monitoring and protection. Here, we report a new colorimetric/fluorescent dual-mode sensor for the determination of S2- based on the inhibition of enzyme activity and the unique optical properties of produced 2,3-diaminophenazine (DAP), thus making the analytical results more convincing. In this strategy, horseradish peroxidase (HRP) enzyme is used for catalyzing the H2O2-mediated oxidation of o-phenylenediamine (OPD) to produce DAP, and the color changed to bright yellow and produced orange yellow fluorescence. But the presence of S2- could cause the deactivation of HRP, which decreased the amount of DAP and consequently resulted in a substantial SPR band fading and an evident fluorescence quenching simultaneously. The mechanism of S2- sensor was examined by combining the UV-vis absorption spectra, fluorescence spectra and electrospray ionization mass spectrometry analysis. Under optimal conditions, the colorimetric and fluorescent linear responses of the proposed method exhibited a wide linear range from 2.5 nM-7.5 μM with ultralow detection limits of 1.2 nM and 0.9 nM, respectively. Some potential interferents (such as F-, Cl-, Br-, I-, SO42-, SO32-, SCN-, H2PO4-, HPO42-, Ac-, NO3-, CO32-) in real samples showed no interference. Moreover, the proposed method offered advantages of simple, low-cost instruments and rapid assay without the utilization of nanomaterials and has been successfully applied to determine S2- content in lake water samples with satisfying recoveries over 97.6%. More importantly, the present S2- sensor not only afforded a new optical sensing pattern for bioanalysis and environment monitoring, but also extends the application field of HRP-catalyzed OPD-H2O2 system.
Collapse
Affiliation(s)
- Jie Bao
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China
| | - Shuxin Xu
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China
| | - Lihua Zhao
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China
| | - Guoyu Peng
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China
| | - Haifeng Lu
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China.
| |
Collapse
|
15
|
Zhang C, Li H, Wu Y. Polyvinyl Alcohol–Supported AuAgNCs‐CDs Film as a Selective Sensor for Gas Hydrogen Sulfide Detection in Air. Macromol Rapid Commun 2020; 41:e2000120. [DOI: 10.1002/marc.202000120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/16/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Chun‐Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry College of Chemistry Jilin University No. 2699 Qianjin Street Changchun 130012 China
| | - Hong‐Wei Li
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry College of Chemistry Jilin University No. 2699 Qianjin Street Changchun 130012 China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry College of Chemistry Jilin University No. 2699 Qianjin Street Changchun 130012 China
| |
Collapse
|
16
|
Ouyang X, Wang M, Guo L, Cui C, Liu T, Ren Y, Zhao Y, Ge Z, Guo X, Xie G, Li J, Fan C, Wang L. DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angew Chem Int Ed Engl 2020; 59:11836-11844. [PMID: 32267600 DOI: 10.1002/anie.202003905] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 01/23/2023]
Abstract
Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light-emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation-induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self-assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high-sensitivity detection and intracellular fluorescence imaging of biothiols.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Meifang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Linjie Guo
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengjun Cui
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yongan Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yan Zhao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiniu Guo
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Jiang Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Ouyang X, Wang M, Guo L, Cui C, Liu T, Ren Y, Zhao Y, Ge Z, Guo X, Xie G, Li J, Fan C, Wang L. DNA Nanoribbon‐Templated Self‐Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Meifang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Linjie Guo
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengjun Cui
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ting Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Yongan Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Yan Zhao
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiniu Guo
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Jiang Li
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Abbasi A, Hanif S, Shakir M. Gum acacia-based silver nanoparticles as a highly selective and sensitive dual nanosensor for Hg(ii) and fluorescence turn-off sensor for S 2- and malachite green detection. RSC Adv 2020; 10:3137-3144. [PMID: 35497744 PMCID: PMC9048504 DOI: 10.1039/c9ra10372d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/28/2019] [Indexed: 12/26/2022] Open
Abstract
A facile and green method was adopted to synthesize highly selective gum acacia-mediated silver nanoparticles as dual sensor (fluorescence turn-on and colorimetric) for Hg(ii) and fluorescence turn-off sensor for S2- and malachite green. The mechanism proposed for a dual response towards Hg(ii) is the redox reaction between Ag(0) and Hg(ii), resulting in the formation of Ag(i) and Hg(0) and electron transfer from gum acacia to Ag(i), which further leads to the formation of an Ag@Hg nanoalloy. The enhanced fluorescence signal was quenched selectively by S2- owing to the formation of Ag2S and HgS. The reported nanosensor was found to be useful for sensing malachite green via the inner filter effect. The linear ranges were 3 nmol L-1 to 13 μmol L-1 for Hg(ii), 3-170 μmol L-1 for S2- and 7-80 μmol L-1 for malachite green, and the corresponding detection limits were 2.1 nmol L-1 for Hg(ii), 1.3 μmol L-1 for S2- and 1.6 μmol L-1 for malachite green.
Collapse
Affiliation(s)
- Ambreen Abbasi
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +919837430035
| | - Summaiya Hanif
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +919837430035
| | - Mohammad Shakir
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +919837430035
| |
Collapse
|
19
|
Cai Z, Zhu R, Pang S, Tian F, Zhang C. One‐step Green Synthetic Approach for the Preparation of Orange Light Emitting Copper Nanoclusters for Sensitive Detection of Mercury(II) Ions. ChemistrySelect 2020. [DOI: 10.1002/slct.201904013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhifeng Cai
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
| | - Ruitao Zhu
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
| | - Shulin Pang
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
| | - Fang Tian
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
| | - Caifeng Zhang
- Department of ChemistryTaiyuan Normal University Jinzhong 030619 P. R. China
- Humic Acid Engineering and Technology Research Center of Shanxi Province Jinzhong 030619 P. R. China
| |
Collapse
|
20
|
Chen Y, Zhang S, Dai H, Hong Z, Lin Y. A multiple mixed TiO2 mesocrystal junction based PEC-colorimetric immunoassay for specific recognition of lipolysis stimulated lipoprotein receptor. Biosens Bioelectron 2020; 148:111809. [DOI: 10.1016/j.bios.2019.111809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
|
21
|
Dual fluorometric and colorimetric sensor based on quenching effect of copper (II) sulfate on the copper nanocluster for determination of sulfide ion in water samples. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|
23
|
Chen C, Chen S, Shiddiky MJA, Chen C, Wu KC. DNA‐Templated Copper Nanoprobes: Overview, Feature, Application, and Current Development in Detection Technologies. CHEM REC 2019; 20:174-186. [DOI: 10.1002/tcr.201900022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Chung‐An Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Shih‐Chia Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Muhammad J. A. Shiddiky
- School of Environment and Science & Queensland Micro- and Nanotechnology CentreNathan campus, Griffith University 170 Kessels Road QLD 4111 Australia
| | - Chien‐Fu Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Kevin C.‐W. Wu
- Department of Chemical EngineeringNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
- Division of Medical Engineering Research, National Health
| |
Collapse
|
24
|
A dual emission nanocomposite prepared from copper nanoclusters and carbon dots as a ratiometric fluorescent probe for sulfide and gaseous H 2S. Mikrochim Acta 2019; 186:258. [PMID: 30915575 DOI: 10.1007/s00604-019-3295-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
Abstract
A series of dual-emission fluorescent probes was prepared from copper nanoclusters (Cu NCs) and carbon dots (CDs). They show two emission peaks (blue at 469 nm and red at 622 nm) when photoexcited at 365 nm. Upon exposure to sulfide, the Cu NCs will be deteriorated because they react with sulfide to form CuS. This results in the quenching of the red fluorescence of the Cu NCs, while the blue fluorescence of the CDs remains constant. Thus, the color of the nanocomposite changes from red to blue. The ratio of the fluorescences at the two wavelengths decreases linearly in the 2-10 ppb (26-128 nM) sulfide concentration range, and the limit of detection is 0.33 ppb (4.3 nM). The nanocomposite also was placed in an agar gel and then incorporated into a paper strip for fluorometric monitoring of gaseous hydrogen sulfide. Graphical abstract Schematic presentation of the synthesis of Cu NCs (copper nanoclusters)-CDs (carbon dots) dual-emission nano-assembly, Cu NCs-CDs-agar fluorescent film and their application for the detection of sulfide and H2S.
Collapse
|
25
|
Sinduja B, John SA. Silver nanoparticles capped with carbon dots as a fluorescent probe for the highly sensitive "off-on" sensing of sulfide ions in water. Anal Bioanal Chem 2019; 411:2597-2605. [PMID: 30824967 DOI: 10.1007/s00216-019-01697-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
The present study illustrates the synthesis of silver nanoparticles capped with carbon dots (AgNPs-CDs) and their application towards the sensitive and selective sensing of sulfide ions by colorimetry and spectrofluorimetry methods. The CDs were prepared from l-asparagine by pyrolysis at 234 °C. The as-synthesized CDs were then utilized as reducing and capping agents for the synthesis of AgNPs-CDs by the wet chemical method. The size of the AgNPs-CDs was found to be ~ 5.2 nm. They show a characteristic surface plasmon resonance band at 417 nm and emission maximum at 441 nm when excited at 348 nm. Since the AgNPs were formed on the surface of CDs, the emission intensity of AgNPs-CDs was drastically decreased in contrast to that of CDs. The as-synthesized AgNPs-CDs were then successfully used for the sensitive and selective determination of sulfide ions. The addition of 0.1 μM sulfide ions to AgNPs-CDs leads to a decrease in the absorbance intensity at 417 nm aside turning from yellow to colorless. In the contrary, the emission was "turned on" after the addition of sulfide ions. The decrease in the absorbance and increase in the emission were attributed to the rapid formation of Ag2S. Finally, the practical application of the present method was demonstrated by determining dissolved H2S in tap water samples.
Collapse
Affiliation(s)
- B Sinduja
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Dindigul, 624 302, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Dindigul, 624 302, India.
| |
Collapse
|
26
|
Shahbazi N, Zare-Dorabei R. A novel “off-on” fluorescence nanosensor for sensitive determination of sulfide ions based on carbon quantum dots and gold nanoparticles: Central composite design optimization. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Lin YS, Chiu TC, Hu CC. Fluorescence-tunable copper nanoclusters and their application in hexavalent chromium sensing. RSC Adv 2019; 9:9228-9234. [PMID: 35517680 PMCID: PMC9062047 DOI: 10.1039/c9ra00916g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022] Open
Abstract
Generally, metal nanoclusters are synthesized using only a single ligand. Thus, the properties and applications of these nanomaterials are limited by the nature of the ligand used. In this study, we have developed a new synthetic strategy to prepare bi-ligand copper nanoclusters (Cu NCs). These bi-ligand Cu NCs are synthesized from copper ions, thiosalicylic acid, and cysteamine by a simple one-pot method, and they exhibit high quantum yields (>18.9%) and good photostability. Most interestingly, the fluorescence intensities and surface properties of the Cu NCs can be tailored by changing the ratio of the two ligands. Consequently, the bi-ligand Cu NCs show great promise as fluorescent probes. Accordingly, the Cu NCs were applied to the inner-filter-effect-based detection of hexavalent chromium in water. A wide linear range of 0.1–1000 μM and a low detection limit (signal-to-noise ratio = 3) of 0.03 μM was obtained. The recoveries for the real sample analysis were between 98.3 and 105.0% and the relative standard deviations were below 4.54%, demonstrating the repeatability and practical utility of this assay. Generally, metal nanoclusters are synthesized using only a single ligand.![]()
Collapse
Affiliation(s)
- Yu-Syuan Lin
- Department of Applied Science
- National Taitung University
- Taitung
- Republic of China
| | - Tai-Chia Chiu
- Department of Applied Science
- National Taitung University
- Taitung
- Republic of China
| | - Cho-Chun Hu
- Department of Applied Science
- National Taitung University
- Taitung
- Republic of China
| |
Collapse
|
28
|
Shahbazi N, Zare‐Dorabei R. Probe for sensitive direct determination of sulphide ions based on gold nanoparticles. IET Nanobiotechnol 2018; 12:1140-1143. [DOI: 10.1049/iet-nbt.2018.5153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Neda Shahbazi
- Research Laboratory of Spectrometry & Micro and Nano ExtractionDepartment of ChemistryIran University of Science and TechnologyTehran 16846‐13114Iran
| | - Rouholah Zare‐Dorabei
- Research Laboratory of Spectrometry & Micro and Nano ExtractionDepartment of ChemistryIran University of Science and TechnologyTehran 16846‐13114Iran
| |
Collapse
|
29
|
Wang X, Yang X, Wang N, Lv J, Wang H, Choi MMF, Bian W. Graphitic carbon nitride quantum dots as an "off-on" fluorescent switch for determination of mercury(II) and sulfide. Mikrochim Acta 2018; 185:471. [PMID: 30238322 DOI: 10.1007/s00604-018-2994-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/08/2018] [Indexed: 11/24/2022]
Abstract
A rapid method has been developed for the determination of Hg(II) and sulfide by using graphitic carbon nitride quantum dots (g-CNQDs) as a fluorescent probe. The interaction between Hg(II) and g-CNQDs leads to the quenching of the blue g-CNQD fluorescence (with excitation/emission peaks at 390/450 nm). However, the fluorescence can be recovered after addition of sulfide such that the "turn-off" state is switched back to the "turn-on" state. The g-CNQDs were fully characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-vis absorption and fluorescence spectroscopy. Under the optimal experimental conditions, this probe is highly selective and sensitive to Hg(II). The linear response to Hg(II) extends from 0.20 to 21 μM with a detection limit of 3.3 nM. In addition, sulfide can be detected via the recovery of fluorescence. The linear response range for sulfide species is from 8.0 to 45 μM with a detection limit of 22 nM. The mechanism of the "turn-off-on" scheme is discussed. The methods have been applied to the analysis of spiked tap water, lake water and wastewater samples. Graphical abstract Schematic of an off-on fluorescent probe for mercury(II). The fluorescence of graphitic carbon nitride quantum dots (g-CNQDs) is quenched by Hg2+ but is recovered after reacting with S2- as it can combine with Hg2+ on the surface of g-CNQDs.
Collapse
Affiliation(s)
- Xuan Wang
- Shanxi Medical University, Taiyuan, 030001, China
| | - Xuefang Yang
- Shanxi Medical University, Taiyuan, 030001, China
| | - Ning Wang
- Shanxi Medical University, Taiyuan, 030001, China
| | - Junjie Lv
- Shanxi Medical University, Taiyuan, 030001, China
| | | | - Martin M F Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, 137-139 Whiteladies Road, Bristol, BS8 2QG, UK
| | - Wei Bian
- Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
30
|
Huang Y, Zhang H, Xu X, Zhou J, Lu F, Zhang Z, Hu Z, Luo J. Fast synthesis of porous copper nanoclusters for fluorescence detection of iron ions in water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:65-69. [PMID: 29777936 DOI: 10.1016/j.saa.2018.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Copper nanoclusters (Cu NCs) have attracted great research interest in recent years owing to its unique physical, electrical and optical properties. Macromolecules have been widely used as templates to synthesize fluorescent Cu NCs. In this study, a simple method for synthesis of albumin chicken egg capped porous copper nanoclusters (p-Cu NCs) was developed for the first time. The obtained p-Cu NCs exhibited intense emission and excitation peaks at 280 nm and 340 nm, respectively. Besides, the p-Cu NCs fluorescence probe could be quenched by Fe3+ ions in aqueous solutions. Therefore, the p-Cu NCs can be excellently candidated as fluorescent probe for the detection of Fe3+ ions. Under optimized conditions, this fluorescent probe exhibited a wide linear response concentration range (0.2 to 100 μM) to Fe3+ with a detection limit of 0.0234 μM. In addition, the fluorescent probe has been successfully used for the detection of Fe3+ in natural water samples with satisfactory result.
Collapse
Affiliation(s)
- Yihong Huang
- Fujian Longking Co. Ltd., Longyan 364000, Fujian, China.
| | - Hanqiang Zhang
- Collaborative Innovation Center of Clean Energy, Longyan University, Longyan 364000, Fujian, China; Fujian Provincial Key Laboratory of Clean Energy Materials, College of Chemistry and Materials Science, Longyan University, Longyan 364000, Fujian, China.
| | - Xiaofen Xu
- Fujian Provincial Key Laboratory of Clean Energy Materials, College of Chemistry and Materials Science, Longyan University, Longyan 364000, Fujian, China
| | - Jiangcong Zhou
- Fujian Provincial Key Laboratory of Clean Energy Materials, College of Chemistry and Materials Science, Longyan University, Longyan 364000, Fujian, China
| | - Fenfen Lu
- Fujian Provincial Key Laboratory of Clean Energy Materials, College of Chemistry and Materials Science, Longyan University, Longyan 364000, Fujian, China
| | - Zhusen Zhang
- Collaborative Innovation Center of Clean Energy, Longyan University, Longyan 364000, Fujian, China; Fujian Provincial Key Laboratory of Clean Energy Materials, College of Chemistry and Materials Science, Longyan University, Longyan 364000, Fujian, China
| | - Zhibiao Hu
- Fujian Provincial Key Laboratory of Clean Energy Materials, College of Chemistry and Materials Science, Longyan University, Longyan 364000, Fujian, China
| | - Jiangshui Luo
- Collaborative Innovation Center of Clean Energy, Longyan University, Longyan 364000, Fujian, China; Fujian Provincial Key Laboratory of Clean Energy Materials, College of Chemistry and Materials Science, Longyan University, Longyan 364000, Fujian, China.
| |
Collapse
|
31
|
Song S, Zhang Y, Yang Y, Wang C, Zhou Y, Zhang C, Zhao Y, Yang M, Lin Q. Ratiometric fluorescence detection of trace water in organic solvents based on aggregation-induced emission enhanced Cu nanoclusters. Analyst 2018; 143:3068-3074. [DOI: 10.1039/c8an00450a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel dual-emission fluorescent nanocomposite material, CDs/Cu NCs, was fabricated for detecting trace water in organic solvents (DMSO, DMF, THF, and ACN).
Collapse
Affiliation(s)
- Shanliang Song
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry
- Jilin University Changchun
- P. R. China
| | - Yuping Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry
- Jilin University Changchun
- P. R. China
| | - Yizhou Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry
- Jilin University Changchun
- P. R. China
| | - Chuanxi Wang
- Institute of New Energy Technology
- Ningbo Institute of Industrial Technology
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Ying Zhou
- Institute of New Energy Technology
- Ningbo Institute of Industrial Technology
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Chuan Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry
- Jilin University Changchun
- P. R. China
| | - Yueqi Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry
- Jilin University Changchun
- P. R. China
| | - Minghui Yang
- Institute of New Energy Technology
- Ningbo Institute of Industrial Technology
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry
- Jilin University Changchun
- P. R. China
| |
Collapse
|
32
|
Hu X, Liu Y, Jiang Y, Meng M, Liu Z, Ni L, Wu W. Construction and comparison of BSA-stabilized functionalized GQD composite fluorescent probes for selective trypsin detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj02859a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BSA-stabilized amino-functionalized GQDs are the best sensors for trypsin with a low limit of detection.
Collapse
Affiliation(s)
- Xiao Hu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yan Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Minjia Meng
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Zhanchao Liu
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Liang Ni
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Weifu Wu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| |
Collapse
|
33
|
Zhang Y, Li Y, Zhang C, Zhang Q, Huang X, Yang M, Shahzad SA, Lo KKW, Yu C, Jiang S. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets. Anal Bioanal Chem 2017; 409:4771-4778. [DOI: 10.1007/s00216-017-0420-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 11/29/2022]
|
34
|
Wang Z, Chen B, Rogach AL. Synthesis, optical properties and applications of light-emitting copper nanoclusters. NANOSCALE HORIZONS 2017; 2:135-146. [PMID: 32260657 DOI: 10.1039/c7nh00013h] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metal nanoclusters (NCs) containing a few to a few hundreds of atoms bridge the gap between nanoparticles and molecular compounds. The last decade evidenced impressive developments of noble metal NCs such as Au and Ag. Copper is an earth abundant, inexpensive metal from the same group of the periodic table, which is increasingly coming into focus for NC research. This review specifically addresses wet chemical synthesis methods, optical properties and some emerging applications of Cu NCs. As surface protecting templates/ligands play an important role in the stability and properties of Cu NCs, we classified the synthetic methods by the nature of the capping agents. The optical properties of Cu NCs are discussed from the point of view of the effects of the metal core, surface ligands and environment (solvents and aggregation) on the emission of the clusters. Applications of luminescent Cu NCs in biological imaging and light emitting devices are considered.
Collapse
Affiliation(s)
- Zhenguang Wang
- Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | | | | |
Collapse
|
35
|
Li D, Zhao Y, Chen Z, Mei X, Qiu X. Enhancement of fluorescence brightness and stability of copper nanoclusters using Zn 2+ for ratio-metric sensing of S 2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:653-657. [PMID: 28576034 DOI: 10.1016/j.msec.2017.04.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 11/29/2022]
Abstract
It is acknowledged water soluble copper nanoclusters (Cu NCs) are extremely unstable in aqueous solutions, which limit their fluorescence applications to a great extent. In this work, it is found the fluorescence intensity and stability of water soluble Cu NCs could obviously be enhanced by the introduction of Zn2+. Then, the as modified Cu NCs will be stable enough to be applied as a ratio-metric sensor for S2-. This method may provide more broaden avenues for the application of fluorescent Cu NCs in the future.
Collapse
Affiliation(s)
- Dan Li
- Jinzhou Medical University, Jinzhou, China; Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, China
| | | | | | - Xifan Mei
- Jinzhou Medical University, Jinzhou, China.
| | - Xiaozhong Qiu
- Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Jin L, Meng Z, Zhang Y, Cai S, Zhang Z, Li C, Shang L, Shen Y. Ultrasmall Pt Nanoclusters as Robust Peroxidase Mimics for Colorimetric Detection of Glucose in Human Serum. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10027-10033. [PMID: 28244734 DOI: 10.1021/acsami.7b01616] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, a new type of ultrasmall Pt nanoclusters (Pt NCs) was prepared via a facile one-pot approach by using yeast extract as the reductant and stabilizer. Besides their excellent water solubility, these yeast extract-stabilized Pt NCs also possess attractive peroxidase mimicking property. They can efficiently catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the coexistence of hydrogen peroxide (H2O2). Catalytic mechanism analysis suggested that the peroxidase mimicking activity of these Pt NCs might originate from their characteristic of accelerating electron transfer between TMB and H2O2, and their enzymatic kinetics followed typical Michaelis-Menten theory. On the basis of these findings, we developed a new highly sensitive colorimetric method for glucose detection, and the limit of detection was calculated as low as 0.28 μM (S/N = 3). Further application of the present system for glucose detection in human serum has been successfully demonstrated, suggesting its promising utilization as robust peroxidase mimics in the clinical diagnosis, pharmaceutical, and environmental chemistry fields.
Collapse
Affiliation(s)
- Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, China
| | - Zheng Meng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, China
| | - Yongqing Zhang
- Respiratory Hospital, Shaanxi Province People's Hospital , Xi'an 710068, China
| | - Shijie Cai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, China
| | - Zaihua Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, China
| | - Li Shang
- Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi'an 710072, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, China
| |
Collapse
|
37
|
Shi YE, Luo S, Ji X, Liu F, Chen X, Huang Y, Dong L, Wang L. Synthesis of ultra – stable copper nanoclusters and their potential application as a reversible thermometer. Dalton Trans 2017; 46:14251-14255. [DOI: 10.1039/c7dt02193c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report a strategy for the synthesis of luminescent copper nanoclusters that demonstrate potential application as a thermometer.
Collapse
Affiliation(s)
- Yu-e Shi
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Shaojuan Luo
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology
- Shenzhen University
- Shenzhen 518060
- China
| | - Xiaojing Ji
- College of Science and Technology
- Agricultural University of Hebei
- 061100 Huanghua
- China
| | - Fuwei Liu
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Xian Chen
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Yang Huang
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Lei Dong
- Department of Physics
- Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- China
| |
Collapse
|
38
|
Li XG, Zhang F, Gao Y, Zhou QM, Zhao Y, Li Y, Huo JZ, Zhao XJ. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens Bioelectron 2016; 86:270-276. [DOI: 10.1016/j.bios.2016.06.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
|
39
|
Organic semiconductor polymer nanodots as a new kind of off-on fluorescent probe for sulfide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2027-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination. Sci Rep 2016; 6:30905. [PMID: 27515253 PMCID: PMC4981876 DOI: 10.1038/srep30905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/08/2016] [Indexed: 11/08/2022] Open
Abstract
As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1–40 μM in sulfide detection with a high sensitivity of 1720 μA mM−1 cm−2 and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported.
Collapse
|
41
|
Gao Z, Liu F, Hu R, Zhao M, Shao N. Lysozyme-stabilized Ag nanoclusters: synthesis of different compositions and fluorescent responses to sulfide ions with distinct modes. RSC Adv 2016. [DOI: 10.1039/c6ra07827c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of composition on the photoluminescence properties of lysozyme-stabilized Ag nanoclusters and their sensing modes for sulfide anions were studied.
Collapse
Affiliation(s)
- Zhidan Gao
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Fang Liu
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Ruoxin Hu
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- PR China
| | - Na Shao
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| |
Collapse
|