1
|
Gu ZX, Zhang N, Zhang Y, Liu B, Jiang HH, Xu HM, Wang P, Jiang Q, Xiong RG, Zhang HY. Molecular orbital breaking in photo-mediated organosilicon Schiff base ferroelectric crystals. Nat Commun 2024; 15:4416. [PMID: 38789426 PMCID: PMC11126662 DOI: 10.1038/s41467-024-48405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Ferroelectric materials, whose electrical polarization can be switched under external stimuli, have been widely used in sensors, data storage, and energy conversion. Molecular orbital breaking can result in switchable structural and physical bistability in ferroelectric materials as traditional spatial symmetry breaking does. Differently, molecular orbital breaking interprets the phase transition mechanism from the perspective of electronics and sheds new light on manipulating the physical properties of ferroelectrics. Here, we synthesize a pair of organosilicon Schiff base ferroelectric crystals, (R)- and (S)-N-(3,5-di-tert-butylbenzylidene)-1-((triphenylsilyl)oxy)ethanamine, which show optically controlled phase transition accompanying the molecular orbital breaking. The molecular orbital breaking is manifested as the breaking and reformation of covalent bonds during the phase transition process, that is, the conversion between C = N and C-O in the enol form and C-N and C = O in the keto form. This process brings about photo-mediated bistability with multiple physical channels such as dielectric, second-harmonic generation, and ferroelectric polarization. This work further explores this newly developed mechanism of ferroelectric phase transition and highlights the significance of photo-mediated ferroelectric materials for photo-controlled smart devices and bio-sensors.
Collapse
Affiliation(s)
- Zhu-Xiao Gu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China
| | - Nan Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Yao Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China
| | - Huan-Huan Jiang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Hua-Ming Xu
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Peng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| |
Collapse
|
2
|
Kumar P, Rajan R, Upadhyaya K, Behl G, Xiang XX, Huo P, Liu B. Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives. ENVIRONMENTAL RESEARCH 2024; 247:118002. [PMID: 38151147 DOI: 10.1016/j.envres.2023.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
The amalgamation of nanostructures with modern electrochemical and optical techniques gave rise to interesting devices, so-called biosensors. A biosensor is an analytical tool that incorporates various biomolecules with an appropriate physicochemical transducer. Over the past few years, metal oxide nanomaterials (MONMs) have significantly stimulated biosensing research due to their desired functionalities, versatile chemical stability, and low cost along with their unique optical, catalytic, electrical, and adsorption properties that provide an attractive platform for linking the biomolecules, for example, antibodies, nucleic acids, enzymes, and receptor proteins as sensing elements with the transducer for the detection of signals or signal amplifications. The signals to be measured are in direct proportionate to the concentration of the bioanalyte. Because of their simplicity, cost-effectiveness, portability, quick analysis, higher sensitivity, and selectivity against a broad range of biosamples, MONMs-based electrochemical and optical biosensing platforms are exhaustively explored as powerful early-diagnosis tools for point of care applications. Herein, we made a bibliometric analysis of past twenty years (2004-2023) on the application of MONMs as electrochemical and optical biosensing units using Web of Science database and the results of which clearly reveal the increasing number of publications since 2004. Geographical area distribution analysis of these publications shows that China tops the list followed by the United States of America and India. In this review, we first describe the electrochemical and optical properties of MONMs that are crucial for the creation of extremely stable, specific, and sensitive sensors with desirable characteristics. Then, the biomedical applications of MONMs-based bare and hybrid electrochemical and optical biosensing frameworks are highlighted in the light of recent literature. Finally, current limitations and future challenges in the field of biosensing technology are addressed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China; School of Pharmacy, University College Cork, T12 K8AF, Cork, Ireland
| | - Ramachandran Rajan
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Kapil Upadhyaya
- Chemical Physiology & Biochemistry Department, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gautam Behl
- Eirgen Pharma Ltd., Westside Business Park, Waterford, Ireland
| | - Xin-Xin Xiang
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| |
Collapse
|
3
|
Rabiee N, Ahmadi S, Rahimizadeh K, Chen S, Veedu RN. Metallic nanostructure-based aptasensors for robust detection of proteins. NANOSCALE ADVANCES 2024; 6:747-776. [PMID: 38298588 PMCID: PMC10825927 DOI: 10.1039/d3na00765k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024]
Abstract
There is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies. Recently, a variety of metal-based aptasensors have been established. These metallic nanomaterials encompass noble metal nanoparticles, metal oxides, metal-carbon nanotubes, carbon quantum dots, graphene-conjugated metallic nanostructures, as well as their nanocomposites, metal-organic frameworks (MOFs), and MXenes. In general, these materials provide enhanced sensitivity through signal amplification and transduction mechanisms. This review primarily focuses on the advancement of aptasensors based on metallic materials for the highly sensitive detection of protein targets, including enzymes and growth factors. Additionally, it sheds light on the challenges encountered in this field and outlines future prospects. We firmly believe that this review will offer a comprehensive overview and fresh insights into metallic nanomaterials-based aptasensors and their capabilities, paving the way for the development of innovative point-of-care (POC) diagnostic devices.
Collapse
Affiliation(s)
- Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| |
Collapse
|
4
|
Chen Z, Li H, Xie M, Zhao F, Han S. Label-Free Electrochemical Aptasensor for Sensitive Detection of Malachite Green Based on AuNPs/MWCNTs@TiO 2 Nanocomposites. Int J Mol Sci 2023; 24:10594. [PMID: 37445772 DOI: 10.3390/ijms241310594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study proposes a label-free aptamer biosensor for the sensitive detection of malachite green(MG) using gold nanoparticles/multi-walled carbon nanotubes @ titanium dioxide(AuNPs/MWCNTs@TiO2). The nanocomposite provides a large surface area and good electrical conductivity, improving current transfer and acting as a platform for aptamer immobilization. The aptamer and the complementary chain(cDNA) are paired by base complementary to form the recognition element and fixed on the AuNPs by sulfhydryl group, which was modified on the cDNA. Since DNA is negatively charged, the redox probe in the electrolyte is less exposed to the electrode surface under the repulsion of the negative charge, resulting in a low-electrical signal level. When MG is present, the aptamer is detached from the cDNA and binds to MG, the DNA on the electrode surface is reduced, and the rejection of the redox probe is weakened, which leads to an enhanced electrical signal and enables the detection of MG concentration by measuring the change in the electrical signal. Under the best experimental conditions, the sensor demonstrates a good linear relationship for the detection of MG from 0.01 to 1000 ng/mL, the limit of detection (LOD)is 8.68 pg/mL. This sensor is stable, specific, and reproducible, allowing for the detection of various small-molecule pollutants by changing the aptamer, providing an effective method for detecting small-molecule pollutants.
Collapse
Affiliation(s)
- Zanlin Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haiming Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Miaojia Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Shi H, Che Y, Rong Y, Wang J, Wang Y, Yu J, Zhang Y. Visual/Photoelectrochemical Off-On Sensor Based on Cu/Mn Double-Doped CeO 2 and Branched Sheet Embedded Cu 2O/CuO Nanocubes. BIOSENSORS 2023; 13:227. [PMID: 36831993 PMCID: PMC9954256 DOI: 10.3390/bios13020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
An integrated dual-signal bioassay was devised to fulfil thrombin (TB) ultrasensitive detection by integrating visualization with the photoelectrochemical technique based on G-quadruplex/hemin. During the process, branched sheet embedded copper-based oxides prepared with illumination and alkaline condition play a vital role in obtaining the desirable photocurrent. The switchover of photoelectrochemical signal was realized by the adjustable distance between electron acceptor G-quadruplex/hemin and interface materials due to dissociation of the Cu/Mn double-doped cerium dioxide (CuMn@CeO2)/DNA caused by the addition of TB. Then, CuMn@CeO2 transferred onto visual zones triggered catalytic reactions under the existence of 3,3',5,5'-tetramethylbenzidine and hydrogen peroxide, making a variation in color recognized by the naked eye and providing visual prediction. Under optimized conditions, this bioassay protocol demonstrated wide linear ranges (0.0001-50 nM), high selectivity, stability, and reproducibility. More importantly, the proposed visual/photoelectrochemical transduction mechanism platform exhibits a lower background signal and more reliable detection results, which also offers an effective way for detecting other proteins and nucleic acids.
Collapse
Affiliation(s)
- Huihui Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanfei Che
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiajun Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanhu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Sukhavattanakul P, Pisitsak P, Ummartyotin S, Narain R. Polysaccharides for Medical Technology: Properties and Applications. Macromol Biosci 2023; 23:e2200372. [PMID: 36353915 DOI: 10.1002/mabi.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.
Collapse
Affiliation(s)
- Pongpat Sukhavattanakul
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Penwisa Pisitsak
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G1H9, Canada
| |
Collapse
|
7
|
Jalalvand AR, Shokri F, Yari A. Co-operation of electrochemistry and chemometrics to develop a novel electrochemical aptasensor based on generation of first- and second-order data for selective and sensitive determination of the prostate specific antigen biomarker. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Gómez-Arconada L, Díaz-Fernández A, Ferapontova EE. Ultrasensitive disposable apatasensor for reagentless electrocatalytic detection of thrombin: An O2-Dependent hemin-G4-aptamer assay on gold screen-printed electrodes. Talanta 2022; 245:123456. [DOI: 10.1016/j.talanta.2022.123456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
|
9
|
Akbarzadeh S, Khajehsharifi H, Hajihosseini S. Detection of Oxytetracycline Using an Electrochemical Label-Free Aptamer-Based Biosensor. BIOSENSORS 2022; 12:bios12070468. [PMID: 35884270 PMCID: PMC9313391 DOI: 10.3390/bios12070468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/01/2023]
Abstract
One of the most effective ways to detect and measure antibiotics is to detect their biomarkers. The best biomarker for the control and detection of oxytetracycline (OTC) is the OTC-specific aptamer. In this study, a novel, rapid, and label-free aptamer-based electrochemical biosensor (electrochemical aptasensor) was designed for OTC determination based on a newly synthesized nanocomposite including multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), reduced graphene oxide (rGO), and chitosan (CS), as well as nanosheets to modify a glassy carbon electrode, which extremely enhanced electrical conductivity and increased the electrode surface to bind well with the amine-terminated OTC-specific aptamer through self-assembly. The (MWCNTs-AuNPs/CS-AuNPs/rGO-AuNPs) nanocomposite modified electrode was synthesized using a layer- by-layer modification method which had the highest efficiency for better aptamer stabilization. Differential pulse voltammetry (DPV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) techniques were used to investigate and evaluate the electrochemical properties and importance of the synthesized nanocomposite in different steps. The designed aptasensor was very sensitive for measuring the OTC content of milk samples, and the results were compared with those of our previously published paper. Based on the calibration curve, the detection limit was 30.0 pM, and the linear range was 1.00-540 nM for OTC. The repeatability and reproducibility of the aptasensor were obtained for 10.0 nM of OTC with a relative standard deviation (RSD%) of 2.39% and 4.01%, respectively, which were not affected by the coexistence of similar derivatives. The measurement in real samples with the recovery range of 93.5% to 98.76% shows that this aptasensor with a low detection limit and wide linear range can be a good tool for detecting OTC.
Collapse
Affiliation(s)
- Sanaz Akbarzadeh
- Department of Chemistry, Faculty of Science, Yasouj University, Yasouj 75918-74831, Iran;
| | | | - Saeedeh Hajihosseini
- Medical Nanotechnology and Tissue Engineering Research Science Institute, Shahid Sadoughi University of Medical Science, Yazd 8919-5999, Iran;
| |
Collapse
|
10
|
Lv Z, Zhang M, Jin H, Wei M. An Ultrasensitive DNA Sensor for Hg
2+
Assay Based on Electrodeposited Au/Carbon Nanofibers‐chitosan and Reduced Graphene Oxide. ELECTROANAL 2022. [DOI: 10.1002/elan.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeping Lv
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Mingli Zhang
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Huali Jin
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Min Wei
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| |
Collapse
|
11
|
Yousef H, Liu Y, Zheng L. Nanomaterial-Based Label-Free Electrochemical Aptasensors for the Detection of Thrombin. BIOSENSORS 2022; 12:bios12040253. [PMID: 35448312 PMCID: PMC9025199 DOI: 10.3390/bios12040253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 05/06/2023]
Abstract
Thrombin plays a central role in hemostasis and its imbalances in coagulation can lead to various pathologies. It is of clinical significance to develop a fast and accurate method for the quantitative detection of thrombin. Electrochemical aptasensors have the capability of combining the specific selectivity from aptamers with the extraordinary sensitivity from electrochemical techniques and thus have attracted considerable attention for the trace-level detection of thrombin. Nanomaterials and nanostructures can further enhance the performance of thrombin aptasensors to achieve high sensitivity, selectivity, and antifouling functions. In highlighting these material merits and their impacts on sensor performance, this paper reviews the most recent advances in label-free electrochemical aptasensors for thrombin detection, with an emphasis on nanomaterials and nanostructures utilized in sensor design and fabrication. The performance, advantages, and limitations of those aptasensors are summarized and compared according to their material structures and compositions.
Collapse
Affiliation(s)
- Hibba Yousef
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Lianxi Zheng
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
12
|
Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188726. [DOI: 10.1016/j.bbcan.2022.188726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
13
|
Rafieezadeh M, Kianfar AH. Fabrication of heterojunction ternary Fe3O4/TiO2/CoMoO4 as a magnetic photocatalyst for organic dyes degradation under sunlight irradiation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Core–shell structure flame retardant Salen-PZN-Cu@Ni-Mof microspheres enhancing fire safety of epoxy resin through the synergistic effect. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02831-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Kurup CP, Mohd-Naim NF, Ahmed MU. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit Rev Biotechnol 2021; 42:794-812. [PMID: 34632900 DOI: 10.1080/07388551.2021.1960792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ultrasensitive biosensors have become a necessity in the world of scientific research, and several signal enhancement strategies have been employed to attain exceptionally low detection limits. Nanotechnology turns out to be a strong contender for signal amplification, as they can be employed as platform modifiers, catalysts, carriers or labels. Here, we have described the most recent advancements in the utilization of nanomaterials as signal amplification components in aptamer-based electrochemical biosensors. We have briefly reviewed the methods that utilized nanomaterials, namely gold and carbon, as well as nanocomposites such as: graphene, carbon nanotubes, quantum dots, and metal-organic frameworks.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.,PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
16
|
Malecka K, Ferapontova EE. Femtomolar Detection of Thrombin in Serum and Cerebrospinal Fluid via Direct Electrocatalysis of Oxygen Reduction by the Covalent G4-Hemin-Aptamer Complex. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37979-37988. [PMID: 33878266 DOI: 10.1021/acsami.1c03784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Thrombin, a serine protease playing a central role in the coagulation cascade reactions and a potent neurotoxin produced by injured brain endothelial cells, is a recognized cardiac biomarker and a critical biomarker for Alzheimer's disease development. Both in vivo and in vitro, its low physiological concentrations and nonspecific binding of other components of physiological fluids complicate electroanalysis of thrombin. Here, femtomolar levels of thrombin in serum and an artificial cerebrospinal fluid (CSF) were detected by the indicator-free electrochemical methodology exploiting the O2 reduction reaction directly, with no electron transfer mediators, electrocatalyzed by the covalent G4-hemin DNAzyme complex naturally self-assembling upon thrombin binding to the hemin-modified 29-mer DNA aptamer sequence tethered to gold via an alkanethiol linker. Coadsorbed PEG inhibited nonspecific protein binding and allowed the sought signal resolution. The proposed assay exploiting the "oxidase" activity of G4-hemin DNAzyme does not require any coreactants necessary for the traditional peroxidase activity-based assays with this DNAzyme, such as H2O2 and redox mediators, or solution deaeration and allows fast, overall 30 min analysis of thrombin in aerated buffer, CSF, and 1% human serum solutions. This pioneer approach exploiting the oxidase activity G4-hemin DNAzyme is simple, sensitive, and selective and represents a new tool for ultrasensitive electrocatalytic assays based on simple and efficient O2-dependent DNAzyme labels.
Collapse
Affiliation(s)
- Kamila Malecka
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Gustav Wieds Vej 1590-14, Aarhus C DK-8000, Denmark
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn 10-748, Poland
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Gustav Wieds Vej 1590-14, Aarhus C DK-8000, Denmark
| |
Collapse
|
17
|
Recent applications of quantum dots in optical and electrochemical aptasensing detection of Lysozyme. Anal Biochem 2021; 630:114334. [PMID: 34384745 DOI: 10.1016/j.ab.2021.114334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Lysozyme (Lyz) is a naturally occurring enzyme that operates against Gram-positive bacteria and leads to cell death. This antimicrobial enzyme forms the part of the innate defense system of nearly all animals and exists in their somatic discharges such as milk, tears, saliva and urine. Increased Lyz level in serum is an important indication of several severe diseases and so, precise diagnosis of Lyz is an urgent need in biosensing assays. Up to know, various traditional and modern techniques have been introduced for Lyz determination. Although the traditional methods suffer from some significant limitations such as time-consuming, arduous, biochemical screening, bacterial colony isolation, selective enrichment and requiring sophisticated instrumentation or isotope labeling, some new modern approaches like aptamer-based biosensors (aptasensors) and quantum dot (QD) nanomaterials are the main goal in Lyz detection. Electrochemical and optical sensors have been highlighted because of their adaptability and capability to decrease the drawbacks of common methods. Using an aptamer-based biosensor, sensor selectivity is enhanced due to the specific recognition of the analyte. Thereby, in this review article, the recent advances and achievements in electrochemical and optical aptasensing detection of Lyz based on different QD nanomaterials and detection methods have been discussed in detail.
Collapse
|
18
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
19
|
Mallakpour S, Azadi E, Hussain CM. Chitosan/carbon nanotube hybrids: recent progress and achievements for industrial applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj06035f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review focuses on the state-of-the-art of the recent research development on chitosan/CNT nanomaterials in biomedicine, (bio)sensors, and pollution management.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
20
|
Jamei HR, Rezaei B, Ensafi AA. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C 60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry 2020; 138:107701. [PMID: 33254052 DOI: 10.1016/j.bioelechem.2020.107701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
In this study, an ultra-sensitive and selective Thrombin biosensor with aptamer-recognition surface is introduced based on carbon nanocomposite. To prepare the this biosensor, screen-printed carbon electrodes (SPCE) were modified with a nanocomposite made from fullerene (C60), multi-walled carbon nanotubes (MWCNTs), polyethylenimine (PEI) and polymer quantum dots (PQdot). The unique characteristics of each component of the C60/MWCNTs-PEI/PQdot nanocomposite allow for synergy between nanoparticles while polymer quantum dots resulted in characteristics such as high stability, high surface to volume ratio, high electrical conductivity, high biocompatibility, and high mechanical and chemical stability. The large number of amine groups in C60/MWCNTs-PEI/PQdot nanocomposite created more sites for better covalent immobilization of amino-linked aptamer (APT) which improved the sensitivity and stability of the aptasensor. Differential Pulse Voltammetry (DPV) method with probe solution was used as the measurment method. Binding of thrombin protein to aptamers immobilized on the transducer resulted in reduced electron transfer at the electrode/electrolyte interface which reduces the peak current (IP) in DPV. The calibration curve was drawn using the changes in the peak current (ΔIP),. The proposed aptasensor has a very low detection limit of 6 fmol L-1, and a large linear range of 50 fmol L-1 to 20 nmol L-1. Furthermore, the proposed C60/MWCNTs-PEI/PQdot/APT aptasensor has good reproducibility, great selectivity, low response time and a good stability during its storage. Finally, the application of the proposed aptasensor for measuring thrombin on human blood serum samples was investigated. This aptasensor can be useful in bioengineering and biomedicine applications as well as for clinical studies.
Collapse
Affiliation(s)
- Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
21
|
A Molecular Dynamics Study Proposing the Existence of Structural Interaction Between Cancer Cell Receptor and RNA Aptamer. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01740-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Konari M, Heydari-Bafrooei E, Dinari M. Efficient immobilization of aptamers on the layered double hydroxide nanohybrids for the electrochemical proteins detection. Int J Biol Macromol 2020; 166:54-60. [PMID: 33075340 DOI: 10.1016/j.ijbiomac.2020.10.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
Despite the use of layered double hydroxides (LDH) in different electrochemical (bio)sensors, the construction of aptasensors using LDH-based surfaces was not reported to the best of our knowledge. This may be due to the lack of a suitable linker to attach aptamers to the LDH-modified surface. LDH-based aptasensors are established here as very sensitive and reliable devices in serum and cerebrospinal fluid (CSF) analysis. 5'-NH2 DNA aptamer probes were immobilized on the LDH-based surfaces in a vertical conformation without any linker materials. Due to the low electron conductivity of the LDH, carbon nanotubes (CNT) with high electronic conductivity and high surface area were combined with LDH. Thrombin was used as a model protein for aptasensing. The sensor shows a linear range of 0.005-12,000 pmol L-1 and a limit of detection of 0.1 fmol L-1. Moreover, the aptasensor was used for the sensing of thrombin in CSF and serum samples acquired from both healthy and patients with different disease.
Collapse
Affiliation(s)
- Maryam Konari
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, 77188-97111, Iran
| | - Esmaeil Heydari-Bafrooei
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, 77188-97111, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
23
|
Abstract
Carbon nanomaterials offer unique opportunities for the assembling of electrochemical aptasensors due to their high electroconductivity, redox activity, compatibility with biochemical receptors and broad possibilities of functionalization and combination with other auxiliary reagents. In this review, the progress in the development of electrochemical aptasensors based on carbon nanomaterials in 2016–2020 is considered with particular emphasis on the role of carbon materials in aptamer immobilization and signal generation. The synthesis and properties of carbon nanotubes, graphene materials, carbon nitride, carbon black particles and fullerene are described and their implementation in the electrochemical biosensors are summarized. Examples of electrochemical aptasensors are classified in accordance with the content of the surface layer and signal measurement mode. In conclusion, the drawbacks and future prospects of carbon nanomaterials’ application in electrochemical aptasensors are briefly discussed.
Collapse
|
24
|
Impedimetric Aptamer-Based Biosensors: Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:43-91. [PMID: 32313965 DOI: 10.1007/10_2020_125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impedimetric aptamer-based biosensors show high potential for handheld devices and point-of-care tests. In this review, we report on recent advances in aptamer-based impedimetric biosensors for applications in biotechnology. We detail on analytes relevant in medical and environmental biotechnology as well as food control, for which aptamer-based impedimetric biosensors were developed. The reviewed biosensors are examined for their performance, including sensitivity, selectivity, response time, and real sample validation. Additionally, the benefits and challenges of impedimetric aptasensors are summarized.
Collapse
|
25
|
Abd El-Lateef HM, Mohamed IM, Zhu JH, Khalaf MM. An efficient synthesis of electrospun TiO2-nanofibers/Schiff base phenylalanine composite and its inhibition behavior for C-steel corrosion in acidic chloride environments. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
27
|
TiO 2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance. Talanta 2019; 208:120369. [PMID: 31816724 DOI: 10.1016/j.talanta.2019.120369] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022]
Abstract
In this study, we developed a simple and cost effective aptasensor based on TiO2 nanotubes-reduced graphene oxide (TiO2 nanotube-rGO) linked to MUC1 aptamers for ultrasensitive electrochemical detection of breast cancer cell (MCF-7). Moreover, the photothermal performance of nanohybrid TiO2-rGO was investigated for cancer treatment. In this regard, after synthesize of TiO2 nanotubes via anodization process, TiO2 nanotubes-rGO hybrid was synthesized by UV assisted reduction of GO and subsequent TiO2 nanotubes attachment to rGO sheets. The resultant hybrid could provide an excellent large surface area leading to improvement of suitable sites for MUC1 aptamer immobilization. Our results revealed that TiO2-rGO aptasensor exhibited superior analytical performance for MCF-7 cell detection with the detection limit of 40 cells.ml-1 within the detection range of 103-107 cells. ml-1. In addition, the designed aptasensor was effectively applied to detect MUC1 marker in a real sample. Moreover, the TiO2 nanotube-rGO hybrid nanoparticles revealed great photothermal performance exposed to NIR laser. It could be concluded that nanohybrid TiO2-rGO would be a useful and beneficial platform for detection and treatment of breast cancer.
Collapse
|
28
|
Li J, Wang S, Jiang B, Xiang Y, Yuan R. Target-induced structure switching of aptamers facilitates strand displacement for DNAzyme recycling amplification detection of thrombin in human serum. Analyst 2019; 144:2430-2435. [PMID: 30816386 DOI: 10.1039/c9an00030e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To monitor the thrombin concentration under the condition of abnormal blood coagulation is of clinical significance for the diagnosis of various diseases. Here, on the basis of the aptamer structure switching induced by the target molecules and the signal amplification strategy via recycling of metal-ion dependent DNAzymes, we have established a sensitive and simple fluorescent aptasensor for detecting thrombin in human serum. The thrombin target specifically binds to the aptamer sequence and causes a corresponding conformational structure switching, which leads to the formation of a toehold sequence to facilitate the strand migration displacement reaction for the generation of functional metal-ion dependent DNAzymes. These DNAzymes further cleave the fluorescently quenched hairpin substrates cyclically to yield substantially amplified fluorescence recovery for sensitively detecting thrombin in the dynamic range from 0.01 nM to 50 nM. Such an aptasensor shows a detection limit of 6.9 pM and can achieve the monitoring of thrombin in diluted human serum with high selectivity, offering a universal sensing strategy for the construction of various sensitive and simple aptasensors to detect different biomarker molecules.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | | | | | | | | |
Collapse
|
29
|
Shetti NP, Bukkitgar SD, Reddy KR, Reddy CV, Aminabhavi TM. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf B Biointerfaces 2019; 178:385-394. [DOI: 10.1016/j.colsurfb.2019.03.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
|
30
|
Yuan Y, Xun Z, Zhang B, Guan Y. Electrochemical Signal Enhancer Fabricated Using Lysine‐rich Peptide for Ultrasensitive Electrochemical DNA Biosensor Analysis. ELECTROANAL 2019. [DOI: 10.1002/elan.201800697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Yuan
- Department of Biochemistry and Molecular BiologyChina Medical University
| | - Zhe Xun
- Department of Biochemistry and Molecular BiologyChina Medical University
| | - Bin Zhang
- Department of Plastic & Oral-maxillofacial Surgery, School of StomatologyChina Medical University
| | - Yifu Guan
- Department of Biochemistry and Molecular BiologyChina Medical University
| |
Collapse
|
31
|
Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor for detection of biomarker prostate specific antigen. Int J Biol Macromol 2019; 126:1065-1073. [PMID: 30611810 DOI: 10.1016/j.ijbiomac.2019.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
In this study, a novel and efficient aptasensor based on immobilization of thiol terminated prostate specific antigen (PSA) binding DNA aptamer onto Au nanoparticles/fullerene C60-chitosan-ionic liquid/multiwalled carbon nanotubes/screen printed carbon electrode has been fabricated for ultrasensitive aptasensing of biomarker PSA. Formation of PSA-aptamer complex caused a variation in electrochemical impedance spectroscopic (EIS) and differential pulse voltammetric (DPV) responses of the aptasensor which enabled us to aptasensing of the PSA by EIS and DPV methods. Morphology and electrochemical properties of the fabricated aptasensor were examined by scanning electron microscopy (SEM), cyclic voltammetry (CV) and EIS. The aptasensor was successfully applied to the determination of PSA by EIS and DPV in the range of 1-200 pg mL-1 with a limit of detection (LOD) of 0.5 pg mL-1 and 2.5-90 ng mL-1 with a LOD of 1.5 ng mL-1, respectively. This aptasensor exhibited outstanding anti-interference ability towards co-existing molecules with good stability, sensitivity, repeatability and reproducibility. Practical application of the aptasensor was examined with analysis of the PSA levels in serum samples obtained from patients with prostate cancer using both the aptasensor and a reference method. The results revealed the proposed system to be a promising candidate for clinical analysis of PSA.
Collapse
|
32
|
Cui M, Zhao Q, Zhang Q, Fu M, Liu Y, Fan X, Wang H, Zhang Y, Wang H. Nitrogen doped chiral carbonaceous nanotube for ultrasensitive DNA direct electrochemistry, DNA hybridization and damage study. Anal Chim Acta 2018; 1038:41-51. [PMID: 30278906 DOI: 10.1016/j.aca.2018.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
In the interest of developing novel electrocatalyst for high performance DNA biosensing, with distinctive chiral double helix nanostructure, nitrogen doped chiral carbonaceous nanotube (Chiral-CNT) was employed for ultrasensitive label-free DNA biosensing research. Chiral-CNT can quantitative detection of four DNA bases with high sensitivity and selectivity. Without any prehydrolysis and labeling process, direct electrochemistry of single-stranded DNA and double-stranded DNA, qualitative and quantitative detection of DNA hybridization (low detection limit: 0.0268 g L-1) were realized. Moreover, sensitive detection of DNA damage induced by fenton reagent was also realized with low detection limit of 0.0350 mg mL-1 and high sensitivity of 7.42 μA mg-1 mL. The high biosensing performance attributes to the unique chiral structure of Chiral-CNT, leads to efficient interreaction between Chiral-CNT and DNA molecule.
Collapse
Affiliation(s)
- Mengjing Cui
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Qiuyue Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Qi Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Mingxuan Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Yuexian Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Xinyu Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Haiyang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Yufan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China.
| | - Huan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China.
| |
Collapse
|
33
|
Nsabimana A, Ma X, Yuan F, Du F, Abdussalam A, Lou B, Xu G. Nanomaterials-based Electrochemical Sensing of Cardiac Biomarkers for Acute Myocardial Infarction: Recent Progress. ELECTROANAL 2018. [DOI: 10.1002/elan.201800641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anaclet Nsabimana
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Chinese Academy of Sciences; Chinese Academy of Sciences No. 19A Yuquanlu; Beijing 100049 People's Republic of China
| | - Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Chinese Academy of Sciences; Chinese Academy of Sciences No. 19A Yuquanlu; Beijing 100049 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| |
Collapse
|
34
|
Roushani M, Shahdost-Fard F. A glassy carbon electrode with electrodeposited silver nanoparticles for aptamer based voltammetric determination of trinitrotoluene using riboflavin as a redox probe. Mikrochim Acta 2018; 185:558. [PMID: 30467783 DOI: 10.1007/s00604-018-3098-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
An electrochemical nanoaptasensor is described that is based on the use of a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs). An aptamer (Apt) against trinitrotoluene (TNT) was then immobilized on the AgNPs. The addition of TNT to the modified GCE leads to decrease in peak current (typically measured at a potential of -0.45 V vs. Ag/AgCl) of riboflavin which acts as an electrochemical probe. Even small changes in the surface (as induced by binding of Apt to TNT) alter the interfacial properties. As a result, the LOD is lowered to 33 aM, and the dynamic range extends from 0.1 fM to 10 μM without sacrificing specificity. Graphical abstract Schematic presentation of a nanoaptasensor which is based on a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs) and aptamer (Apt). It was applied to the detection of 2,4,6-trinitrotoluene (TNT) with the help of riboflavin (RF) as a redox probe.
Collapse
Affiliation(s)
- Mahmoud Roushani
- Department of Chemistry, Ilam University, PO. Box 69315-516, Ilam, Iran.
| | | |
Collapse
|
35
|
Aptamer based voltammetric patulin assay based on the use of ZnO nanorods. Mikrochim Acta 2018; 185:462. [DOI: 10.1007/s00604-018-3006-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/09/2018] [Indexed: 01/09/2023]
|
36
|
Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Mikrochim Acta 2018; 185:430. [PMID: 30143874 DOI: 10.1007/s00604-018-2942-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
An electrochemiluminescent (ECL) aptamer based method is described for the determination of thrombin. Three-dimensional nitrogen-doped graphene oxide (3D-NGO) was placed on a glassy carbon electrode (GCE) to provide an electrode surface that displays excellent electrical conductivity and acts as a strong emitter of ECL. The modified electrode was further coated with chitosan via electrodeposition. Finally, the amino-modified aptamer was immobilized on the modified GCE. The interaction between thrombin and aptamer results in a decrease in ECL. The assay has a linear response in the 1 fM to 1 nM thrombin concentration range and a 0.25 fM lower detection limit (at an S/N ratio of 3). The method was applied to the determination of thrombin in spiked human plasma samples, and recoveries ranged between 94 and 105% (with RSDs of <3.6%). The calibration plot was recorded at potential and wavelength of fluorescence emission (wavelength: 445 nm; potential: 0 to -2 V). Graphical abstract A bare glassy carbon electrode (GCE) does not display electrochemiluminescence (ECL). If, however, nitrogen-doped graphene quantum dots, chitosan, and three-dimensional nitrogen-doped graphene oxide (NGQD-chitosan/3D-NGO) are electrodeposited on the GCE, strong ECL can be observed. The ECL intensity decreased after aptamer and bovine serum albumin (BSA) were dropped onto the electrode (curve a). However, the ECL further decreases after addition of thrombin (TB; curve b).
Collapse
|
37
|
Qin B, Yang K. Voltammetric aptasensor for thrombin by using a gold microelectrode modified with graphene oxide decorated with silver nanoparticles. Mikrochim Acta 2018; 185:407. [DOI: 10.1007/s00604-018-2924-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023]
|
38
|
Abreu CM, Soares-Dos-Reis R, Melo PN, Relvas JB, Guimarães J, Sá MJ, Cruz AP, Mendes Pinto I. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Front Mol Neurosci 2018; 11:164. [PMID: 29867354 PMCID: PMC5964192 DOI: 10.3389/fnmol.2018.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation plays a critical role in the onset and progression of many neurological disorders, including Multiple Sclerosis, Alzheimer's and Parkinson's diseases. In these clinical conditions the underlying neuroinflammatory processes are significantly heterogeneous. Nevertheless, a common link is the chronic activation of innate immune responses and imbalanced secretion of pro and anti-inflammatory mediators. In light of this, the discovery of robust biomarkers is crucial for screening, early diagnosis, and monitoring of neurological diseases. However, the difficulty to investigate biochemical processes directly in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory responses have been identified in different body fluids, such as blood, cerebrospinal fluid, and tears. In addition, progress in micro and nanotechnology has enabled the development of biosensing platforms capable of detecting in real-time, multiple biomarkers in clinically relevant samples. Biosensing technologies are approaching maturity where they will become deployed in community settings, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight both clinical and recent technological advances toward the development of multiplex-based solutions for effective neuroinflammatory and neurodegenerative disease diagnostics and monitoring.
Collapse
Affiliation(s)
- Catarina M Abreu
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Medical School, Swansea University, Swansea, United Kingdom
| | - Ricardo Soares-Dos-Reis
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Pedro N Melo
- Graduate Programme in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Guimarães
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Porto, Portugal
| | - Maria José Sá
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal.,Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Andrea P Cruz
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
39
|
An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/Chitosan/carbon quantum dot for the detection of lysozyme. Biosens Bioelectron 2018; 115:37-44. [PMID: 29793133 DOI: 10.1016/j.bios.2018.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023]
Abstract
An aptamer-based method is described for the electrochemical determination of lysozyme. A glassy carbon electrode was modified with a nanocomposite composed of reduced graphene oxide (rGO), multi-walled carbon nanotubes (MWCNTs), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) warrants a high surface-to-volume ratio, high conductivity, high stability, and great electrocatalytic activity. This nanocomposite provides a suitable site for better immobilization of aptamers due to the existence of many amino and carboxyl functional groups, and remaining oxygen-related defects properties in rGO. In addition, this nanocomposite allows considerable enhancement of the electrochemical signal and contributes to improving sensitivity. The amino-linked lysozyme aptamers were immobilized on the nanocomposite through covalent coupling between the amino groups of the aptamer and the amino groups of the nanocomposite using glutaraldehyde (GLA) linker. The modified electrode was characterized by electrochemical methods including differential pulse voltammetry (DPV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). In the presence of lysozyme, the immobilized aptamer selectively caught the target lysozyme on the electrode interface that leads to a decrease in the DPV peak current and an increase in Charge Transfer Resistance (Rct) in EIS as an analytical signal. Using the obtained data from DPV and EIS techniques, two calibration curves were drawn. The anti-lysozyme aptasensor proposed has two very low LODs. These measures are 3.7 and 1.9 fmol L-1 within the wide detection ranges of 20 fmol L-1 to 10 nmol L-1, and 10 fmol L-1 to 100 nmol L-1 for DPV and EIS calibration curves, respectively. The GCE/rGO-MWCNT/CS/CQD showed sensitivity, high reproducibility, specificity and rapid response for lysozyme which can be used in biomedical fields.
Collapse
|
40
|
Xu Q, Wang G, Zhang M, Xu G, Lin J, Luo X. Aptamer based label free thrombin assay based on the use of silver nanoparticles incorporated into self-polymerized dopamine. Mikrochim Acta 2018; 185:253. [DOI: 10.1007/s00604-018-2787-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 01/03/2023]
|
41
|
Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review. Biosens Bioelectron 2017; 97:305-316. [DOI: 10.1016/j.bios.2017.06.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
|
42
|
Wang M, Hu B, Ji H, Song Y, Liu J, Peng D, He L, Zhang Z. Aptasensor Based on Hierarchical Core-Shell Nanocomposites of Zirconium Hexacyanoferrate Nanoparticles and Mesoporous mFe 3O 4@mC: Electrochemical Quantitation of Epithelial Tumor Marker Mucin-1. ACS OMEGA 2017; 2:6809-6818. [PMID: 30023533 PMCID: PMC6044583 DOI: 10.1021/acsomega.7b01065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 06/08/2023]
Abstract
A novel nanostructured hierarchical core-shell nanocomposite of zirconium hexacyanoferrate (ZrHCF) and a mesoporous nanomaterial composed of Fe3O4 and carbon nanospheres (denoted as ZrHCF@mFe3O4@mC) was prepared and used as a novel platform for an aptasensor to detect the epithelial tumor marker mucin-1 (MUC1) sensitively and selectively. The prepared ZrHCF@mFe3O4@mC nanocomposite exhibited good chemical functionality, water stability, and high specific surface area. Therefore, large amounts of aptamer molecules resulted in high sensitivity of the developed electrochemical aptasensor toward traces of MUC1. The constructed sensor also showed a good linear relationship with the logarithm of MUC1 concentration in the broad range of 0.01 ng·mL-1 to 1.0 μg·mL-1, with a low detection limit of 0.90 pg·mL-1. The fabricated ZrHCF@mFe3O4@mC-based aptasensor exhibited not only high selectivity because of the formation of aptamer-MUC1 complex but also good stability, acceptable reproducibility, and applicability. The proposed novel strategy based on a newly prepared hierarchical core-shell nanocomposite demonstrated outstanding biosensing performance and presents potential applications in biomedical fields.
Collapse
|
43
|
Niu Y, Chu M, Xu P, Meng S, Zhou Q, Zhao W, Zhao B, Shen J. An aptasensor based on heparin-mimicking hyperbranched polyester with anti-biofouling interface for sensitive thrombin detection. Biosens Bioelectron 2017; 101:174-180. [PMID: 29073518 DOI: 10.1016/j.bios.2017.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023]
Abstract
In this paper, novel heparin-mimicking hyperbranched polyester nanoparticles (HBPE-SO3 NPs) with abundant of sulfonated acid functional groups were synthesized, and their antithrombogenicities were further evaluated. Further, a label-free electrochemical aptamer biosensor (aptasensor) based on HBPE-SO3 NPs modified electrode was developed for thrombin (TB) detection in whole blood. Meanwhile, the anti-biofouling properties of different modified electrodes were studied by whole blood and platelet adhesion test, hemolysis assay and morphological changes of red blood cells in vitro. Besides, the thrombin-binding aptamer was selected as receptor for the proposed aptasensor, which has excellent binding affinity and selectivity for TB. When binding to TB, the electron transfer taking place at the modified electrode interface was inhibited that can attribute to the stereo-hindrance effect, resulting in the decreased current response. This aptasensor showed excellent electrochemical properties with a wide detection range and a low detection limit of 0.031pM (S/N = 3), and provided high selectivity, long-term stability and good reproducibility. Finally, the sensitively detection of TB in whole blood samples directly was achieved by this aptasensor we proposed, which suggested its great potential for TB detection in the clinic.
Collapse
Affiliation(s)
- Yanlian Niu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meilin Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ping Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shuangshuang Meng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
44
|
Heydari-Bafrooei E, Amini M, Saeednia S. Electrochemical detection of DNA damage induced by Bleomycin in the presence of metal ions. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Wang M, Hu B, Yang C, Zhang Z, He L, Fang S, Qu X, Zhang Q. Electrochemical biosensing based on protein-directed carbon nanospheres embedded with SnO x and TiO 2 nanocrystals for sensitive detection of tobramycin. Biosens Bioelectron 2017; 99:176-185. [PMID: 28756323 DOI: 10.1016/j.bios.2017.07.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023]
Abstract
A series of nanocomposites comprised of homogeneous mesoporous carbon nanospheres embedded with SnOx (x = 0, 1, or 2) and TiO2 nanocrystals using bovine serum albumin (BSA) as template followed by calcinated at different temperatures (300, 500, 700, and 900°C) were prepared, and were denoted as SnOx@TiO2@mC. Then a novel electrochemical biosensing strategy for detecting tobramycin (TOB) based on the nanocomposites was constructed. The as-prepared SnOx@TiO2@mC nanocomposites not only possess high specific surface area and good electrochemical activity but also exhibit strong bioaffinity with the aptamer strands, therefore, they were applied as the scaffold for anchoring TOB-targeted aptamer and further used to sensitively detect trace TOB in aqueous solutions. By comparing the electrochemical biosensing responses toward TOB detection based on the four SnOx@TiO2@mC nanocomposites, the biosensing system constructed with SnOx@TiO2@mC900 (derived at 900°C) demonstrated the highest determination efficiency, high selectivity, and good stability. In particular, the new proposed aptasensing method based on SnOx@TiO2@mC nanocomposite exhibits considerable potential for the quantitative detection of TOB in the biomedical field.
Collapse
Affiliation(s)
- Minghua Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Bin Hu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Chuang Yang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhihong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Linghao He
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shaoming Fang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiongwei Qu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qingxin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
46
|
Heydari-Bafrooei E, Askari S. Ultrasensitive aptasensing of lysozyme by exploiting the synergistic effect of gold nanoparticle-modified reduced graphene oxide and MWCNTs in a chitosan matrix. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2356-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Developing a sensitive DNA biosensor for the detection of flutamide using electrochemical method. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1083-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Shuai HL, Wu X, Huang KJ. Molybdenum disulfide sphere-based electrochemical aptasensors for protein detection. J Mater Chem B 2017; 5:5362-5372. [DOI: 10.1039/c7tb01276d] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we report the development of an ultrasensitive sandwich-type electrochemical aptasensor for protein detection.
Collapse
Affiliation(s)
- Hong-Lei Shuai
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
| | - Xu Wu
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
- School of Physics and Electronic Engineering
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
| |
Collapse
|
49
|
Rapid and ultrasensitive detection of active thrombin based on the Vmh2 hydrophobin fused to a Green Fluorescent Protein. Biosens Bioelectron 2017; 87:816-822. [DOI: 10.1016/j.bios.2016.09.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022]
|
50
|
Heydari-Bafrooei E, Shamszadeh NS. Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens Bioelectron 2016; 91:284-292. [PMID: 28033557 DOI: 10.1016/j.bios.2016.12.048] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023]
Abstract
A densely packed gold nanoparticles on the rGO-MWCNT platform was used as the basis for an ultrasensitive label-free electrochemical aptasensor to detect the biomarker prostate specific antigen (PSA) in serum. The detection was based on that the variation of electron transfer resistance (Rct) and differential pulse voltammetry (DPV) current were relevant to the formation of PSA-aptamer complex at the modified electrode surface. Compared with pure AuNPs, rGO-MWCNT and MWCNT/AuNPs, the rGO-MWCNT/AuNPs nanocomposite modified electrode was the most sensitive aptasensing platform for the determination of PSA. Two calibration curves were prepared from the data obtained from the DPV and electrochemical impedance spectroscopy (EIS) by plotting the peak current and Rct against PSA concentration, respectively. The proposed aptasensor had an extremely low LOD of 1.0pgmL-1 PSA within the detection range of 0.005-20ngmL-1 and 0.005-100ngmL-1 for DPV and EIS calibration curves, respectively. This sensor exhibited outstanding anti-interference ability towards co-existing molecules with good stability, sensitivity, and reproducibility. Clinical application was performed with analysis of the PSA levels in serum samples obtained from patients with prostate cancer using both the aptasensor and Immunoradiometric assay. The results revealed the proposed system to be a promising candidate for clinical analysis of PSA.
Collapse
Affiliation(s)
- Esmaeil Heydari-Bafrooei
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, 77188-97111, Iran; High Temperature Fuel Cell Research Group, Vali-e-Asr University of Rafsanjan, 77188-97111, Iran.
| | - Nazgol Sadat Shamszadeh
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, 77188-97111, Iran
| |
Collapse
|