1
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
2
|
Patil SM, Karade VC, Kim JH, Chougale AD, Patil PB. Electrochemical Detection of a Breast Cancer Biomarker with an Amine-Functionalized Nanocomposite Pt-Fe 3O 4-MWCNTs-NH 2 as a Signal-Amplifying Label. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25601-25609. [PMID: 38727578 DOI: 10.1021/acsami.3c15531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
We report an ultrasensitive sandwich-type electrochemical immunosensor to detect the breast cancer biomarker CA 15-3. Amine-functionalized composite of reduced graphene oxide and Fe3O4 nanoparticles (MRGO-NH2) was used as an electrochemical sensing platform material to modify the electrodes. The nanocomposite comprising Pt and Fe3O4 nanoparticles (NPs) anchored on multiwalled carbon nanotubes (Pt-Fe3O4-MWCNTs-NH2) was utilized as a pseudoenzymatic signal-amplifying label. Compared to reduced graphene oxide, the composite MRGO-NH2 platform material demonstrated a higher electrochemical signal. In the Pt-Fe3O4-MWCNTs-NH2 label, multiwalled carbon nanotubes provided the substratum to anchor abundant catalytic Pt and Fe3O4 NPs. The nanocomposites were thoroughly characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. An electroanalytical study and prevalidation of the immunosensor was carried out. The immunosensor exhibited exceptional capabilities in detecting CA 15-3, offering a wider linear range of 0.0005-100 U mL-1 and a lower detection limit of 0.00008 U mL-1. Moreover, the designed immunosensor showed good specificity, reproducibility, and acceptable stability. The sensor was successfully applied to analyze samples from breast cancer patients, yielding reliable results.
Collapse
Affiliation(s)
- Sunil M Patil
- Department of Physics, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| | - Vijay C Karade
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Jin Hyeok Kim
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Ashok D Chougale
- Department of Chemistry, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| | - Prashant B Patil
- Department of Physics, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| |
Collapse
|
3
|
Xiao X, Li L, Deng H, Zhong Y, Deng W, Xu Y, Chen Z, Zhang J, Hu X, Wang Y. Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors. J Mater Chem B 2023; 11:10793-10821. [PMID: 37910389 DOI: 10.1039/d3tb01910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- Rotex Co., Ltd., Chengdu, Sichuan 610043, China
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, Chengdu, 610044, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
4
|
Ye S, Wang P, Li Y, Wang W, Liu Q, Li Y. Halloysite nanotubes-loaded conductive polymer as substrate and label material for sensitive detection of amyloid-β protein by electrochemical immunosensor. Talanta 2023; 268:125345. [PMID: 39491948 DOI: 10.1016/j.talanta.2023.125345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Amyloid-beta protein (Aβ) is a unique biomarker for Alzheimer's disease (AD). The sandwich-type electrochemical immunosensor, one of the key tools for detecting biomarkers, relies on a high-performance signal amplification approach to enhance its sensitivity. Ni/PdH nanodendrites (Ni/PdH NDs) have increased catalytic activity due to their unique interaction with palladium hydride and their nickel-rich surface, tunable shape and high specific surface area. Modified halloysite nanotubes (mHNT)-loaded with polypyrrole (PPy@mHNT) possess excellent dispersion and a large surface area. This enables the formation of a conductive network to prevent the accumulation of Ni/PdH NDs. Additionally, it exposes more electrocatalytic active centers, effectively amplifying electrical signals. By utilizing Ni/PdH@PPy@mHNT as the labeling material, it shows a consistent and remarkable electrocatalytic activity in H2O2 reduction, leading to signal amplification. The acid-etched HNT coated with polyaniline (PANI@eHNT) exhibits an exceptionally low background signal and outstanding conductivity. This not only accelerates electron transfer on the electrode surface, but also ensures the stable incubation of biomolecules post-amino grafting. Utilizing NH2-PANI@eHNT as a substrate material can guarantee stable biomolecule incubation, offer a stable sensing platform and enhance immunosensor performance. The signal can be amplified and the immunosensor's sensitivity can be raised through the efficient cooperation of the aforementioned nanomaterials. Under optimum circumstances, the electrochemical immunosensor had the lowest detection limit of 5.53 fg mL-1 and a linear range of 50 fg mL-1 to 100 ng mL-1. Based on the outstanding performance previously mentioned, this immunosensor is anticipated to aid in the early detection of AD.
Collapse
Affiliation(s)
- Sujie Ye
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Yang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Wenzhong Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| |
Collapse
|
5
|
Sun HN, Mou LL, Tan YY, Liu M, Li SS. Facile preparation of Ru nanoassemblies for electrochemical immunoassay of carcinoembryonic antigen in clinical serum. Anal Biochem 2023:115234. [PMID: 37422060 DOI: 10.1016/j.ab.2023.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Abnormal expression of carcinoembryonic antigen (CEA) can be used for early diagnosis of various cancers (e.g. colorectal cancer, cervical carcinomas, and breast cancer). In this work, using l-cysteine-ferrocene-Ruthenium nanocomposites (L-Cys-Fc-Ru) to immobilize secondary antibody (Ab2) and Au nanoparticles (NPs) as the substrate to ensure accurate capture of primary antibody (Ab1), a signal-on sandwich-like biosensor was constructed in the presence of CEA. Specifically, Ru nanoassemblies (NAs) were first prepared by a facile one-step solvothermal approach as signal amplifiers for the electrical signal of Fc. Based on specific immune recognition, as the increase of CEA concentration, the content of L-Cys-Fc-Ru-Ab2 captured on the electrode surface also increased, thus the signal of Fc gradually increased. Therefore, the quantitative detection of CEA can be realized according to the peak current of Fc. After a series of experiments, it was found that the biosensor has a wide detection range from 1.0 pg mL-1 to 100.0 ng mL-1 and a low detection limit down to 0.5 pg mL-1, as well as good selectivity, repeatability and stability. Furthermore, satisfactory results were also obtained for the determination of CEA in serums, which were comparable to commercial electrochemiluminescence (ECL) method. The developed biosensor shows great potential in clinical applications.
Collapse
Affiliation(s)
- He-Nan Sun
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Li-Li Mou
- College of Big Data, Haidu College Qingdao Agricultural University, 11 Wenhua Road, Laiyang, 265200, China
| | - Yuan-Yuan Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
6
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, Ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands.
| | | | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands.
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Asaduzzaman M, Zahed MA, Sharifuzzaman M, Reza MS, Hui X, Sharma S, Shin YD, Park JY. A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis. Biosens Bioelectron 2023; 219:114846. [PMID: 36327564 DOI: 10.1016/j.bios.2022.114846] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Wearable electrochemical biosensors for perspiration analysis offer a promising non-invasive biomarker monitoring method. Herein, a functionalized hybridized nanoporous carbon (H-NPC)-encapsulated flexible 3D porous graphene-based epidermal patch was firstly fabricated for monitoring sweat glucose, lactate, pH, and temperature using simple, cost-effective, laser-engraved, and spray-coating techniques. The fabricated H-NPC-modified electrode significantly increased electrochemical surface area and electrocatalytic activity. Within the physiological sweat range (0-1.5 mM), the second-generation glucose sensor exhibited an excellent sensitivity of 82.7 μAmM-1cm-2 with 0.025 μM LOD. Moreover, the lactate biosensor exhibited an extraordinary linear range (0-56 mM) response owing to the incorporation of an outer diffusion limiting layer (DLL) that controls the lactate flux reaching the enzyme with comparable sensitivity (204 nAmM-1cm-2) and LOD (4 μM). Finally, we employed an analytical correction approach incorporating pH and temperature adjustments during on-body tests. In addition to connecting various carbon-based materials to limitless metal-organic frameworks as a transduction material, our research also paves the way for enabling these sensors to operate on pH and T correction independently while delivering accurate results.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Advanced Sensor and Energy Research Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Md Abu Zahed
- Advanced Sensor and Energy Research Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Md Sharifuzzaman
- Advanced Sensor and Energy Research Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Md Selim Reza
- Advanced Sensor and Energy Research Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Xue Hui
- Advanced Sensor and Energy Research Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Sudeep Sharma
- Advanced Sensor and Energy Research Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Young Do Shin
- Advanced Sensor and Energy Research Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Jae Yeong Park
- Advanced Sensor and Energy Research Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea.
| |
Collapse
|
9
|
Li J, Peng X, Tao J, Yu R, Lu W, Chen D, Teng Z, Weng L. Facile synthesis of triple-hybrid organosilica/manganese dioxide hybrid nanoparticles for glutathione-adaptive shape-morphing and improving cellular drug delivery. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
The Biomass of Pig-Blood-Derived Carbon as a Novel Electrode Material for Hydrogen Peroxide Electrochemical Sensing. Catalysts 2022. [DOI: 10.3390/catal12111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the work, a pig-blood-derived mesoporous carbon (BC) was prepared as a novel Fe-N-C material for the electrochemical sensor to detect hydrogen peroxide. Because of the unique nanostructure of Fe-BCs with rough surface structure, hierarchical pores, and high graphitization degree, the Fe-BCs, as a kind of advanced electrode material, exhibited remarkable performance in electrocatalysis. The sensor based on Fe-BCs exhibited an extra-long range from c and a detection limit of 0.046 μM (S/N = 3). The synthesis of low-cost, advanced carbon-based electrode materials from environmentally friendly pig blood for electrochemical sensor construction is a promising approach.
Collapse
|
11
|
Zhao Z, Wang P, Tang F, Wang Y, Wang S, Liu Q, Li Y. Electrochemical immunosensor based on multi-order Rubik's cube-type platinum nickel nanocubes and Au NPs/cPDA NTs for detection of CEA. Bioelectrochemistry 2022; 149:108325. [DOI: 10.1016/j.bioelechem.2022.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
|
12
|
Ultrasensitive sandwich-typed electrochemical immunoassay for detection of squamous cell carcinoma antigen based on highly branched PtCo nanocrystals and dendritic mesoporous SiO 2@AuPt nanoparticles. Mikrochim Acta 2022; 189:416. [PMID: 36219254 DOI: 10.1007/s00604-022-05520-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022]
Abstract
Squamous cell carcinoma antigen (SCCA) is one of the common squamous cell carcinomas (SCC) in women, which usually works as a tumor biomarker for cervical cancer in diagnostic applications. Herein, bimetallic PtCo highly branched nanocrystals (PtCo BNCs) acted as electrode substrates to construct sandwich-typed electrochemical immunosensor for ultrasensitive detection of SCCA, by using dendritic mesoporous SiO2@AuPt nanoparticles (DM-SiO2@AuPt NPs) to adsorb electroactive thionine (Thi) as a signal label. The PtCo BNCs enlarged the loading of the primary antibody (Ab1), showing effective improvement in conductivity and sensitivity. The DM-SiO2 had abundant pores to incorporate more Thi, on which the decorated AuPt NPs created a great number of active sites to immobilize the secondary antibodies (Ab2), thereby obviously amplifying the detection signals. The prepared sensor exhibited a broader linear range (0.001-120 ng mL-1) and a lower detection limit (0.33 pg mL-1, S/N = 3), combined with high reproducibility, a low relative standard deviation (below 2.5%) and acceptable recovery (from 98.5 to 110.0%) even in diluted human serum samples. This research provides a substantial platform for clinical diagnosis of SCCA in practice.
Collapse
|
13
|
Saeed AA, Abbas MN, El-Hawary WF, Issa YM, Singh B. A Core–Shell Au@TiO2 and Multi-Walled Carbon Nanotube-Based Sensor for the Electroanalytical Determination of H2O2 in Human Blood Serum and Saliva. BIOSENSORS 2022; 12:bios12100778. [PMID: 36290916 PMCID: PMC9599508 DOI: 10.3390/bios12100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
A hydrogen peroxide (H2O2) sensor was developed based on core–shell gold@titanium dioxide nanoparticles and multi-walled carbon nanotubes modified glassy carbon electrode (Au@TiO2/MWCNTs/GCE). Core–shell Au@TiO2 material was prepared and characterized using a scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD) and Zeta-potential analyzer. The proposed sensor (Au@TiO2/MWCNTs/GCE) was investigated electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The analytical performance of the sensor was evaluated towards H2O2 using differential pulse voltammetry (DPV). The proposed sensor exhibited excellent stability and sensitivity with a linear concentration range from 5 to 200 µM (R2 = 0.9973) and 200 to 6000 µM (R2 = 0.9994), and a limit of detection (LOD) of 1.4 µM achieved under physiological pH conditions. The practicality of the proposed sensor was further tested by measuring H2O2 in human serum and saliva samples. The observed response and recovery results demonstrate its potential for real-world H2O2 monitoring. Additionally, the proposed sensor and detection strategy can offer potential prospects in electrochemical sensors development, indicative oxidative stress monitoring, clinical diagnostics, general cancer biomarker measurements, paper bleaching, etc.
Collapse
Affiliation(s)
- Ayman Ali Saeed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Mohammed Nooredeen Abbas
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | | | | | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin 24, Ireland
- Correspondence: ; Tel.: +353-12-207-863
| |
Collapse
|
14
|
Pusomjit P, Teengam P, Chuaypen N, Tangkijvanich P, Thepsuparungsikul N, Chailapakul O. Electrochemical immunoassay for detection of hepatitis C virus core antigen using electrode modified with Pt-decorated single-walled carbon nanotubes. Mikrochim Acta 2022; 189:339. [PMID: 35982360 DOI: 10.1007/s00604-022-05400-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Pt nanoparticles deposited on single-walled carbon nanotubes (PtSWCNTs), synthesized via the deposition precipitation (DP) method, were introduced as a substrate for immobilizing antibodies on an electrode surface and then enhancing the electrochemical sensitivity. A PtSWCNT-modified paper-based screen-printed graphene electrode was successfully developed to diagnose hepatitis C virus (HCV) infection. The hepatitis C virus core antigen (HCV-cAg) level was determined by differential pulse voltammetry (DPV) using [Fe(CN)6]3-/4- as a redox solution. In the presence of HCV-cAg, the DPV current response decreased with increasing HCV-cAg concentration. Under the optimal conditions, the change in current response provides a good linear correlation with the logarithm of HCV-cAg concentration in the range 0.05 to 1000 pg mL-1 (RSD < 5%), and the limit of detection was 0.015 pg mL-1 (or 0.71 fmol L-1). Furthermore, the proposed immunosensor has been utilized to quantify HCV-cAg in human serum samples with reliable results compared with standard immunoassays (% relative error < 10%). This sensor offers a simple, sensitive, selective, disposable, and inexpensive means for determination of HCV-cAg in human serum samples. The paper-based label-free immunosensor is versatile and feasible for clinical diagnosis.
Collapse
Affiliation(s)
- Pannaporn Pusomjit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Nichanan Thepsuparungsikul
- Department of Chemistry, Faculty of Science, Silpakorn University, Amphoe Muang, 73000, Nakhon Pathom, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand. .,Center of Excellence On Petrochemical and Materials Technology, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand.
| |
Collapse
|
15
|
Yin Z, Liu C, Yi Y, Wu H, Fu X, Yan Y. A label-free electrochemical immunosensor based on PdPtCu@BP bilayer nanosheets for point-of-care kidney injury molecule-1 testing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022; 8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene- and carbon-based nanomaterials are key materials to develop advanced biosensors for the sensitive detection of many biomarkers owing to their unique properties. Biosensors have attracted increasing interest because they allow efficacious, sensitive, selective, rapid, and low-cost diagnosis. Biosensors are analytical devices based on receptors for the process of detection and transducers for response measuring. Biosensors can be based on electrochemical, piezoelectric, thermal, and optical transduction mechanisms. Early virus identification provides critical information about potentially effective and selective therapies, extends the therapeutic window, and thereby reduces morbidity. The sensitivity and selectivity of graphene can be amended via functionalizing it or conjoining it with further materials. Amendment of the optical and electrical features of the hybrid structure by introducing appropriate functional groups or counterparts is especially appealing for quick and easy-to-use virus detection. Various techniques for the electrochemical detection of viruses depending on antigen-antibody interactions or DNA hybridization are discussed in this work, and the reasons behind using graphene and related carbon nanomaterials for the fabrication are presented and discussed. We review the existing state-of-the-art directions of graphene-based classifications for detecting DNA, protein, and hormone biomarkers and summarize the use of the different biosensors to detect several diseases, like cancer, Alzheimer's disease, and diabetes, to sense numerous viruses, including SARS-CoV-2, human immunodeficiency virus, rotavirus, Zika virus, and hepatitis B virus, and to detect the recent pandemic virus COVID-19. The general concepts, mechanisms of action, benefits, and disadvantages of advanced virus biosensors are discussed to afford beneficial evidence of the creation and manufacture of innovative virus biosensors. We emphasize that graphene-based nanomaterials are ideal candidates for electrochemical biosensor engineering due to their special and tunable physicochemical properties.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Reem Essam Salah-Eldin
- Chemistry and Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Miar Khaled Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11422 Cairo, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
17
|
Niu H, Cai S, Liu X, Huang X, Chen J, Wang S, Zhang S. A novel electrochemical sandwich-like immunosensor based on carboxyl Ti 3C 2T x MXene and rhodamine b/gold/reduced graphene oxide for Listeria monocytogenes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:843-849. [PMID: 35156973 DOI: 10.1039/d1ay02029c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Listeria monocytogenes (LM) is one of the most common food-borne pathogens and can induce a series of diseases with a high mortality rate to humans; hence, it is very necessary to develop a highly sensitive method for LM detection. Based on this need, a new sandwich-like electrochemical immunosensing platform was developed herein by preparing carboxyl Ti3C2Tx MXene (C-Ti3C2Tx MXene) as the sensing platform and rhodamine b/gold/reduced graphene oxide (RhB/Au/RGO) as the signal amplifier. The high conductivity and large surface area of C-Ti3C2Tx MXene make it a desirable nanomaterial to fix the primary antibody of LM (PAb), while the prepared Au/RGO/RhB nanohybrid is dedicated to assembling the secondary antibody (SAb) of LM, offering an amplified response signal. Through the use of RhB molecule as the signal probe, the experiments showed that the peak currents of RhB increase along with an increase in the concentration of LM from 10 to 105 CFU mL-1, and an extremely low limit of detection (2 CFU mL-1) was obtained on the basis of the proposed immunosensing platform after optimizing various conditions. Hence, it is confirmed that the developed sandwich-like immunosensor based on C-Ti3C2Tx MXene and RhB/Au/Gr has great application in the detection of LM and other analytes.
Collapse
Affiliation(s)
- Huimin Niu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Shumei Cai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Xueke Liu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Xiaoming Huang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Juan Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| |
Collapse
|
18
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Deng Z, Zhao L, Zhou H, Xu X, Zheng W. Recent advances in electrochemical analysis of hydrogen peroxide towards in vivo detection. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Tang C, Wang P, Zhou K, Ren J, Wang S, Tang F, Li Y, Liu Q, Xue L. Electrochemical immunosensor based on hollow porous Pt skin AgPt alloy/NGR as a dual signal amplification strategy for sensitive detection of Neuron-specific enolase. Biosens Bioelectron 2022; 197:113779. [PMID: 34781176 DOI: 10.1016/j.bios.2021.113779] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
Neuron-specific enolase (NSE) is a specific marker for small cell carcinoma (SCLC). Sandwich-type electrochemical immunosensors are powerful for biomarker analysis, and the electrocatalytic activity of the signal amplification platform and the performance of the substrate are critical to their sensitivity. In this work, N atom-doped graphene functionalized with hollow porous Pt-skin Ag-Pt alloy (HP-Ag/Pt/NGR) was designed as a dual signal amplifier. The hollow porous Pt skin structure improves the atomic utilization and the larger internal cavity spacing significantly increases the number of electroactive centers, thus exhibiting more extraordinary electrocatalytic activity and durability for H2O2 reduction. Using NGR with good catalytic activity as the support material of HP-Ag/Pt, the double amplification of the current signal is realized. For the substrate, polypyrrole-poly(3,4-ethylenedioxythiophene) (PPy-PEDOT) nanotubes were synthesized by a novel chemical polymerization route, which effectively increased the interfacial electron transfer rate. By coupling Au nanoparticles (Au NPs) with PPy-PEDOT, the immune activity of biomolecules is maintained and the conductivity is further enhanced. Under optimal conditions, the linear range was 50 fg mL-1 - 100 ng mL-1, and the limit of detection (LOD) was 18.5 fg mL-1. The results confirm that the developed immunosensor has great promise for the early clinical diagnosis of SCLC.
Collapse
Affiliation(s)
- Chunyuan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Kaiwei Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Jie Ren
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Li Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| |
Collapse
|
21
|
Cao X, Liu M, Zhao M, Li J, Xia J, Zou T, Wang Z. Synergetic PtNP@Co3O4 hollow nanopolyhedrals as peroxidase-like nanozymes for the dual-channel homogeneous biosensing of prostate-specific antigen. Anal Bioanal Chem 2022; 414:1921-1932. [DOI: 10.1007/s00216-021-03827-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
|
22
|
Tan M, Zhang C, Li Y, Xu Z, Wang S, Liu Q, Li Y. An Efficient Electrochemical Immunosensor for Alpha-Fetoprotein Detection based on the CoFe Prussian Blue Analog Combined PdAg Hybrid Nanodendrites. Bioelectrochemistry 2022; 145:108080. [DOI: 10.1016/j.bioelechem.2022.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022]
|
23
|
Wang Z, Zhao H, Chen K, Li H, Lan M. Sandwich-type electrochemical aptasensor based on hollow mesoporous carbon spheres loaded with porous dendritic Pd@Pt nanoparticles as signal amplifier for ultrasensitive detection of cardiac troponin I. Anal Chim Acta 2021; 1188:339202. [PMID: 34794569 DOI: 10.1016/j.aca.2021.339202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
Signal amplification is crucial to improve the sensitivity for the electrochemical detection of cardiac troponin I (cTnI), one of the ideal biomarkers for early acute myocardial infarction (AMI) diagnosis. Herein, we developed a novel signal amplification strategy to construct a sandwich-type electrochemical aptasensor for the detection of cTnI. Core-shell Pd@Pt dendritic bimetallic nanoparticles loaded on melamine modified hollow mesoporous carbon spheres (Pd@Pt DNs/NH2-HMCS) was prepared as labels to conjugate with thiol-modification DNA aptamers probe for signal amplification. While introducing numerous amino groups, the melamine functionalized hollow mesoporous carbon spheres (NH2-HMCS) retained the edge-plane-like defective sites for the adhesion and electrocatalytic reduction of H2O2. With the unique characteristics of NH2-HMCS, it not only enhanced the dispersity and loading capacity of core-shell Pd@Pt dendritic bimetallic nanoparticles (Pd@Pt DNs), but also improved the stability of bonding by the affinity interaction between Pd@Pt DNs and amino groups of melamine. Meanwhile, the synergistic catalysis effect between Pd@Pt DNs and NH2-HMCS significantly enhanced the electrocatalytic reduction of H2O2 and further amplified the signal. Under optimal conditions, this recommended aptasensor for cTnI detection displayed a wide dynamic range from 0.1 pg/mL to 100.0 ng/mL and a low detection limit of 15.4 fg/mL (S/N = 3). The sensor also successfully realized the analysis of cTnI-spiked human serum samples, meaning potential applications in AMI diagnosis.
Collapse
Affiliation(s)
- Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongyuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
24
|
Sun Y, Zhang W, Wang Q, Han N, Núñez-Delgado A, Cao Y, Si W, Wang F, Liu S. Biomass-derived N,S co-doped 3D multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction. ENVIRONMENTAL RESEARCH 2021; 202:111684. [PMID: 34260960 DOI: 10.1016/j.envres.2021.111684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
A beancurd-derived mesoporous carbon (NSC) was prepared by an environmentally friendly procedure, and then it was investigated as Au@Pd@Pt core-shell catalysts support (Au@Pd@Pt-NSC) for oxygen reduction reaction (ORR). The Au@Pd@Pt-NSC (E1/2 = 0.91 V) has a marginally negative ORR half-wave potential compared with other materials, in particular Pt/C (E1/2 = 0.87 V) and Au@Pd@Pt-C (E1/2 = 0.81 V). The specific and mass activities of the Au@Pd@Pt-NSC were 5 and 13 times higher than the commercial a Pt/C catalyst. After 20000 cycles of rapid durability test, the Au@Pd@Pt-NSC sample showed a loss of just 4.9% compared with the initial ECSA area, which can be attributed to the favorable interaction between Au@Pd@Pt and NSC. These results can be considered of environmental relevance and high potential applicability.
Collapse
Affiliation(s)
- Yegeng Sun
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Qing Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Engineering Polytech. School, Campus Univ. Lugo, Univ. Santiago de Compostela, Spain
| | - Yue Cao
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Weimeng Si
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Fagang Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Shaomin Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
25
|
Khanmohammadi A, Afkhami A, Hajian A, Khoshsafar H, Bagheri H. Electrochemical sandwich-type immunosensor for the detection of PSA based on a trimetallic AgAuPt nanocomposite synthesized using the galvanic replacement reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3676-3684. [PMID: 34318783 DOI: 10.1039/d1ay01004b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sandwich-type electrochemical immunoassay was introduced for the determination of the prostate-specific antigen (PSA) biomarker. A direct and simple galvanic replacement reaction was performed between the Ag framework and metallic salts of tetrachloroauric(iii) acid trihydrate and chloroplatinic acid to produce a trimetallic composite of AgAuPt. The trimetallic composite of AgAuPt was applied to the preparation of the capture layer of the immunoassay for stabilizing the primary Ab at the surface of the prepared composite. The immunoassay detection layer was also prepared using a labeled antibody containing a bimetallic composite of AgPt as a label. The various procedures in the immunoassay fabrication were monitored step by step using cyclic voltammetry and electrochemical impedance spectroscopy. Also, the electrochemical determination of PSA was performed using differential pulse voltammetry in the presence of the ferrocene redox probe and H2O2. Furthermore, the effective parameters in the fabrication of the immunoassay included the drop volume of the AgAuPt trimetallic composite and the incubation time for the immobilization of biomolecules (i.e., Ab1, BSA, PSA, and labeled Ab2), and the concentration of H2O2 were optimized during the determination of PSA. Then, the determination of PSA was performed under optimized conditions. It could be seen that there was a linear relation between the PSA concentration and DPV responses in the concentration range of 50 pg mL-1 to 500 ng mL-1 and the limit of detection (LOD) for the proposed immunoassay was calculated as 17.0 pg mL-1. In the following investigation, the cross-reactivity of the proposed immunoassay was studied in the presence of BSA, CEA, IgG, and human hepatitis surface antigen, in which the results showed a negligible change in the performance of the immunoassay.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | | | | | | | | |
Collapse
|
26
|
Electrochemical immunosensor based on Pd@Pt/MoS2-Gr for the sensitive detection of CEA. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04978-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Cao L, Tan Y, Deng W, Xie Q. MWCNTs-CoP hybrids for dual-signal electrochemical immunosensing of carcinoembryonic antigen based on overall water splitting. Talanta 2021; 233:122521. [PMID: 34215136 DOI: 10.1016/j.talanta.2021.122521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Great efforts have been made to search for highly active catalysts toward electrochemical water splitting, but double-signal immunosensors have not been reported based on bifunctional water splitting electrocatalysts. We report here a dual-signal electrochemical immunosensor for detecting carcinoembryonic antigen (CEA) using multi-wall carbon nanotubes (MWCNTs)-cobalt phosphide (CoP) as an electrocatalytic label. The preparation of MWCNTs-CoP involves the growth of Co3O4 nanoparticles on MWCNTs and low-temperature phosphatization of Co3O4 nanoparticles. The MWCNTs-CoP catalyst shows excellent electrocatalytic activities in a neutral medium toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), enabling MWCNTs-CoP as the electrocatalytic label for sensitive immunosensing. The linear range of the sandwich-type immunosensor for detecting CEA based on the HER signal is from 10-4-100 ng mL-1, whereas a linear range for detecting CEA based on the OER signal is achieved from 10-4 to 10 ng mL-1. The detection limits for detecting CEA using HER and OER signals are 10 and 12 fg mL-1, respectively. This work can provide a new double-signal immunosensing platform based on a bifunctional water splitting electrocatalyst.
Collapse
Affiliation(s)
- Lin Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
28
|
Phan LMT, Hoang TX, Vo TAT, Pham HL, Le HTN, Chinnadayyala SR, Kim JY, Lee SM, Cho WW, Kim YH, Choi SH, Cho S. Nanomaterial-based Optical and Electrochemical Biosensors for Amyloid beta and Tau: Potential for early diagnosis of Alzheimer's Disease. Expert Rev Mol Diagn 2021; 21:175-193. [PMID: 33560154 DOI: 10.1080/14737159.2021.1887732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), a heterogeneous pathological process representing the most common causes of dementia worldwide, has required early and accurate diagnostic tools. Neuropathological hallmarks of AD involve the aberrant accumulation of Amyloid beta (Aβ) into Amyloid plaques and hyperphosphorylated Tau into neurofibrillary tangles, occurring long before the onset of brain dysfunction.Areas covered:Considering the significance of Aβ and Tau in AD pathogenesis, these proteins have been adopted as core biomarkers of AD, and their quantification has provided precise diagnostic information to develop next-generation AD therapeutic approaches. However, conventional diagnostic methods may not suffice to achieve clinical criteria that are acceptable for proper diagnosis and treatment. The advantages of nanomaterial-based biosensors including facile miniaturization, mass fabrication, ultra-sensitivity, make them useful to be promising tools to measure Aβ and Tau simultaneously for accurate validation of low-abundance yet potentially informative biomarkers of AD.. EXPERT OPINION The study has identified the potential application of advanced biosensors as standardized clinical diagnostic tools for AD, evolving the way for new and efficient AD control with minimum economic and social burden. After clinical trial, nanobiosensors for measuring Aβ and Tau simultaneously possess innovative diagnosis of AD to provide significant contributions to primary Alzheimer's care intervention.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,School of Medicine and Pharmacy, The University of Danang, Danang, Vietnam
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hoang Lan Pham
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hien T Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do, Republic of Korea
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
29
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Zhang F, Huang F, Gong W, Tian F, Wu H, Ding S, Li S, Luo R. Multi-branched PdPt nanodendrites decorated amino-rich Fe-based metal-organic framework as signal amplifier for ultrasensitive electrochemical detection of prolactin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Voltammetric biosensors for analytical detection of cardiac troponin biomarkers in acute myocardial infarction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Xu Q, Jia H, Duan X, Lu L, Tian Q, Chen S, Xu J, Jiang F. Label-free electrochemical immunosensor for the detection of prostate specific antigen based three-dimensional Au nanoparticles/MoS2-graphene aerogels composite. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Bharti A, Mittal S, Rana S, Dahiya D, Agnihotri N, Prabhakar N. Electrochemical biosensor for miRNA-21 based on gold-platinum bimetallic nanoparticles coated 3-aminopropyltriethoxy silane. Anal Biochem 2020; 609:113908. [PMID: 32818505 DOI: 10.1016/j.ab.2020.113908] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 01/01/2023]
Abstract
We report an electrochemical biosensor based on gold platinum bimetallic nanoparticles (AuPtBNPs)/3-aminopropyltriethoxy silane (APTS) nanocomposite coated fluorine-doped tin oxide (FTO) as a biosensing platform for hybridization-based detection of miRNA-21. Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and electrochemical measurements were carried out to ensure the successful construction of the biosensor. The amount of cDNA immobilized on electrode surface and hybridization time required for the miRNA-21 sensing were optimized. The biosensing platform showed detection limit of 0.63 fM with wide linear range i.e. 1 fM-100 nM for miRNA-21 detection. The biosensing strategy demonstrates a good recovery yield from 90.18% to 94.6% in serum samples. It offers good selectivity for its complementary miRNA compared to the non-complementary miRNAs. Other analytical features of the biosensor such as stability, reusability and reproducibility were also tested, providing appropriate results.
Collapse
Affiliation(s)
- Anu Bharti
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sakshi Mittal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Shilpa Rana
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Divya Dahiya
- Department of Surgery, PGIMER, Chandigarh, India
| | | | - Nirmal Prabhakar
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
34
|
Hong J, Wang Y, Zhu L, Jiang L. An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3956. [PMID: 32708669 PMCID: PMC7412347 DOI: 10.3390/s20143956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/17/2023]
Abstract
A simple and low-cost electrochemical sensor based on multimodified screen-printed electrodes (SPEs) was successfully synthesized for the sensitive detection of β-lactoglobulin (β-Lg). The surface treatment of SPEs was accomplished by a simple drip coating method using polyethyleneimine (PEI), reduced graphene oxide (rGO), and gold nanoclusters (AuNCs), and the treated SPEs showed excellent electrical conductivity. The modified SPEs were then characterized with UV-Vis, SEM, TEM, and FTIR to analyze the morphology and composition of the AuNCs and the rGO. An anti-β-Lg antibody was then immobilized on the composite material obtained by modifying rGO with PEI and AuNCs (PEI-rGO-AuNCs), leading to the remarkable reduction in conductivity of the SPEs due to the reaction between antigen and antibody. The sensor obtained using this novel approach enabled a limit of detection (LOD) of 0.08 ng/mL and a detection range from 0.01 to 100 ng/mL for β-Lg. Furthermore, pure milk samples from four milk brands were measured using electrochemical sensors, and the results were in excellent agreement with those from commercial enzyme-linked immunosorbent assay (ELISA) methods.
Collapse
Affiliation(s)
- Jingyi Hong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
35
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
36
|
Chen H, Cui C, Ma X, Yang W, Zuo Y. Amperometric Biosensor for
Brucella
Testing through Molecular Orientation Technology in Combination with Signal Amplification Technology. ChemElectroChem 2020. [DOI: 10.1002/celc.202000569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongshuo Chen
- Shanxi Agricultural UniversityCollege of Engineering Taigu 030801 P.R. China
- North China University of Science and TechnologyCollege of Electrical Engineering Tangshan 063210 P.R.China
| | - Chuanjin Cui
- North China University of Science and TechnologyCollege of Electrical Engineering Tangshan 063210 P.R.China
| | - Xuegang Ma
- North China University of Science and TechnologyInstrumental Analysis Center Tangshan 063210 P.R.China
| | - Wei Yang
- Shanxi Agricultural UniversityCollege of Engineering Taigu 030801 P.R. China
| | - Yueming Zuo
- Shanxi Agricultural UniversityCollege of Engineering Taigu 030801 P.R. China
| |
Collapse
|
37
|
Adhikari J, Rizwan M, Keasberry NA, Ahmed MU. Current progresses and trends in carbon nanomaterials‐based electrochemical and electrochemiluminescence biosensors. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juthi Adhikari
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| | - Mohammad Rizwan
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
- School of Natural SciencesBangor University Bangor Wales UK
| | - Natasha Ann Keasberry
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| |
Collapse
|
38
|
Qi H, Song J, Fu Y, Wu X, Qi H. Highly dispersive Pt-Pd nanoparticles on graphene oxide sheathed carbon fiber microelectrodes for electrochemical detection of H 2O 2 released from living cells. NANOTECHNOLOGY 2020; 31:135503. [PMID: 31825903 DOI: 10.1088/1361-6528/ab60ce] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile strategy for the synthesis of surfactant-free, small and highly dispersive Pt-Pd nanoparticles on graphene oxide (Pt-Pd NPs/GO) by an electroless deposition method, which is sheathed on carbon fiber microelectrodes (CFMs) as an electrochemical sensing platform for highly sensitive and selective detection of hydrogen peroxide (H2O2) released from the living cells. GO serves as the reducing agent and stabilizer for electroless deposition of Pd NPs on the surface of GO owing to its low work function (4.38 eV) and highly conjugated electronic structure. The obtained Pd NPs/GO have a relatively high work function (4.64 eV), and thereby could be used as stabilizer for synthesis of surfactant-free, small and highly dispersive Pt-Pd NPs/GO by chemical reduction of K2PtCl4. The obtained Pt-Pd NPs have a uniform size of 4.0 ± 0.6 nm on the surface of GO. Moreover, the Pt-Pd NPs/GO sheathed CFMs exhibit an excellent electrocatalytic activity for the reduction of H2O2 with a low detection limit of 0.3 μM and good selectivity. These good properties enable the modified microelectrode to detect the H2O2 released from living cells.
Collapse
Affiliation(s)
- Hetong Qi
- Institute of Analytical Science, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Cho IH, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 2020; 24:6. [PMID: 32042441 PMCID: PMC7001310 DOI: 10.1186/s40824-019-0181-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/29/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The electrochemical biosensor is one of the typical sensing devices based on transducing the biochemical events to electrical signals. In this type of sensor, an electrode is a key component that is employed as a solid support for immobilization of biomolecules and electron movement. Thanks to numerous nanomaterials that possess the large surface area, synergic effects are enabled by improving loading capacity and the mass transport of reactants for achieving high performance in terms of analytical sensitivity. MAIN BODY We categorized the current electrochemical biosensors into two groups, carbon-based (carbon nanotubes and graphene) and non-carbon-based nanomaterials (metallic and silica nanoparticles, nanowire, and indium tin oxide, organic materials). The carbon allotropes can be employed as an electrode and supporting scaffolds due to their large active surface area as well as an effective electron transfer rate. We also discussed the non-carbon nanomaterials that are used as alternative supporting components of the electrode for improving the electrochemical properties of biosensors. CONCLUSION Although several functional nanomaterials have provided the innovative solid substrate for high performances, developing on-site version of biosensor that meets enough sensitivity along with high reproducibility still remains a challenge. In particular, the matrix interference from real samples which seriously affects the biomolecular interaction still remains the most critical issues that need to be solved for practical aspect in the electrochemical biosensor.
Collapse
Affiliation(s)
- Il-Hoon Cho
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, 13135 Republic of Korea
| | - Dong Hyung Kim
- Division of Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113 Republic of Korea
| | - Sangsoo Park
- Department of Biomedical Engineering, College of Health Science, Eulji University, Seongnam, 13135 Republic of Korea
| |
Collapse
|
40
|
Zhang X, Yu Y, Shen J, Qi W, Wang H. Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein. Talanta 2020; 212:120794. [PMID: 32113556 DOI: 10.1016/j.talanta.2020.120794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
A new type of nanocomposite composed of carboxylated single-walled carbon nanotubes (CNTs-COOH), reduced graphene oxide (rGO), bovine serum albumin-Ag hybride (Ag@BSA), and poly(3,4-ethylenedioxythiophene) (PEDOT) was fabricated to develop an ultrasensitive electrochemical platform for the detection of carcinoembryonic antigen (CEA) as a model of biomarkers. Two steps are involved for the fabrication of the organic/inorganic nanocomposites. The Ag@BSA nanoflowers were first synthesized to be doped with CNTs-COOH and rGO followed by the adsorption of PEDOT resulting in CNTs-COOH/rGO/Ag@BSA/PEDOT. The as-prepared nanocomposites were then deposited onto an Au electrode together with subsequent immobilization of CEA antibody (anti-CEA) to construct the electrochemical immunosensor. This unique structure and composition of the developed immunosensor can expect an excellent electrochemical response. The immunosensor offers a linear relationship between the electrochemical responses and the CEA concentrations from 0.002 to 50 ng∙mL-1 with a detection limit of 1 × 10-4 ng∙mL-1. Moreover, the ultrasensitive immunoassay can detect CEA in real human serum samples, and the results are comparable to those obtained from the commercial ELISA. Therefore, this strategy can monitor diseases, offer clinical diagnosis, and may be valuable for the development of new biomedical devices.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - You Yu
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Jinglin Shen
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Wei Qi
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies, Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China.
| |
Collapse
|
41
|
Zhao C, Ma C, Wu M, Li W, Song Y, Hong C, Qiao X. A novel electrochemical immunosensor based on CoS2 for early screening of tumor marker carcinoembryonic antigen. NEW J CHEM 2020. [DOI: 10.1039/c9nj05745e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, PANI–HRP nanoparticles integrate biometric recognition and signal amplification functions in one body, which can be converted to each other without consuming the material itself.
Collapse
Affiliation(s)
- Chulei Zhao
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Chaoyun Ma
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Mei Wu
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Wenjun Li
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Yiju Song
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Xiuwen Qiao
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| |
Collapse
|
42
|
Wang Z, Tian X, Sun D, Cao P, Ding M, Li Y, Guo N, Ouyang R, Miao Y. A new Bi2MoO6 nano-tremella-based electrochemical immunosensor for the sensitive detection of a carcinoembryonic antigen. RSC Adv 2020; 10:15870-15880. [PMID: 35493654 PMCID: PMC9052421 DOI: 10.1039/d0ra01922d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Novel Bi2MoO6 nanohybrids with a tremella-like structure modified with gold nanoparticles were used to fabricate an electrochemical immunosensing platform of CEA.
Collapse
Affiliation(s)
- Zhongmin Wang
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Xinli Tian
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Dong Sun
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Penghui Cao
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Mengkui Ding
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yuhao Li
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Ning Guo
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yuqing Miao
- Institute of Bismuth Science
- The University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
43
|
Nanoparticles as Emerging Labels in Electrochemical Immunosensors. SENSORS 2019; 19:s19235137. [PMID: 31771201 PMCID: PMC6928605 DOI: 10.3390/s19235137] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
This review shows recent trends in the use of nanoparticles as labels for electrochemical immunosensing applications. Some general considerations on the principles of both the direct detection based on redox properties and indirect detection through electrocatalytic properties, before focusing on the applications for mainly proteins detection, are given. Emerging use as blocking tags in nanochannels-based immunosensing systems is also covered in this review. Finally, aspects related to the analytical performance of the developed devices together with prospects for future improvements and applications are discussed.
Collapse
|
44
|
Copper(II) 1,4-naphthalenedicarboxylate on copper foam nanowire arrays for electrochemical immunosensing of the prostate specific antigen. Mikrochim Acta 2019; 186:758. [PMID: 31707617 DOI: 10.1007/s00604-019-3891-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Nanowires of copper(II)-based metal-organic frameworks (Cu-MOFs) of type Cu(II)(1,4-naphthalenedicarboxylic acid) (1,4-NDC) were deposited on the surface of a copper foam by immersion of Cu(OH)2 nanowires in a solution of 1,4-NDC. An electrochemical immunosensor for the prostate specific antigen (PSA) is obtained by using the nanowire arrays as a redox signal probe. The signal is generated by the conversion of Cu(I) and Cu(II) of Cu-MOFs nanowires. Cu(1,4-NDC) nanowires contain many uncoordinated carboxyl groups which can bind to the amino groups of the PSA antibody. When PSA antibody binds to PSA antigen during an immune response, the current signal will decrease due to the electrical insulation of PSA antigen. The decrease of current is directly proportional to the increase of PSA concentration. The immunosensor, best operated at a voltage of typically -0.08 V (vs. Ag/AgCl), has a low limit of detection (4.4 fg·mL-1) and a wide linear range (0.1 pg·mL-1 to 20 ng·mL-1). This meets the demands of clinical diagnosis (with values <4 ng·mL-1) in serum. The method was applied to the determination of PSA in spiked serum. Graphical abstractSchematic representation of the in-situ growth of ordered Cu-MOFs wrapped with Cu(OH)2 nanowires, building the core-shell structure as the 3D electrode. A novel electrochemical immunosensor for PSA detection has been exploited, using the Cu-MOFs nanowire arrays on Cu foam as a redox signal probe for the first time.
Collapse
|
45
|
A ternary quenching electrochemiluminescence insulin immunosensor based on Mn2+ released from MnO2@Carbon core-shell nanospheres with ascorbic acid quenching AuPdPt–MoS2@TiO2 enhanced luminol. Biosens Bioelectron 2019; 142:111551. [DOI: 10.1016/j.bios.2019.111551] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/07/2023]
|
46
|
Wang P, Pei F, Ma E, Yang Q, Yu H, Liu J, Li Y, Liu Q, Dong Y, Zhu H. The preparation of hollow AgPt@Pt core-shell nanoparticles loaded on polypyrrole nanosheet modified electrode and its application in immunosensor. Bioelectrochemistry 2019; 131:107352. [PMID: 31494386 DOI: 10.1016/j.bioelechem.2019.107352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
The designed synthesis of efficient materials can significantly enhance the performance of electrochemical immunoassay in the detection of diseases, pesticide residues and environmental pollutants. The hollow AgPt@Pt core-shell nanoparticles (AgPt@Pt HNs) have exhibited high catalytic efficiency to the hydrogen peroxide (H2O2) reduction for its high mass activity from their hollow structure. Their limitation of instability can be overcome by loading on polypyrrole nanosheet (PPy NS). Besides, PPy NS exhibits good conductivity, and there exists environmentally-friendly method for its synthetic. Thus, AgPt@Pt HNs loaded on PPy NS (AgPt@Pt HNs/PPy NS) exhibits high catalytic efficiency to the reduction of H2O2 and good stability. Furthermore, the quick electron transfer of AgPt@Pt HNs/PPy NS modified glassy carbon electrode has been evidenced by the finding that the large constant of apparent electron transfer rate has also enlarged the current signal when the amount of electron is invariant. The modified electrode has fabricated a label-free amperometric immunosensor to detect sensitively prostate-specific antigen (PSA) with H2O2 as the electroactive material. The immunosensor in hollow core-shell nanosheet structure exhibiting good detection performance of PSA shows its promising applications in the clinical diagnosis.
Collapse
Affiliation(s)
- Ping Wang
- College of Chemistry and Molecolar Engineering, NanJing University of Technology, 211816 Nanjing, PR China; School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Enhui Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Qingshan Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Haoxuan Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Jiao Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Hongjun Zhu
- College of Chemistry and Molecolar Engineering, NanJing University of Technology, 211816 Nanjing, PR China.
| |
Collapse
|
47
|
Abstract
It is well-known that electrochemical immunosensors have many advantages, including but not limited to high sensitivity, simplicity in application, low-cost production, automated control and potential miniaturization. Due to specific antigen–antibody recognition, electrochemical immunosensors also have provided exceptional possibilities for real-time trace detection of analytical biotargets, which consists of small molecules (such as natural toxins and haptens), macromolecules, cells, bacteria, pathogens or viruses. Recently, the advances in the development of electrochemical immunosensors can be classified into the following directions: the first is using electrochemical detection techniques (voltammetric, amperometric, impedance spectroscopic, potentiometric, piezoelectric, conductometric and alternating current voltammetric) to achieve high sensitivity regarding the electrochemical change of electrochemical signal transduction; the second direction is developing sensor configurations (microfluidic and paper-based platforms, microelectrodes and electrode arrays) for simultaneous multiplex high-throughput analyses; and the last is designing nanostructured materials serving as sensing interfaces to improve sensor sensitivity and selectivity. This chapter introduces the working principle and summarizes the state-of-the-art of electrochemical immunosensors during the past few years with practically relevant details for: (a) metal nanoparticle- and quantum dot-labeled immunosensors; (b) enzyme-labeled immunosensors; and (c) magnetoimmunosensors. The importance of various types of nanomaterials is also thoroughly reviewed to obtain an insight into understanding the theoretical basis and practical orientation for the next generation of diagnostic devices.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST) 1 Dai Co Viet Road Hanoi 100000 Vietnam
| | - Tran Dai Lam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| |
Collapse
|
48
|
Farzin L, Sadjadi S, Shamsipur M, Sheibani S. An immunosensing device based on inhibition of mediator's faradaic process for early diagnosis of prostate cancer using bifunctional nanoplatform reinforced by carbon nanotube. J Pharm Biomed Anal 2019; 172:259-267. [DOI: 10.1016/j.jpba.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/27/2019] [Accepted: 05/04/2019] [Indexed: 01/08/2023]
|
49
|
Mollarasouli F, Kurbanoglu S, Ozkan SA. The Role of Electrochemical Immunosensors in Clinical Analysis. BIOSENSORS 2019; 9:E86. [PMID: 31324020 PMCID: PMC6784381 DOI: 10.3390/bios9030086] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
An immunosensor is a kind of affinity biosensor based on interactions between an antigen and specific antigen immobilized on a transducer surface. Immunosensors possess high selectivity and sensitivity due to the specific binding between antibody and corresponding antigen, making them a suitable platform for several applications especially in the medical and bioanalysis fields. Electrochemical immunosensors rely on the measurements of an electrical signal recorded by an electrochemical transducer and can be classed as amperometric, potentiometric, conductometric, or impedimetric depending on the signal type. Among the immunosensors, electrochemical immunosensors have been more perfected due to their simplicity and, especially their ability to be portable, and for in situ or automated detection. This review addresses the potential of immunosensors destined for application in clinical analysis, especially cancer biomarker diagnosis. The emphasis is on the approaches used to fabricate electrochemical immunosensors. A general overview of recent applications of the developed electrochemical immunosensors in the clinical approach is described.
Collapse
Affiliation(s)
- Fariba Mollarasouli
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
| |
Collapse
|
50
|
Lawal AT. Graphene-based nano composites and their applications. A review. Biosens Bioelectron 2019; 141:111384. [PMID: 31195196 DOI: 10.1016/j.bios.2019.111384] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
The purpose of the current review article is to present a comprehensive understanding regarding pros and cons of graphene related nanocomposites and to find ways in order to improve the performance of nanocomposites with new designs. Nanomaterials including GR are employed in industrial applications such as supercapacitors, biosensors, solar cells, and corrosion studies. The present article has been prepared in three main categories. In the first part, graphene types have been presented, as pristine graphene, graphene oxide and reduced graphene oxide. In the second part, nanocomposites with many graphene, inorganic and polymeric materials such as polymer/GR, activated carbon/GR, metal oxide/GR, metal/graphene and carbon fibre/GR have been investigated in more detail. In the third part, the focus in on the industrial applications of GR nanocomposite, including super capacitors, biosensors, solar cells, and corrosion protection studies.
Collapse
|