1
|
Liu W, Zhang Z, Geng X, Tan R, Xu S, Sun L. Electrochemical sensors for plant signaling molecules. Biosens Bioelectron 2025; 267:116757. [PMID: 39250871 DOI: 10.1016/j.bios.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Plant signaling molecules can be divided into plant messenger signaling molecules (such as calcium ions, hydrogen peroxide, Nitric oxide) and plant hormone signaling molecules (such as auxin (mainly indole-3-acetic acid or IAA), salicylic acid, abscisic acid, cytokinin, jasmonic acid or methyl jasmonate, gibberellins, brassinosteroids, strigolactone, and ethylene), which play crucial roles in regulating plant growth and development, and response to the environment. Due to the important roles of the plant signaling molecules in the plants, many methods were developed to detect them. The development of in-situ and real-time detection of plant signaling molecules and field-deployable sensors will be a key breakthrough for botanical research and agricultural technology. Electrochemical methods provide convenient methods for in-situ and real-time detection of plant signaling molecules in plants because of their easy operation, high sensitivity, and high selectivity. This article comprehensively reviews the research on electrochemical detection of plant signaling molecules reported in the past decade, which summarizes the various types electrodes of electrochemical sensors and the applications of multiple nanomaterials to enhance electrode detection selectivity and sensitivity. This review also provides examples to introduce the current research trends in electrochemical detection, and highlights the applicability and innovation of electrochemical sensors such as miniaturization, non-invasive, long-term stability, integration, automation, and intelligence in the future. In all, the electrochemical sensors can realize in-situ, real-time and intelligent acquisition of dynamic changes in plant signaling molecules in plants, which is of great significance for promoting basic research in botany and the development of intelligent agriculture.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Xinliu Geng
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Rong Tan
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Songzhi Xu
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
2
|
Kaur G, Tintelott M, Suranglikar M, Masurier A, Vu XT, Gines G, Rondelez Y, Ingebrandt S, Coffinier Y, Pachauri V, Vlandas A. Time-encoded electrical detection of trace RNA biomarker by integrating programmable molecular amplifier on chip. Biosens Bioelectron 2024; 257:116311. [PMID: 38677018 DOI: 10.1016/j.bios.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
One of the serious challenges facing modern point-of-care (PoC) molecular diagnostic platforms relate to reliable detection of low concentration biomarkers such as nucleic acids or proteins in biological samples. Non-specific analyte-receptor interactions due to competitive binding in the presence of abundant molecules, inefficient mass transport and very low number of analyte molecules in sample volume, in general pose critical hurdles for successful implementation of such PoC platforms for clinical use. Focusing on these specific challenges, this work reports a unique PoC biosensor that combines the advantages of nanoscale biologically-sensitive field-effect transistor arrays (BioFET-arrays) realized in a wafer-scale top-down nanofabrication as high sensitivity electrical transducers with that of sophisticated molecular programs (MPs) customized for selective recognition of analyte miRNAs and amplification resulting in an overall augmentation of signal transduction strategy. The MPs realize a programmable universal molecular amplifier (PUMA) in fluidic matrix on chip and provide a biomarker-triggered exponential release of small nucleic acid sequences easily detected by receptor-modified BioFETs. A common miRNA biomarker LET7a was selected for successful demonstration of this novel biosensor, achieving limit of detection (LoD) down to 10 fM and wide dynamic ranges (10 pM-10 nM) in complex physiological solutions. As the determination of biomarker concentration is implemented by following the electrical signal related to analyte-triggered PUMA in time-domain instead of measuring the threshold shifts of BioFETs, and circumvents direct hybridization of biomarkers at transducer surface, this new strategy also allows for multiple usage (>3 times) of the biosensor platform suggesting exceptional cost-effectiveness for practical use.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Institut D'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR CNRS 8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq, Cedex, 59652, France
| | - Marcel Tintelott
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Mohit Suranglikar
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Antoine Masurier
- Laboratoire Gulliver, Ecole Supérieure de Physique et de Chimie Industrielles, PSL Research University, and CNRS, Paris, France
| | - Xuan-Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Guillaume Gines
- Laboratoire Gulliver, Ecole Supérieure de Physique et de Chimie Industrielles, PSL Research University, and CNRS, Paris, France
| | - Yannick Rondelez
- Laboratoire Gulliver, Ecole Supérieure de Physique et de Chimie Industrielles, PSL Research University, and CNRS, Paris, France
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Yannick Coffinier
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Vivek Pachauri
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany.
| | - Alexis Vlandas
- Institut D'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR CNRS 8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq, Cedex, 59652, France
| |
Collapse
|
3
|
Mukherjee S, Mukherjee A, Bytesnikova Z, Ashrafi AM, Richtera L, Adam V. 2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection. Biosens Bioelectron 2024; 250:116050. [PMID: 38301543 DOI: 10.1016/j.bios.2024.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Low-cost, rapid, and easy-to-use biosensors for various cancer biomarkers are of utmost importance in detecting cancer biomarkers for early-stage metastasis control and efficient diagnosis. The molecular complexity of cancer biomarkers is overwhelming, thus, the repeatability and reproducibility of measurements by biosensors are critical factors. Electrochemical biosensors are attractive alternatives in cancer diagnosis due to their low cost, simple operation, and promising analytical figures of merit. Recently graphene-derived nanostructures have been used extensively for the fabrication of electrochemical biosensors because of their unique physicochemical properties, including the high electrical conductivity, adsorption capacity, low cost and ease of mass production, presence of oxygen-containing functional groups that facilitate the bioreceptor immobilization, increased flexibility and mechanical strength, low cellular toxicity. Indeed, these properties make them advantageous compared to other alternatives. However, some drawbacks must be overcome to extend their use, such as poor and uncontrollable deposition on the substrate due to the low dispersity of some graphene materials and irreproducibility of the results because of the differences in various batches of the produced graphene materials. This review has documented the most recently developed strategies for electrochemical sensor fabrication. It differs in the categorization method compared to published works to draw greater attention to the wide opportunities of graphene nanomaterials for biological applications. Limitations and future scopes are discussed to advance the integration of novel technologies such as artificial intelligence, the internet of medical things, and triboelectric nanogenerators to eventually increase efficacy and efficiency.
Collapse
Affiliation(s)
- Soumajit Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnici 835, 252 41, Dolni Breznany, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
5
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Didier CM, Fox D, Pollard KJ, Baksh A, Iyer NR, Bosak A, Li Sip YY, Orrico JF, Kundu A, Ashton RS, Zhai L, Moore MJ, Rajaraman S. Fully Integrated 3D Microelectrode Arrays with Polydopamine-Mediated Silicon Dioxide Insulation for Electrophysiological Interrogation of a Novel 3D Human, Neural Microphysiological Construct. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37157-37173. [PMID: 37494582 DOI: 10.1021/acsami.3c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Advances within in vitro biological system complexity have enabled new possibilities for the "Organs-on-a-Chip" field. Microphysiological systems (MPS) as such incorporate sophisticated biological constructs with custom biological sensors. For microelectromechanical systems (MEMS) sensors, the dielectric layer is critical for device performance, where silicon dioxide (SiO2) represents an excellent candidate due to its biocompatibility and wide utility in MEMS devices. Yet, high temperatures traditionally preclude SiO2 from incorporation in polymer-based BioMEMS. Electron-beam deposition of SiO2 may provide a low-temperature, dielectric serving as a nanoporous MPS growth substrate. Herein, we enable improved adherence of nanoporous SiO2 to polycarbonate (PC) and 316L stainless steel (SS) via polydopamine (PDA)-mediated chemistry. The resulting stability of the combinatorial PDA-SiO2 film was interrogated, along with the nature of the intrafilm interactions. A custom polymer-metal three-dimensional (3D) microelectrode array (3D MEA) is then reported utilizing PDA-SiO2 insulation, for definition of novel dorsal root ganglion (DRG)/nociceptor and dorsal horn (DH) 3D neural constructs in excess of 6 months for the first time. Spontaneous/evoked compound action potentials (CAPs) are successfully reported. Finally, inhibitory drugs treatments showcase pharmacological responsiveness of the reported multipart biological activity. These results represent the initiation of a novel 3D MEA-integrated, 3D neural MPS for the long-term electrophysiological study.
Collapse
Affiliation(s)
- Charles M Didier
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - David Fox
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Kevin J Pollard
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
| | - Aliyah Baksh
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Nisha R Iyer
- University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53717, United States
| | - Alexander Bosak
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
| | - Yuen Yee Li Sip
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Julia F Orrico
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Avra Kundu
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Randolph S Ashton
- University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53717, United States
| | - Lei Zhai
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Michael J Moore
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
- AxoSim Inc., 1441 Canal St., New Orleans, Louisiana 70112, United States
| | - Swaminathan Rajaraman
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
- Primordia Biosystems Inc., 1317 Edgewater Drive, #2701, Orlando, Florida 32804, United States
| |
Collapse
|
7
|
Chiticaru EA, Damian CM, Pilan L, Ioniță M. Label-Free DNA Biosensor Based on Reduced Graphene Oxide and Gold Nanoparticles. BIOSENSORS 2023; 13:797. [PMID: 37622883 PMCID: PMC10452912 DOI: 10.3390/bios13080797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Currently available DNA detection techniques frequently require compromises between simplicity, speed, accuracy, and cost. Here, we propose a simple, label-free, and cost-effective DNA detection platform developed at screen-printed carbon electrodes (SPCEs) modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs). The preparation of the detection platform involved a two-step electrochemical procedure based on GO reduction onto SPCEs followed by the electrochemical reduction of HAuCl4 to facilitate the post-grafting reaction with AuNPs. The final sensor was fabricated by the simple physical adsorption of a single-stranded DNA (ssDNA) probe onto a AuNPs-RGO/SPCE electrode. Each preparation step was confirmed by morphological and structural characterization using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy, respectively. Furthermore, the electrochemical properties of the modified electrodes have been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results demonstrated that the introduction of AuNPs onto RGO/SPCEs led to an enhancement in surface conductivity, a characteristic that favored an increased sensitivity in detection. The detection process relied on the change in the electrochemical signal induced by the binding of target DNA to the bioreceptor and was particularly monitored by the change in the charge transfer resistance of a [Fe(CN)6]4-/3- redox couple added in the test solution.
Collapse
Affiliation(s)
- Elena Alina Chiticaru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania;
| | - Celina Maria Damian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania;
| |
Collapse
|
8
|
Kim Y, Kang E. A graphitic nano-onion/molybdenum disulfide nanosheet composite as a platform for HPV-associated cancer-detecting DNA biosensors. J Nanobiotechnology 2023; 21:187. [PMID: 37301851 DOI: 10.1186/s12951-023-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
An electrochemical DNA sensor that can detect human papillomavirus (HPV)-16 and HPV-18 for the early diagnosis of cervical cancer was developed by using a graphitic nano-onion/molybdenum disulfide (MoS2) nanosheet composite. The electrode surface for probing DNA chemisorption was prepared via chemical conjugation between acyl bonds on the surfaces of functionalized nanoonions and the amine groups on functionalized MoS2 nanosheets. The cyclic voltammetry profile of an 1:1 nanoonion/MoS2 nanosheet composite electrode had an improved rectangular shape compared to that of an MoS2 nanosheet elecrode, thereby indicating the amorphous nature of the nano-onions with sp2 distancing curved carbon layers that provide enhanced electronic conductivity, compared to MoS2 nanosheet only. The nanoonion/MoS2 sensor for the DNA detection of HPV-16 and HPV-18, respectively, was measured at high sensitivity through differential pulse voltammetry (DPV) in the presence of methylene blue (MB) as a redox indicator. The DPV current peak was lowered after probe DNA chemisorption and target DNA hybridization because the hybridized DNA induced less effective MB electrostatic intercalation due to it being double-stranded, resulting in a lower oxidation peak. The nanoonion/MoS2 nanosheet composite electrodes attained higher current peaks than the MoS2 nanosheet electrode, thereby indicating a greater change in the differential peak probably because the nanoonions enhanced conductive electron transfer. Notably, both of the target DNAs produced from HPV-18 and HPV-16 Siha and Hela cancer cell lines were effectively detected with high specificity. The conductivity of MoS2 improved by complexation with nano-onions provides a suitable platform for electrochemical biosensors for the early diagnosis of many ailments in humans.
Collapse
Affiliation(s)
- Youngjun Kim
- School of Chemical Engineering and Material Science, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, Republic of Korea
| | - Eunah Kang
- School of Chemical Engineering and Material Science, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Nemati S, Shalileh F, Mirjalali H, Omidfar K. Toward waterborne protozoa detection using sensing technologies. Front Microbiol 2023; 14:1118164. [PMID: 36910193 PMCID: PMC9999019 DOI: 10.3389/fmicb.2023.1118164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Drought and limited sufficient water resources will be the main challenges for humankind during the coming years. The lack of water resources for washing, bathing, and drinking increases the use of contaminated water and the risk of waterborne diseases. A considerable number of waterborne outbreaks are due to protozoan parasites that may remain active/alive in harsh environmental conditions. Therefore, a regular monitoring program of water resources using sensitive techniques is needed to decrease the risk of waterborne outbreaks. Wellorganized point-of-care (POC) systems with enough sensitivity and specificity is the holy grail of research for monitoring platforms. In this review, we comprehensively gathered and discussed rapid, selective, and easy-to-use biosensor and nanobiosensor technologies, developed for the early detection of common waterborne protozoa.
Collapse
Affiliation(s)
- Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Electrochemical immunosensor based on AuNPs/ERGO@CNT nanocomposites by one-step electrochemical co-reduction for sensitive detection of P-glycoprotein in serum. Biosens Bioelectron 2023; 222:115001. [PMID: 36516634 DOI: 10.1016/j.bios.2022.115001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
P-glycoprotein (P-gp), a transmembrane glycoprotein widely expressed on the surface of various cells, is highly associated with multidrug resistance (MDR) that heralds the malignant progress of disease after drug treatment. Notably, there have been reported that serum P-gp is a potential marker for assessing the progression of disease resistance. Currently, there are few methods for point-of-care serum P-gp detection. In this study, we proposed a gold nanoparticles/electrochemically reduced graphene oxide@carbon nanotube (AuNPs/ERGO@CNT) modified immunosensor based on a one-step electrochemical co-reduction method. The limit of detection (LOD) of our constructed electrochemical immunosensor for P-gp detection reached 0.13 ng/mL, and the detection results in serum were consistent with ELISA. The developed immunosensor is expected to provide a scientific basis for the clinical application of serum P-gp monitoring and integrated medicine.
Collapse
|
11
|
He C, Zhao J, Long Y, Yang H, Dong J, Liu H, Hu Z, Yang M, Huo D, Hou C. An ultrasensitive electrochemical biosensor for microRNA-21 detection via AuNPs/GAs and Y-shaped DNA dual-signal amplification strategy. Chem Commun (Camb) 2023; 59:350-353. [PMID: 36514997 DOI: 10.1039/d2cc06329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a gold nanoparticles/graphene aerogels (AuNPs/GAs) modified electrochemical biosensor with catalytic hairpin assembly (CHA) and Y-shaped DNA nanostructure dual-signal amplification approaches for ultrasensitive microRNA-21 (miR-21) detection was successfully constructed, which displayed an ultra-wide detection linear range from 5 fM to 50 nM, as well as a relatively low detection limit (LOD) of 14.70 aM (S/N = 3). Furthermore, the sensing strategy had excellent specificity among highly homologous miRNA family members and exhibited satisfactory analytical performance for miRNA detection.
Collapse
Affiliation(s)
- Congjuan He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yanyi Long
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China
| | - Zhikun Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
12
|
Engineered Nanomaterial based Implantable MicroNanoelectrode for in vivo Analysis: Technological Advancement and Commercial Aspects. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Natmai S, Kuntip N, Japrung D, Pongprayoon P. The aggregation of multiple miR-29a cancer biomarkers induced by graphene quantum dots: Molecular dynamics simulations. J Mol Graph Model 2022; 116:108267. [PMID: 35849900 DOI: 10.1016/j.jmgm.2022.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a role in regulating gene expression. MiRNAs are focused on as potential cancer biomarkers due to their involvement in the cancer development. New effective techniques for extracting miRNA from a biological matrix is important. Recently, graphene quantum dots (GQDs) have been used to detect DNA/RNA in many sensor platforms, but the application in miRNA extraction remains limited. To extract miRNAs, the miRNA adsorption and desorption on GQD are the key. Thus, in this work, the adsorption mechanism of excess miRNA on GQD in solution is revealed using Molecular dynamics simulations. The miRNA assemblies on one and two GQDs were studied to explore the possibility of using GQD for miRNA extraction. The folded miR-29a molecule, one of key cancer biomarkers, is used as an miRNA model. Three systems with one (6miR) and two GQDs (with parallel (6miR_2GP) and sandwich (6miR_2GS) organisations) in six-miR-29a solution were set. The data show excess miR-29a can reduce the miR-29a-GQD binding efficiency. The opening of intrabase pairing of GQD-absorbed miR-29a facilitates the interbase coupling resulting in the self-aggregation of miR-29a. The GQD organisation also affects the miR-29a adsorption ability. The additional GQDs result in the tighter miR-29a adsorption which can retard the miR-29a desorption. The proper GQD concentration is thus important to successfully collect all miR-29a and accommodate the easy miR-29a dissociation. Our results can be useful for a design of DNA probe and choosing decent nanosized GRA concentration for experimental setups.
Collapse
Affiliation(s)
- Saowalak Natmai
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, 12120, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studied in Nanotechnology for Chemical, Food, and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
15
|
Ahmad M, Nisar A, Sun H. Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements. BIOSENSORS 2022; 12:955. [PMID: 36354463 PMCID: PMC9687930 DOI: 10.3390/bios12110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The development of a highly sensitive and selective non-enzymatic electrochemical biosensor for precise and accurate determination of multiple disease biomarkers has always been challenging and demanding. The synthesis of novel materials has provided opportunities to fabricate dependable biosensors. In this perspective, we have presented and discussed recent challenges and technological advancements in the development of non-enzymatic cholesterol electrochemical biosensors and recent research trends in the utilization of functional nanomaterials. This review gives an insight into the electrochemically active nanomaterials having potential applications in cholesterol biosensing, including metal/metal oxide, mesoporous metal sulfide, conductive polymers, and carbon materials. Moreover, we have discussed the current strategies for the design of electrode material and key challenges for the construction of an efficient cholesterol biosensor. In addition, we have also described the current issues related to sensitivity and selectivity in cholesterol biosensing.
Collapse
Affiliation(s)
- Mashkoor Ahmad
- Nanomaterials Research Group, Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
| | - Amjad Nisar
- Nanomaterials Research Group, Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
16
|
Ru M, Hai AM, Wang L, Yan S, Zhang Q. Recent progress in silk-based biosensors. Int J Biol Macromol 2022; 224:422-436. [DOI: 10.1016/j.ijbiomac.2022.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
17
|
Vicentini FC, Silva LRG, Stefano JS, Lima ARF, Prakash J, Bonacin JA, Janegitz BC. Starch-Based Electrochemical Sensors and Biosensors: A Review. BIOMEDICAL MATERIALS & DEVICES 2022. [PMCID: PMC9510496 DOI: 10.1007/s44174-022-00012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Natural green compounds for sensor modification (binders) are challenging in electrochemistry. Starch is a carbohydrate biopolymer that has been used extensively in the development of biomaterials for the food industry due to its ability to impart textural characteristics and provide gelling or film formation. In particular, the excellent film-forming characteristics have been used for the development of new surface modifying architectures for electrodes. Here, we highlight a very comprehensive overview of the properties of interest of various types of starch in conjunction with (bio)materials in the chemical modification of sensors and biosensors. Throughout the review, we first give an introduction to the extraction, applications, and properties of starches followed by an overview of the prospects and their possible applications in electrochemical sensors and biosensors. In this context, we discuss some important characteristics of starches and different strategies of their film formation with an emphasis on their role in the development of electrochemical sensors and biosensors highlighting their main contributions to enhancing the performance of these devices and their applications in environmental and clinical samples.
Collapse
Affiliation(s)
- Fernando C. Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, Buri, SP 18290-000 Brazil
| | - Luiz R. G. Silva
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| | - Jéssica S. Stefano
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| | - Alan R. F. Lima
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, Buri, SP 18290-000 Brazil
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh 177005 India
| | - Juliano A. Bonacin
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-859 Brazil
| | - Bruno C. Janegitz
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| |
Collapse
|
18
|
Ozkan-Ariksoysal D. Current Perspectives in Graphene Oxide-Based Electrochemical Biosensors for Cancer Diagnostics. BIOSENSORS 2022; 12:bios12080607. [PMID: 36005004 PMCID: PMC9405788 DOI: 10.3390/bios12080607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
Since the first commercial biosensor device for blood glucose measurement was introduced in the 1970s, many “biosensor types” have been developed, and this research area remains popular worldwide. In parallel with some global biosensor research reports published in the last decade, including a great deal of literature and industry statistics, it is predicted that biosensor design technologies, including handheld or wearable devices, will be preferred and highly valuable in many areas in the near future. Biosensors using nanoparticles still maintain their very important place in science and technology and are the subject of innovative research projects. Among the nanomaterials, carbon-based ones are considered to be one of the most valuable nanoparticles, especially in the field of electrochemical biosensors. In this context, graphene oxide, which has been used in recent years to increase the electrochemical analysis performance in biosensor designs, has been the subject of this review. In fact, graphene is already foreseen not only for biosensors but also as the nanomaterial of the future in many fields and is therefore drawing research attention. In this review, recent and prominent developments in biosensor technologies using graphene oxide (GO)-based nanomaterials in the field of cancer diagnosis are briefly summarized.
Collapse
Affiliation(s)
- Dilsat Ozkan-Ariksoysal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| |
Collapse
|
19
|
Lim RRX, Ang WL, Ambrosi A, Sofer Z, Bonanni A. Electroactive nanocarbon materials as signaling tags for electrochemical PCR. Talanta 2022; 245:123479. [DOI: 10.1016/j.talanta.2022.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
20
|
The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv Drug Deliv Rev 2022; 186:114315. [PMID: 35513130 DOI: 10.1016/j.addr.2022.114315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices.
Collapse
|
21
|
Pourmadadi M, Soleimani Dinani H, Saeidi Tabar F, Khassi K, Janfaza S, Tasnim N, Hoorfar M. Properties and Applications of Graphene and Its Derivatives in Biosensors for Cancer Detection: A Comprehensive Review. BIOSENSORS 2022; 12:bios12050269. [PMID: 35624570 PMCID: PMC9138779 DOI: 10.3390/bios12050269] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/09/2023]
Abstract
Cancer is one of the deadliest diseases worldwide, and there is a critical need for diagnostic platforms for applications in early cancer detection. The diagnosis of cancer can be made by identifying abnormal cell characteristics such as functional changes, a number of vital proteins in the body, abnormal genetic mutations and structural changes, and so on. Identifying biomarker candidates such as DNA, RNA, mRNA, aptamers, metabolomic biomolecules, enzymes, and proteins is one of the most important challenges. In order to eliminate such challenges, emerging biomarkers can be identified by designing a suitable biosensor. One of the most powerful technologies in development is biosensor technology based on nanostructures. Recently, graphene and its derivatives have been used for diverse diagnostic and therapeutic approaches. Graphene-based biosensors have exhibited significant performance with excellent sensitivity, selectivity, stability, and a wide detection range. In this review, the principle of technology, advances, and challenges in graphene-based biosensors such as field-effect transistors (FET), fluorescence sensors, SPR biosensors, and electrochemical biosensors to detect different cancer cells is systematically discussed. Additionally, we provide an outlook on the properties, applications, and challenges of graphene and its derivatives, such as Graphene Oxide (GO), Reduced Graphene Oxide (RGO), and Graphene Quantum Dots (GQDs), in early cancer detection by nanobiosensors.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.P.); (F.S.T.)
| | - Homayoon Soleimani Dinani
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.P.); (F.S.T.)
| | - Kajal Khassi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran;
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
- School of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
- School of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Correspondence:
| |
Collapse
|
22
|
Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. BIOSENSORS 2022; 12:bios12040244. [PMID: 35448304 PMCID: PMC9030187 DOI: 10.3390/bios12040244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic inflammatory diseases, such as cancer, diabetes mellitus, stroke, ischemic heart diseases, neurodegenerative conditions, and COVID-19 have had a high number of deaths worldwide in recent years. The accurate detection of the biomarkers for chronic inflammatory diseases can significantly improve diagnosis, as well as therapy and clinical care in patients. Graphene derivative materials (GDMs), such as pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO), have shown tremendous benefits for biosensing and in the development of novel biosensor devices. GDMs exhibit excellent chemical, electrical and mechanical properties, good biocompatibility, and the facility of surface modification for biomolecular recognition, opening new opportunities for simple, accurate, and sensitive detection of biomarkers. This review shows the recent advances, properties, and potentialities of GDMs for developing robust biosensors. We show the main electrochemical and optical-sensing methods based on GDMs, as well as their design and manufacture in order to integrate them into robust, wearable, remote, and smart biosensors devices. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers with improved sensitivity, reaching limits of detection from the nano to atto range concentration.
Collapse
|
23
|
Lim JW, Ahn YR, Park G, Kim HO, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021; 13:1570. [PMID: 34683863 PMCID: PMC8540357 DOI: 10.3390/pharmaceutics13101570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| |
Collapse
|
24
|
Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. MATERIALS 2021; 14:ma14143857. [PMID: 34300776 PMCID: PMC8303706 DOI: 10.3390/ma14143857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.
Collapse
Affiliation(s)
- Matei Raicopol
- Costin Nenitzescu, Department of Organic Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3977
| |
Collapse
|
25
|
Vatsyayan R, Cleary D, Martin JR, Halgren E, Dayeh SA. Electrochemical safety limits for clinical stimulation investigated using depth and strip electrodes in the pig brain. J Neural Eng 2021; 18. [PMID: 34015769 DOI: 10.1088/1741-2552/ac038b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
Objective. Diagnostic and therapeutic electrical stimulation are increasingly utilized with the rise of neuromodulation devices. However, systematic investigations that depict the practical clinical stimulation paradigms (bipolar, two-electrode configuration) to determine the safety limits are currently lacking. Further, safe charge densities that were classically determined from conical sharp electrodes are generalized for cylindrical (depth) and flat (surface grid) electrodes completely ignoring geometric factors that govern current spreading and trajectories in tissue.Approach. This work reports the first investigations comparing stimulation limits for clinically used electrodes in two mediums: in benchtop experiments in saline andin vivoin a single acute experiment in the pig brain. We experimentally determine the geometric factors, the water electrolysis windows, and the current safety limits from voltage transients, for the sEEG, depth and surface strip electrodes in both mediums. Using four-electrode and three-electrode configuration measurements and comprehensive circuit models that accurately depict our measurements, we delineate the various elements of the stimulation medium, including the tissue-electrode interface impedance spectra, the medium impedance and the bias-dependent change in the interface impedance as a function of stimulation parameters.Main results. The results of our systematics studies suggest that safe currents in clinical bipolar stimulation determinedin vivocan be as much as 24 times smaller than those determined from benchtop experiments (for depth electrodes at a 1 ms pulse duration). Our detailed circuit modeling attributes this drastic difference in safe limits to the greatly dissimilar electrode/tissue and electrode/saline impedances.Significance. We established the electrochemical safety limits for commonly used clinical electrodesin vivoand revealed by detailied electrochemical modeling how they differ from benchtop evaluation. We argue that electrochemical limits and currents are unique for each electrode, should be measuredin vivoaccording to the protocols established in this work, and should be accounted for while setting the stimulation parameters for clinical applications including for chronic applications.
Collapse
Affiliation(s)
- Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America
| | - Daniel Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America.,Department of Neurological Surgery, University of California, San Diego, CA 92097, United States of America
| | - Joel R Martin
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America.,Department of Neurological Surgery, University of California, San Diego, CA 92097, United States of America
| | - Eric Halgren
- Department of Radiology, University of California, San Diego, CA 92097, United States of America
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America
| |
Collapse
|
26
|
High surface area mesoporous BiZnSbV-G-SiO2 -based electrochemical biosensor for quantitative and rapid detection of microalbuminuria. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01576-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Brazaca LC, Dos Santos PL, de Oliveira PR, Rocha DP, Stefano JS, Kalinke C, Abarza Muñoz RA, Bonacin JA, Janegitz BC, Carrilho E. Biosensing strategies for the electrochemical detection of viruses and viral diseases - A review. Anal Chim Acta 2021; 1159:338384. [PMID: 33867035 PMCID: PMC9186435 DOI: 10.1016/j.aca.2021.338384] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Viruses are the causing agents for many relevant diseases, including influenza, Ebola, HIV/AIDS, and COVID-19. Its rapid replication and high transmissibility can lead to serious consequences not only to the individual but also to collective health, causing deep economic impacts. In this scenario, diagnosis tools are of significant importance, allowing the rapid, precise, and low-cost testing of a substantial number of individuals. Currently, PCR-based techniques are the gold standard for the diagnosis of viral diseases. Although these allow the diagnosis of different illnesses with high precision, they still present significant drawbacks. Their main disadvantages include long periods for obtaining results and the need for specialized professionals and equipment, requiring the tests to be performed in research centers. In this scenario, biosensors have been presented as promising alternatives for the rapid, precise, low-cost, and on-site diagnosis of viral diseases. This critical review article describes the advancements achieved in the last five years regarding electrochemical biosensors for the diagnosis of viral infections. First, genosensors and aptasensors for the detection of virus and the diagnosis of viral diseases are presented in detail regarding probe immobilization approaches, detection methods (label-free and sandwich), and amplification strategies. Following, immunosensors are highlighted, including many different construction strategies such as label-free, sandwich, competitive, and lateral-flow assays. Then, biosensors for the detection of viral-diseases-related biomarkers are presented and discussed, as well as point of care systems and their advantages when compared to traditional techniques. Last, the difficulties of commercializing electrochemical devices are critically discussed in conjunction with future trends such as lab-on-a-chip and flexible sensors.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| | - Pãmyla Layene Dos Santos
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Paulo Roberto de Oliveira
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Diego Pessoa Rocha
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Jéssica Santos Stefano
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Cristiane Kalinke
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Juliano Alves Bonacin
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil.
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
28
|
Yue H, Ma G. Advances in Functionalized Carriers Based on Graphene's Unique Biological Interface Effect. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Wang J, Wen J, Yan H. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing. Chem Asian J 2020; 16:114-128. [DOI: 10.1002/asia.202001260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jiameng Wang
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Jia Wen
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Hongyuan Yan
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
- College of Public Health Hebei University Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Baoding 071002 P. R. China
| |
Collapse
|
30
|
Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111751. [PMID: 33545892 DOI: 10.1016/j.msec.2020.111751] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023]
Abstract
Electrochemical sensors have increasingly been linked with terms as modern biomedically effective highly selective and sensitive devices, wearable and wireless technology, portable electronics, smart textiles, energy storage, communication and user-friendly operating systems. The work brings the overview of the current advanced materials and their application strategies for improving performance, miniaturization and portability of sensing devices. It provides the extensive information on recently developed (bio)sensing platforms based on voltammetric, amperometric, potentiometric and impedimetric detection modes including portable, non-invasive, wireless, and self-driven miniaturized devices for monitoring human and animal health. Diagnostics of selected free radical precursors, low molecular biomarkers, nucleic acids and protein-based biomarkers, bacteria and viruses of today's interest is demonstrated.
Collapse
Affiliation(s)
- Katarína Nemčeková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia.
| | - Ján Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia.
| |
Collapse
|
31
|
Rapid and selective electrochemical detection of pb2+ ions using aptamer-conjugated alloy nanoparticles. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03840-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Pilan L. Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochemistry 2020; 138:107697. [PMID: 33486222 DOI: 10.1016/j.bioelechem.2020.107697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanomaterials (CNs) offer some of the most valuable properties for electrochemical biosensing applications, such as good electrical conductivity, wide electrochemical stability, high specific surface area, and biocompatibility. Regardless the envisioned sensing application, endowing CNs with specific functions through controlled chemical functionalization is fundamental for promoting the specific binding of the analyte. As a versatile and straightforward method of surface functionalization, aryldiazonium chemistry have been successfully used to accommodate in a stable and reproducible way different functionalities, while the electrochemical route has become the favourite choice since the deposition conditions can be readily controlled and adapted to the substrate. In particular, the modification of CNs by electrochemical reduction of aryl diazonium salts is established as a powerful tool which allows tailoring the chemical and electronic properties of the sensing platform. By outlining the stimulating results disclosed in the last years, this article provides not only a comprehensively review, but also a rational assessment on contribution of aryldiazonium electrografting in developing CNs-based electrochemical biosensors. Furthermore, some of the emerging challenges to be surpassed to effectively implement this methodology for in vivo and point of care analysis are also highlighted.
Collapse
Affiliation(s)
- Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
33
|
A nanobiosensor based on graphene oxide and DNA binding dye for multi-microRNAs detection. Biosci Rep 2020; 39:221397. [PMID: 31833555 PMCID: PMC6911155 DOI: 10.1042/bsr20181404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Multiplex assays for detection of biomarkers, provide advantageous analyses of different factors related to diagnoses of diseases. The Alzheimer’s disease (AD) is one of the most common disease in old people in societies which is increasing, significantly. A group of microRNAs (miRNAs) play an important role in developing the disease which can be considered as early stage biomarkers. Since, selective, sensitive, simple and rapid method for detection of these miRNAs in a single test is critical for early diagnosis and efficient therapy of the disease, herein, we report a sensitive fluorescence assay based on enzyme-free and isothermal hybridization chain reaction with SYBR Green and graphene oxide (GOX) for early detection of miR-137 and miR-142, as two Alzheimer’s biomarkers. Fluorescence spectrophotometry based on SYBR Green signal and GOX as the fluorescence quencher was used for detection and quantification of targets’ miRNAs and change in fluorescence intensity due to absence and presence of the targets was measured. The limit of detection in the newly designed nanobiosensor was achieved as 82 pM with a sensitive detection of the miRNAs from 0.05 to 5 nM, that is critical for detecting the biomarkers. Given the real range of concentrations of miRNAs in blood (from nanomolar to femtomolar values), the method holds great promise in dual and multiple targets detection due to its sensitivity, rapidness, inexpensive and specificity which provides a convenient detection method of Alzheimer’s in early stage.
Collapse
|
34
|
Mousavi SM, Low FW, Hashemi SA, Lai CW, Ghasemi Y, Soroshnia S, Savardashtaki A, Babapoor A, Pynadathu Rumjit N, Goh SM, Amin N, Tiong SK. Development of graphene based nanocomposites towards medical and biological applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1189-1205. [DOI: 10.1080/21691401.2020.1817052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Foo Wah Low
- Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang, Malaysia
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur, Malaysia
| | - Younes Ghasemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadaf Soroshnia
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Nelson Pynadathu Rumjit
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur, Malaysia
| | - Su Mei Goh
- College of Engineering, Universiti Tenaga Nasional (@The Energy University), Jalan IKRAM-UNITEN, Kajang, Malaysia
| | - Nowshad Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang, Malaysia
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang, Malaysia
| |
Collapse
|
35
|
OHTA S, SHIBA S, YAJIMA T, NIWA O. Plasma-Treated Sputtered Nanocarbon Film Electrodes for Suppressing Electrochemical Fouling by Serotonin. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-64072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Saki OHTA
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology
| | - Shunsuke SHIBA
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University
| | - Tatsuhiko YAJIMA
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology
| | - Osamu NIWA
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology
| |
Collapse
|
36
|
Zhang C, Du X. Electrochemical Sensors Based on Carbon Nanomaterial Used in Diagnosing Metabolic Disease. Front Chem 2020; 8:651. [PMID: 32850664 PMCID: PMC7432198 DOI: 10.3389/fchem.2020.00651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases have become common diseases with the improvement of living standards because of changed dietary habits and living habits, which seriously affect health. Currently, related biomarkers have been widely used as important indicators for clinical diagnosis, treatment, and prognosis of metabolic diseases. Among all detection methods for biomarkers of metabolic diseases, electrochemical sensor technology has the advantages of simplicity, real-time analysis, and low cost. Carbon nanomaterials were preeminent materials for fabricating electrochemical sensors in order to enhance the performance. In this paper, we summarize the research progress in the past 3 years of electrochemical sensors based on carbon nanomaterials in detecting markers of metabolic diseases, which include carbon nanotubes, graphene, carbon quantum dots, fullerene, and carbon nitride. Additionally, we discuss the future prospects for this field.
Collapse
Affiliation(s)
- Congcong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
37
|
A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The essential disadvantages of conventional glucose enzymatic biosensors such as high fabrication cost, poor stability of enzymes, pH value-dependent, and dedicated limitations, have been increasing the attraction of non-enzymatic glucose sensors research. Beneficially, patients with diabetes could use this type of sensor as a fourth-generation of glucose sensors with a very low cost and high performance. We demonstrate the most common acceptable transducer for a non-enzymatic glucose biosensor with a brief description of how it works. The review describes the utilization of graphene and its composites as new materials for high-performance non-enzymatic glucose biosensors. The electrochemical properties of graphene and the electrochemical characterization using the cyclic voltammetry (CV) technique of electrocatalysis electrodes towards glucose oxidation have been summarized. A recent synthesis method of the graphene-based electrodes for non-enzymatic glucose sensors have been introduced along with this study. Finally, the electrochemical properties such as linearity, sensitivity, and the limit of detection (LOD) for each sensor are introduced with a comparison with each other to figure out their strengths and weaknesses.
Collapse
|
38
|
Shukla RP, Cazelles R, Kelly DL, Ben-Yoav H. A reduced-graphene oxide-modified microelectrode for a repeatable detection of antipsychotic clozapine using microliters-volumes of whole blood. Talanta 2020; 209:120560. [DOI: 10.1016/j.talanta.2019.120560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
|
39
|
Zaidi SA, Shahzad F, Batool S. Progress in cancer biomarkers monitoring strategies using graphene modified support materials. Talanta 2019; 210:120669. [PMID: 31987212 DOI: 10.1016/j.talanta.2019.120669] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/27/2022]
Abstract
Cancer is the one of the fatal and dreaded disease responsible for huge number of morbidity and mortality across the globe. It is expected that the global burden will increase to 21.7 million fresh cancer cases as compared to present estimate of 18.1 million cancer cases in addition to nearly 9.6 million cancer deaths worldwide. In response to cancerous or certain benign conditions; specific type of tumor or cancer markers (biomarkers) are produced at much higher levels which are secreted into the urine, blood, stool, tumor or other tissues. Therefore, the efficient and early detection of cancer biomarkers is necessary which can offer a reliable way for cancer patient screening and diagnosis. This process not only helps in the evaluation of pathogenic processes but also the prognosis of different cancers and pharmacological responses to therapeutic interventions are secured. Over the past several years, electrochemical detection methods have proved to be the most attractive methods among many, due to the advantages, such as simple instrumentation, portability, low cost and high sensitivity. Furthermore, the modifications of these electrochemical immunosensors by utilizing various types of nanomaterials enable these systems to detect trace amount of target tumor markers. Hence, herein, we intend to review the selective works on electrochemical detection of various biomarkers using wide range of nanomaterials with a particular focus on graphene.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
| | - Faisal Shahzad
- National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan.
| | - Sadaf Batool
- Department of Nuclear Medicine, Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan
| |
Collapse
|
40
|
Joshi S, Sharma P, Siddiqui R, Kaushal K, Sharma S, Verma G, Saini A. A review on peptide functionalized graphene derivatives as nanotools for biosensing. Mikrochim Acta 2019; 187:27. [PMID: 31811393 DOI: 10.1007/s00604-019-3989-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Peptides exhibit unique binding behavior with graphene and its derivatives by forming bonds on its edges and planes. This makes them useful for sensing and imaging applications. This review with (155 refs.) summarizes the advances made in the last decade in the field of peptide-GO bioconjugation, and the use of these conjugates in analytical sciences and imaging. The introduction emphasizes the need for understanding the biotic-abiotic interactions in order to construct controllable peptide-functionalized graphitic material-based nanotools. The next section covers covalent and non-covalent interactions between peptide and oxidized graphene derivatives along with a discussion of the adsorption events during interfacing. We then describe applications of peptide-graphene conjugates in bioassays, with subsections on (a) detection of cancer cells, (b) monitoring protease activity, (c) determination of environmental pollutants and (d) determination of pathogenic microorganisms. The concluding section describes the current status of peptide functionalized graphitic bioconjugates and addresses future perspectives. Graphical abstractSchematic representation depicting biosensing applications of peptide functionalized graphene oxide.
Collapse
Affiliation(s)
- Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Pratibha Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ruby Siddiqui
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kanica Kaushal
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014, India
| | - Gaurav Verma
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology (Dr.SSBUICET), Panjab University, Sector 14, Chandigarh, 160014, India
- Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
41
|
Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim Acta 2019; 186:773. [PMID: 31720840 DOI: 10.1007/s00604-019-3854-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
This review, with 201 references, describes the recent advancement in the application of carbonaceous nanomaterials as highly conductive platforms in electrochemical biosensing. The electrochemical biosensing is described in introduction by classifying biosensors into catalytic-based and affinity-based biosensors and statistically demonstrates the most recent published works in each category. The introduction is followed by sections on electrochemical biosensors configurations and common carbonaceous nanomaterials applied in electrochemical biosensing, including graphene and its derivatives, carbon nanotubes, mesoporous carbon, carbon nanofibers and carbon nanospheres. In the following sections, carbonaceous catalytic-based and affinity-based biosensors are discussed in detail. In the category of catalytic-based biosensors, a comparison between enzymatic biosensors and non-enzymatic electrochemical sensors is carried out. Regarding the affinity-based biosensors, scholarly articles related to biological elements such as antibodies, deoxyribonucleic acids (DNAs) and aptamers are discussed in separate sections. The last section discusses recent advancements in carbonaceous screen-printed electrodes as a growing field in electrochemical biosensing. Tables are presented that give an overview on the diversity of analytes, type of materials and the sensors performance. Ultimately, general considerations, challenges and future perspectives in this field of science are discussed. Recent findings suggest that interests towards 2D nanostructured electrodes based on graphene and its derivatives are still growing in the field of electrochemical biosensing. That is because of their exceptional electrical conductivity, active surface area and more convenient production methods compared to carbon nanotubes. Graphical abstract Schematic representation of carbonaceous nanomaterials used in electrochemical biosensing. The content is classified into non-enzymatic sensors and affinity/ catalytic biosensors. Recent publications are tabulated and compared, considering materials, target, limit of detection and linear range of detection.
Collapse
Affiliation(s)
- Alireza Sanati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Keyvan Raeissi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sahar Sadat Mahshid
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, M4N 3M5, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.
| |
Collapse
|
42
|
Anusha JR, Kim BC, Yu KH, Raj CJ. Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosens Bioelectron 2019; 142:111511. [PMID: 31319325 DOI: 10.1016/j.bios.2019.111511] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Dengue virus is a mosquito-borne, single positive-stranded RNA virus that spread human being through infected female Aedes mosquito bite and causes dengue fever. The demand for early detection of this virus has increased to control the widespread of infectious diseases and protect humankind from its harmful effects. Recently, biosensors are found to the potential tool to detect and quantify the virus with fast detection, relatively cost-effective, high sensitivity and selectivity than the conventional diagnostic methods such as immunological and molecular techniques. Mostly, the biosensors employ electrochemical detection technique with transducers, owing to its easy construction, low-cost, ease of use, and portability. Here, we review the current trends and advancement in the electrochemical diagnosis of dengue virus and discussed various types of electrochemical biosensing techniques such as; amperometric, potentiometric, impedometric, and voltammetric sensing. Apart from these, we discussed the role of biorecognition molecules such as nucleic acid, antibodies, and lectins in electrochemical sensing of dengue virus. In addition, the review highlighted the benefits of the electrochemical approach in comparison with traditional diagnostic methods. We expect that these dengue virus diagnostic techniques will continue to evolve and grow in future, with exciting new possibilities stemming from advancement in the rational design of electrochemical biosensors.
Collapse
Affiliation(s)
- J R Anusha
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea; Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, 600034, Tamil Nadu, India
| | - Byung Chul Kim
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| | - Kook-Hyun Yu
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea
| | - C Justin Raj
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
43
|
Lee KC, Lo PY, Lee GY, Zheng JH, Cho EC. Carboxylated carbon nanomaterials in cell cycle and apoptotic cell death regulation. J Biotechnol 2019; 296:14-21. [DOI: 10.1016/j.jbiotec.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022]
|
44
|
Tettamanti CS, Ramírez ML, Gutierrez FA, Bercoff PG, Rivas GA, Rodríguez MC. Nickel nanowires-based composite material applied to the highly enhanced non-enzymatic electro-oxidation of ethanol. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
46
|
Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology 2018; 16:75. [PMID: 30243292 PMCID: PMC6150956 DOI: 10.1186/s12951-018-0400-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
Graphene's unique physical structure, as well as its chemical and electrical properties, make it ideal for use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine and modified graphene with nanoparticles and polymers. Several of these platforms were used to immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed based on its chemical composition. These methods include covalent bonding, such as the coupling of the biomolecules via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide reactions, and physisorption. In the literature, several detection methods are employed; however, the most common is electrochemical. The main reason for researchers to use this detection approach is because this method is simple, rapid and presents good sensitivity. These biosensors can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen detection. In this review, we will present the research conducted with antibodies, DNA molecules and, enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to diseases.
Collapse
Affiliation(s)
- Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Hang N. Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Sofia K. Fanourakis
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| |
Collapse
|
47
|
Electrochemical biosensor made with tyrosinase immobilized in a matrix of nanodiamonds and potato starch for detecting phenolic compounds. Anal Chim Acta 2018; 1034:137-143. [PMID: 30193627 DOI: 10.1016/j.aca.2018.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
The envisaged ubiquitous sensing and biosensing for varied applications has motivated materials development toward low cost, biocompatible platforms. In this paper, we demonstrate that carbon nanodiamonds (NDs) can be combined with potato starch (PS) and be deposited on a glassy carbon electrode (GCE) in the form of a homogeneous, rough film, with electroanalytical performance tuned by varying the relative ND-PS concentration. As a proof of concept, the ND/PS film served as matrix to immobilize tyrosinase (Tyr) and the resulting Tyr-ND-PS/GCE biosensor was suitable to detect catechol using differential pulse voltammetry with detection limit of 3.9 × 10-7 mol L-1 in the range between 5.0 × 10-6 and 7.4 × 10-4 mol L-1. Catechol could also be detected in river and tap water samples. This high sensitivity, competitive with biosensors made with more sophisticated procedures and materials in the literature, is attributed to the large surface area and conductivity imparted by the small NDs (<5 nm). In addition, the ND-PS matrix may have its use extended to immobilize other enzymes and biomolecules, thus representing a potential biocompatible platform for ubiquitous biosensing.
Collapse
|
48
|
Raymundo-Pereira PA, Baccarin M, Oliveira ON, Janegitz BC. Thin Films and Composites Based on Graphene for Electrochemical Detection of Biologically-relevant Molecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Paulo A. Raymundo-Pereira
- São Carlos Institute of Physics; University of São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Marina Baccarin
- São Carlos Institute of Chemistry; University of São Paulo; CP 380, CEP 13566-590 São Carlos, SP Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of Physics; University of São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences, Mathematics and Education; Federal University of São Carlos; CEP 13600-970 Araras, SP Brazil
| |
Collapse
|
49
|
Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Zhang Z, Dong S, Ge D, Zhu N, Wang K, Zhu G, Xu W, Xu H. An ultrasensitive competitive immunosensor using silica nanoparticles as an enzyme carrier for simultaneous impedimetric detection of tetrabromobisphenol A bis(2-hydroxyethyl) ether and tetrabromobisphenol A mono(hydroxyethyl) ether. Biosens Bioelectron 2018; 105:77-80. [DOI: 10.1016/j.bios.2018.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
|