1
|
Shi L, Tang Q, Yang B, Liu W, Li B, Yang C, Jin Y. Logic-Gates of Gas Pressure for Portable, Intelligent and Multiple Analysis of Metal Ions. Anal Chem 2023; 95:5702-5709. [PMID: 36939344 DOI: 10.1021/acs.analchem.2c05677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
DNA logic gates have shown outstanding magic in intelligent biology applications, but it remains challenging to construct a portable, affordable and convenient DNA logic gate. Herein, logic gates of gas pressure were innovatively developed for multiplex analysis of metal ions. Hg2+ and Ag+ were input to interact specifically with the respective mismatched base pairs, which activated DNA extension reaction by polymerase and led to the enrichment of platinum nanoparticles for catalyzing the decomposition of peroxide hydrogen. Thus, the gas pressure obtained from a sealed well was used as output for detecting or identifying metal ions. Hg2+ and Ag+ were sensitively and selectively detected, and the assay of the real samples was also satisfactory. Based on this, DNA logic gates, including YES, NOT, AND, OR, NAND, NOR, INHIBIT, and XOR were successfully established using a portable and hand-held gas pressure meter as detector. So, the interactions between DNA and metal ions were intelligently transferred into the output of gas pressure, which made metal ions to be detected portably and identified intelligently. Given the remarkable merits of simplicity, logic operation, and portable output, the metal ion-driven DNA logic gate of gas pressure provides a promising way for intelligent and portable biosensing.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Deng X, Mu X, Luo F, Yi J, Ma X, Qian Y, Lai X. Sensitive Near-Infrared Fluorescent Determination of Hydrogen Peroxide and Glucose Using Glutathione-Coated Gold Nanoparticles. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2147191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xiulong Deng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| | - Xueqin Mu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| | - Fengxian Luo
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| | - Jintao Yi
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| | - Yiping Qian
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaoqi Lai
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, China
| |
Collapse
|
3
|
Farahani A, Azimi S, Azimi M. Developing an Integrated POC Spectrophotometric Device for Discrimination and Determination of Opioids Based on Gold Nanoparticles. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Zhou Q, Xu Z, Liu Z. Molecularly Imprinting–Aptamer Techniques and Their Applications in Molecular Recognition. BIOSENSORS 2022; 12:bios12080576. [PMID: 36004972 PMCID: PMC9406215 DOI: 10.3390/bios12080576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinting–aptamer techniques exhibit the advantages of molecular imprinting and aptamer technology. Hybrids of molecularly imprinted polymer–aptamer (MIP–aptamer) prepared by this technique have higher stability, binding affinity and superior selectivity than conventional molecularly imprinted polymers or aptamers. In recent years, molecular imprinting–aptamer technologies have attracted considerable interest for the selective recognition of target molecules in complex sample matrices and have been used in molecular recognition such as antibiotics, proteins, viruses and pesticides. This review introduced the development of molecular imprinting–aptamer-combining technologies and summarized the mechanism of MIP–aptamer formation. Meanwhile, we discussed the challenges in preparing MIP–aptamer. Finally, we summarized the application of MIP–aptamer to the molecular recognition in disease diagnosis, environmental analysis, food safety and other fields.
Collapse
|
5
|
Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals (Basel) 2022; 15:ph15010090. [PMID: 35056148 PMCID: PMC8781427 DOI: 10.3390/ph15010090] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The lateral flow assay (LFA) is an extensively used paper-based platform for the rapid and on-site detection of different analytes. The method is user-friendly with no need for sophisticated operation and only includes adding sample. Generally, antibodies are employed as the biorecognition elements in the LFA. However, antibodies possess several disadvantages including poor stability, high batch-to-batch variation, long development time, high price and need for ethical approval and cold chain. Because of these limitations, aptamers screened by an in vitro process can be a good alternative to antibodies as biorecognition molecules in the LFA. In recent years, aptamer-based LFAs have been investigated for the detection of different analytes in point-of-care diagnostics. In this review, we summarize the applications of aptamer technology in LFAs in clinical diagnostic rapid tests for the detection of biomarkers, microbial analytes, hormones and antibiotics. Performance, advantages and drawbacks of the developed assays are also discussed.
Collapse
|
6
|
Tan Y, Zhong W, Tang W, Fan J, Zhang X, Guo D, Wu X, Liu Y. Improvement of Molecular Diagnosis Using Domain-Level Single-Nucleotide Variants by Eliminating Unexpected Secondary Structures. Chemistry 2020; 26:16256-16260. [PMID: 32964533 DOI: 10.1002/chem.202003592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 01/06/2023]
Abstract
Identification of single-nucleotide variants (SNVs) is of great significance in molecular diagnosis. The problem that should not be ignored in the identification process is that the unexpected secondary structure of the target nucleic acid may greatly affect the detection accuracy. Herein, we proposed a conditional domain-level SNV diagnosis strategy, in which the subsequent SNV detection can only be carried out after eliminating the unexpected secondary structure of target DNA. Specifically, the target DNA is assembled into a rigid double strand, which makes folding the target DNA difficult and the unexpected secondary structure is eliminated. Based on this double-stranded structure, specially designed probes are used to detect double-stranded properties and report abundant domain-level oligonucleotide information to improve the effective information in the detection results and complete domain-level SNV diagnosis. If the unexpected secondary structure is not eliminated, the detector will first detect it and feed back to us, ensuring the accuracy of the subsequent detection results. With the occurrence (or not) of SNV and the change of the SNV site, in the proof-of-concept experiment, we successfully identified the four homologous sequences to be tested related to BRAF gene.
Collapse
Affiliation(s)
- Yun Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Weiye Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Weiyang Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Jin Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Xiaohui Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Donghua Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Xiaolong Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| |
Collapse
|
7
|
Fan D, Wang J, Wang E, Dong S. Propelling DNA Computing with Materials' Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio-Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001766. [PMID: 33344121 PMCID: PMC7740092 DOI: 10.1002/advs.202001766] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Indexed: 05/11/2023]
Abstract
DNA computing is recognized as one of the most outstanding candidates of next-generation molecular computers that perform Boolean logic using DNAs as basic elements. Benefiting from DNAs' inherent merits of low-cost, easy-synthesis, excellent biocompatibility, and high programmability, DNA computing has evoked substantial interests and gained burgeoning advancements in recent decades, and also exhibited amazing magic in smart bio-applications. In this review, recent achievements of DNA logic computing systems using multifarious materials as building blocks are summarized. Initially, the operating principles and functions of different logic devices (common logic gates, advanced arithmetic and non-arithmetic logic devices, versatile logic library, etc.) are elaborated. Afterward, state-of-the-art DNA computing systems based on diverse "toolbox" materials, including typical functional DNA motifs (aptamer, metal-ion dependent DNAzyme, G-quadruplex, i-motif, triplex, etc.), DNA tool-enzymes, non-DNA biomaterials (natural enzyme, protein, antibody), nanomaterials (AuNPs, magnetic beads, graphene oxide, polydopamine nanoparticles, carbon nanotubes, DNA-templated nanoclusters, upconversion nanoparticles, quantum dots, etc.) or polymers, 2D/3D DNA nanostructures (circular/interlocked DNA, DNA tetrahedron/polyhedron, DNA origami, etc.) are reviewed. The smart bio-applications of DNA computing to the fields of intelligent analysis/diagnosis, cell imaging/therapy, amongst others, are further outlined. More importantly, current "Achilles' heels" and challenges are discussed, and future promising directions of this field are also recommended.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Present address:
Institute of ChemistryThe Hebrew University of JerusalemJerusalem91904Israel
| | - Juan Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
8
|
Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel) 2020; 13:ph13110417. [PMID: 33238657 PMCID: PMC7700249 DOI: 10.3390/ph13110417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Collapse
|
9
|
Zhang Y, Li CW, Zhou L, Chen Z, Yi C. "Plug and Play" logic gate construction based on chemically triggered fluorescence switching of gold nanoparticles conjugated with Cy3-tagged aptamer. Mikrochim Acta 2020; 187:437. [PMID: 32647943 DOI: 10.1007/s00604-020-04421-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
Gold nanoparticles (AuNPs) conjugated with Cy3-tagged aptamer which can specifically recognize chloramphenicol (CAP) (referred to as AuNPs-AptCAP) are described. CAP can trigger the configuration change of CAP binding aptamer, and thus switching the fluorescence of AuNPs-AptCAP through changing the efficiency of the fluorescence resonance energy transfer (FRET) system with Cy3 as donors and AuNPs as recipients. AuNPs-AptCAP exhibits a linear range of CAP concentrations from 26.0 to 277 μg L-1 with a limit of detection of 8.1 μg L-1 when Cy3 was excited at 530 nm and emission was measured at 570 nm. More importantly, AuNPs-AptCAP can be utilized as signal transducers for the build-up of a series of logic gates including YES, PASS 0, INH, NOT, PASS 1, and NAND. Utilizing the principle of a metal ion-mediated fluorescence switch together with a strong metal ion chelator, the fluorescence of AuNPs-AptCAP could be modulated by adding metal ions and EDTA sequentially. Therefore, a "Plug and Play" logic system based on AuNPs-AptCAP has been realized by simply adding other components to create new logic functions. This work highlights the advantages of simple synthesis and facile fluorescence switching properties, which will provide useful knowledge for the establishment of molecular logic systems. Graphical abstract.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheuk-Wing Li
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Lefei Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhanpeng Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China. .,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
10
|
R NV, G H T, R DV, M H, H H, N S. Lateral Flow Genochromatographic Strip for Naked-Eye Detection of Mycobacterium Tuberculosis PCR Products with Gold Nanoparticles as a Reporter. J Biomed Phys Eng 2020; 10:307-318. [PMID: 32637375 PMCID: PMC7321395 DOI: 10.31661/jbpe.v0i0.1912-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis (MTB) is a pathogen causing tuberculosis (TB) in human, and TB can cause enormous social and economic disruptions. Lateral flow test strips (LFTSs) are inexpensive, portable, disposable, rapid, and easy-to-use analytical tools. Objective LFTSs were prepared for the detection of MTB. LFTSs were fabricated using a new specific probe for MTB H37Rv, based on IS6110 sequence gene, and tailed with poly deoxyadenine (dA). Material and Methods In this experimental study, to create test and control zones, streptavidin (STP) and a 150-mer dA were dotted on a nitrocellolose membrane. Gold nanoparticles (GNPs) were conjugated with poly deoxythymidine sequence and placed on the conjugate pad. The composition of immersion buffers for sample pad and conjugate pad, running solution, solutions of GNPs-S-dT150 and STP were introduced. DNA genome of MTB and Mycobacterium bovis in clinical samples was amplified with PCR, and then detected by the LFTSs. During the assay, samples were firstly hybridized in two steps and then placed on a conjugate pad in a manner that positive and negative samples provided two and one red lines, respectively, on the detection pad. Results After PCR reaction with biotinylated primer, hybridization process with specific MTB probe-dA70-100 toke 10 min, and running process on the strip was performed within 5 min. Conclusion We showed that LFTS can discriminate a particular bacteria strain from others. The LFTSs can be redesigned for detection of other pathogenic genomes.
Collapse
Affiliation(s)
- Nazari-Vanani R
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tondro G H
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dehdari Vais R
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haghkhah M
- PhD, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Heli H
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sattarahmady N
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Khanmohammadi A, Jalili Ghazizadeh A, Hashemi P, Afkhami A, Arduini F, Bagheri H. An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01940-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Hu X, Wan J, Peng X, Zhao H, Shi D, Mai L, Yang H, Zhao Y, Yang X. Calorimetric lateral flow immunoassay detection platform based on the photothermal effect of gold nanocages with high sensitivity, specificity, and accuracy. Int J Nanomedicine 2019; 14:7695-7705. [PMID: 31571872 PMCID: PMC6759418 DOI: 10.2147/ijn.s218834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lateral flow assays (LFA) play an increasingly important role in the rapid detection of various pathogens, pollutants, and toxins. PURPOSE To overcome the drawbacks of low sensitivity and poor quantification in LFA, we developed a new calorimetric LFA (CLFA) using gold nanocages (GNCs) due to their high photothermal conversion efficiency, good stability of photophysical properties, and stronger penetrating ability of NIR light. METHODS Thiol-polyethylene glycol-succinyl imide ester (HS-PEG-NHS) was modified onto GNCs, and the complex was conjugated with an antibody. Subsequently, the antibody-conjugated GNCs were analyzed by UV/Vis spectrophotometer, transmission electron microscope, high-resolution transmission electron microscope with energy dispersive spectrometer, dynamic light scattering instrument, and Atom force microscope. The GNC-based CLFA of alpha-fetoprotein (AFP) and zearalenone (ZEN), a food toxin, required nitrocellulose strips, a NIR laser source, and an infrared camera. RESULTS The GNC-labeled CLFA platform technique exhibited detection sensitivity, qualitative specificity, and quantitative accuracy. The superior performance of the technique was evident both in sandwich format detection of biomacromolecules (eg, AFP protein) or competitive format detection of small molecules (eg, ZEN). After optimizing various test parameters, GNC-labeled CLFA provided ca. 5-6-fold enhanced sensitivity, higher correlativity (R 2>0.99), and more favorable recovery (82-115%) when compared with visual LFA. CONCLUSION GNC-labeled CLFA may be a promising detection platform with high sensitivity, specificity, and precision.
Collapse
Affiliation(s)
- Xiaoyan Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| | - Jiangshan Wan
- Institute of Consun Co. For Chinese Medicine in Kidney Diseases, C. Consum Pharmaceutical Group, Shenzhen518000, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Xiaole Peng
- Institute of Consun Co. For Chinese Medicine in Kidney Diseases, C. Consum Pharmaceutical Group, Shenzhen518000, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Liyi Mai
- Institute of Consun Co. For Chinese Medicine in Kidney Diseases, C. Consum Pharmaceutical Group, Shenzhen518000, People’s Republic of China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
- Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen518057, People’s Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| |
Collapse
|
13
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Gao Y, Zhu Z, Xi X, Cao T, Wen W, Zhang X, Wang S. An aptamer-based hook-effect-recognizable three-line lateral flow biosensor for rapid detection of thrombin. Biosens Bioelectron 2019; 133:177-182. [PMID: 30928736 DOI: 10.1016/j.bios.2019.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
In this paper, a three-line LFB was successfully developed by adding a thrombin line to a conventional two-line LFB for the detection of thrombin in a wide range of human serum. We introduced a thrombin line between the test line and the control line. The concentration of thrombin in the sample was quantitatively related to the signal formation on the three lines of the LFB. We can make use of signal on three lines to quantitative determinate the thrombin by data processing. The detection range of thrombin concentrations measured in 10 min was 1 nM to 100 μM and the LOD was 0.85 nM. Our approach paves way for rapid and sensitive thrombin detection and a superior device for testing in a wide range of physiological concentrations, which also can be used in other hook-effect-limited aptamers or antibodies based sandwich LFBs, and has a high accuracy even within the range of the hook-effect.
Collapse
Affiliation(s)
- Ya Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ziyu Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoxue Xi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tingwei Cao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
15
|
Chen J, Chen S, Li F. DNA Probes for Implementation of Multiple Molecular Computations Using a Lateral Flow Strip Biosensor as the Sensing Platform. Anal Chem 2018; 90:10311-10317. [DOI: 10.1021/acs.analchem.8b02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Shu Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Fengling Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
16
|
Zhang J, Lu Y. Biocomputing for Portable, Resettable, and Quantitative Point-of-Care Diagnostics: Making the Glucose Meter a Logic-Gate Responsive Device for Measuring Many Clinically Relevant Targets. Angew Chem Int Ed Engl 2018; 57:9702-9706. [PMID: 29893502 PMCID: PMC6261302 DOI: 10.1002/anie.201804292] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/30/2018] [Indexed: 12/19/2022]
Abstract
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point-of-care (POC) diagnostics in a low-resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic-gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+ ), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on-site applications.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA),
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA),
| |
Collapse
|
17
|
Zhang J, Lu Y. Biocomputing for Portable, Resettable, and Quantitative Point-of-Care Diagnostics: Making the Glucose Meter a Logic-Gate Responsive Device for Measuring Many Clinically Relevant Targets. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Yi Lu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|
18
|
Yang T, Fu J, Zheng S, Yao H, Jin Y, Lu Y, Liu H. Biomolecular logic devices based on stimuli-responsive PNIPAM-DNA film electrodes and bioelectrocatalysis of natural DNA with Ru(bpy)32+ as mediator. Biosens Bioelectron 2018; 108:62-68. [DOI: 10.1016/j.bios.2018.02.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
|
19
|
Liu S, Xu N, Tan C, Fang W, Tan Y, Jiang Y. A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles. Anal Chim Acta 2018; 1018:86-93. [PMID: 29605139 DOI: 10.1016/j.aca.2018.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/22/2018] [Indexed: 01/24/2023]
Abstract
In this study, a novel colorimetric aptasensor was prepared by coupling trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles for highly sensitive and selective detection of target proteins. A three G-quadruplex (G4) DNA-hemin complex was employed as the trivalent peroxidase-mimic DNAzyme, in which hemin assisted the G4-DNA to fold into a catalytic conformation and act as an enzyme. The design of the aptasensor includes magnetic nanoparticles (MNPs), complementary DNA (cDNA) modified with biotin, and a label-free single strand DNA (ssDNA) including the aptamer and trivalent peroxidase-mimic DNAzyme. The trivalent DNAzyme, which has the highest catalytic activity among multivalent DNAzymes, catalyzed the H2O2-mediated oxidation of ABTS. The colorless ABTS was oxidized to produce a blue-green product that can be clearly distinguished by the naked eye. The aptamer and trivalent peroxidase-mimic DNAzyme promote the specificity and sensitivity of this detection method, which can be generalized for other targets by simply replacing the corresponding aptamers. To demonstrate the feasible use of the aptasensor for target detection, a well-known tumor biomarker MUC1 was evaluated as the model target. The limits of detection were determined to be 5.08 and 5.60 nM in a linear range of 50-1000 nM in a buffer solution and 10% serum system, respectively. This colorimetric and label-free aptasensor with excellent sensitivity and strong anti-interference ability has potential application in disease diagnoses, prognosis tracking, and therapeutic evaluation.
Collapse
Affiliation(s)
- Shuwen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Chunyan Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Wei Fang
- Department of Chemistry, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Ying Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
|
21
|
Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R. A simple, portable, electrochemical biosensor to screen shellfish for Vibrio parahaemolyticus. AMB Express 2017; 7:41. [PMID: 28205102 PMCID: PMC5311015 DOI: 10.1186/s13568-017-0339-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
An earlier electrochemical mechanism of DNA detection was adapted and specified for the detection of Vibrio parahaemolyticus in real samples. The reader, based on a screen printed carbon electrode, was modified with polylactide-stabilized gold nanoparticles and methylene blue was employed as the redox indicator. Detection was assessed using a microprocessor to measure current response under controlled potential. The fabricated sensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0 × 10−8–2.0 × 10−13 M with a detection limit of 2.16 pM. The relative standard deviation for 6 replications of differential pulse voltammetry (DPV) measurement of 0.2 µM complementary DNA was 4.33%. Additionally, cross-reactivity studies against various other food-borne pathogens showed a reliably sensitive detection of the target pathogen. Successful identification of Vibrio parahaemolyticus (spiked and unspiked) in fresh cockles, combined with its simplicity and portability demonstrate the potential of the device as a practical screening tool.
Collapse
|
22
|
Zhang W, Xiong H, Chen M, Zhang X, Wang S. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO 2 for ultrasensitive detection of fumonisin B 1. Biosens Bioelectron 2017; 96:55-61. [DOI: 10.1016/j.bios.2017.04.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/10/2023]
|
23
|
Liu X, Gao T, Gao X, Ma T, Tang Y, Zhu L, Li J. An aptamer based sulfadimethoxine assay that uses magnetized upconversion nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2378-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Simultaneous colorimetric determination of bisphenol A and bisphenol S via a multi-level DNA circuit mediated by aptamers and gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2092-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Zhang FT, Cai LY, Zhou YL, Zhang XX. Immobilization-free DNA-based homogeneous electrochemical biosensors. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Affiliation(s)
- Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
27
|
Gao Y, Deng X, Wen W, Zhang X, Wang S. Ultrasensitive paper based nucleic acid detection realized by three-dimensional DNA-AuNPs network amplification. Biosens Bioelectron 2016; 92:529-535. [PMID: 27836603 DOI: 10.1016/j.bios.2016.10.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
A novel three-dimensional DNA-AuNPs network structure amplification strategy was employed to design a lateral flow biosensor by introducing streptavidin coated gold nanoparticles (Au-SA) in this paper. They act as amplification probes which aggregate numerous gold nanoparticles (AuNPs) on test line by forming a three-dimensional DNA-AuNPs network structure in the presence of target. Sensitive detection of nucleic acid with point-of-care analysis is significant for infectious agent, early diagnosis and treatment of genetic diseases. The use of these particles in rapid ultrasensitive point of care (POC) lateral flow assays lead to a linear range from 0.1pM to 250nM with a limit of detection of 0.01 pM without polymerase chain reaction (PCR). The proposed method could increase the sensitivity by 4 orders of magnitudes than traditional sandwich assays labeled with AuNPs. Furthermore, the assay owns good reproducibility and stability, which will prove practical diagnostic applications.
Collapse
Affiliation(s)
- Ya Gao
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xilei Deng
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
28
|
Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Biosens Bioelectron 2016; 87:203-208. [PMID: 27566392 DOI: 10.1016/j.bios.2016.08.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
Abstract
A novel luminescent "double recognition" method for the detection of enrofloxacin (ENR) is developed to overcome some of the challenges faced by conventional molecularly imprinting. Biotinylated ENR aptamers immobilised on upconversion nanoparticles (UCNPs) surface are implemented to capture and concentrate ENR as the first imprinting recognition safeguard. After correct folding of the aptamer upon the existing targets, polymerization of methacrylic acid monomers around the ENR-aptamer complexes to interact with the residual functional groups of ENR by using molecularly imprinting techniques is the second imprinting recognition safeguard. The "double recognition" imprinting cavities are formed after removal of ENR, displaying recognition properties superior to that of aptamer or traditional molecularly imprinting alone. Another interest of this method is simultaneous molecular recognition and signal conversion by fabricating the "double recognition" receptor on to the surface of UCNPs to form a hybrid sensing system of apta-MIP/UCNPs. The proposed sensing method is applied to measure ENR in different fish samples. Good recoveries between 87.05% and 96.24%, and relative standard deviation (RSD) values in the range of 1.19-4.83% are obtained, with the limits of detection and quantification of 0.04 and 0.12ng/mL, respectively. It indicates that the sensing method is feasible for the quantification of target ENRs in real samples, and show great potential for wide-ranging application in bioassays.
Collapse
|
29
|
Liu C, Liu X, Qin Y, Deng C, Xiang J. A simple regenerable electrochemical aptasensor for the parallel and continuous detection of biomarkers. RSC Adv 2016. [DOI: 10.1039/c6ra09284e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this present work, a simple regenerable electrochemical aptasensor for the parallel and continuous detection of protein biomarkers is reported.
Collapse
Affiliation(s)
- Chunyan Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Xi Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Yun Qin
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Chunyan Deng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|