1
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
2
|
Liu Y, Shi Y, Wang S, Liu S, Shang M, Zhao B, Liu H, Yang C, Wang F, Kwok CK, Wang H. Hook-Like DNAzyme-Activated Autocatalytic Biosensor for the Universal Detection of Pathogenic Bacteria. Anal Chem 2024; 96:11951-11958. [PMID: 38990770 DOI: 10.1021/acs.analchem.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
DNAzyme-based assays have found extensive utility in pathogenic bacteria detection but often suffer from limited sensitivity and specificity. The integration of a signal amplification strategy could address this challenge, while the existing combination methods require extensive modification to accommodate various DNAzymes, limiting the wide-spectrum bacteria detection. We introduced a novel hook-like DNAzyme-activated autocatalytic nucleic acid circuit for universal pathogenic bacteria detection. The hook-like connector DNA was employed to seamlessly integrate the recognition element DNAzyme with the isothermal enzyme-free autocatalytic hybridization chain reaction and catalytic hairpin assembly for robust exponential signal amplification. This innovative autocatalytic circuit substantially amplifies the output signals from the DNAzyme recognition module, effectively overcoming DNAzyme's inherent sensitivity constraints in pathogen identification. The biosensor exhibits a strong linear response within a range of 1.5 × 103 to 3.7 × 107 CFU/mL, achieving a detection limit of 1.3 × 103 CFU/mL. Noted that the sensor's adaptability as a universal detection platform is established by simply modifying the hook-like connector module, enabling the detection of various pathogenic bacteria of considerable public health importance reported by the World Health Organization, including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Salmonella typhimurium. Additionally, the specificity of DNAzyme in bacterial detection is markedly improved due to the signal amplification process of the autocatalytic circuit. This hook-like DNAzyme-activated autocatalytic platform presents a versatile, sensitive, and specific approach for pathogenic bacteria detection, promising to significantly expand the applications of DNAzyme in bacteria detection.
Collapse
Affiliation(s)
- Yaqi Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yulong Shi
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Siyuan Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Sijia Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Min Shang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Bingyue Zhao
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Hanghang Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430000, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong ,Hong Kong SAR 999077, China
| | - Huimin Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
3
|
Zhou J, Wang TY, Lan Z, Yang HJ, Ye XJ, Min R, Wang ZH, Huang Q, Cao J, Gao YE, Wang WL, Sun XL, Zhang Y. Strategy of functional nucleic acids-mediated isothermal amplification for detection of foodborne microbial contaminants: A review. Food Res Int 2023; 173:113286. [PMID: 37803599 DOI: 10.1016/j.foodres.2023.113286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
Foodborne microbial contamination (FMC) is the leading cause of food poisoning and foodborne illness. The foodborne microbial detection methods based on isothermal amplification have high sensitivity and short detection time, and functional nucleic acids (FNAs) could extend the detectable object of isothermal amplification to mycotoxins. Therefore, the strategy of FNAs-mediated isothermal amplification has been emergingly applied in biosensors for foodborne microbial contaminants detection, making biosensors more sensitive with lower cost and less dependent on nanomaterials for signal output. Here, the mechanism of six isothermal amplification technologies and their application in detecting FMC is firstly introduced. Then the strategy of FNAs-mediated isothermal amplification is systematically discussed from perspectives of FNAs' versatility including recognition elements (Aptamer, DNAzyme), programming tools (DNA tweezer, DNA walker and CRISPR-Cas) and signal units (G-quadruplex, FNAs-based nanomaterials). Finally, challenges and prospects are presented in terms of addressing the issue of nonspecific amplification reaction, developing better FNAs-based sensing elements and eliminating food matrix effects.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Teng-Yu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhi Lan
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Han-Jie Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xing-Jian Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Min
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhao-Hui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qing Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Cao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu-E Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Lan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Bakhshpour-Yucel M, Gür SD, Seymour E, Aslan M, Lortlar Ünlü N, Ünlü MS. Highly-Sensitive, Label-Free Detection of Microorganisms and Viruses via Interferometric Reflectance Imaging Sensor. MICROMACHINES 2023; 14:281. [PMID: 36837980 PMCID: PMC9960798 DOI: 10.3390/mi14020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Pathogenic microorganisms and viruses can easily transfer from one host to another and cause disease in humans. The determination of these pathogens in a time- and cost-effective way is an extreme challenge for researchers. Rapid and label-free detection of pathogenic microorganisms and viruses is critical in ensuring rapid and appropriate treatment. Sensor technologies have shown considerable advancements in viral diagnostics, demonstrating their great potential for being fast and sensitive detection platforms. In this review, we present a summary of the use of an interferometric reflectance imaging sensor (IRIS) for the detection of microorganisms. We highlight low magnification modality of IRIS as an ensemble biomolecular mass measurement technique and high magnification modality for the digital detection of individual nanoparticles and viruses. We discuss the two different modalities of IRIS and their applications in the sensitive detection of microorganisms and viruses.
Collapse
Affiliation(s)
- Monireh Bakhshpour-Yucel
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Faculty of Science and Art, Bursa Uludag University, Bursa 16059, Turkey
| | - Sinem Diken Gür
- Department of Biotechnology, Hacettepe University, Ankara 06800, Turkey
| | - Elif Seymour
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mete Aslan
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| | - Nese Lortlar Ünlü
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| | - M. Selim Ünlü
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
5
|
Park JA, Amri C, Kwon Y, Lee JH, Lee T. Recent Advances in DNA Nanotechnology for Plasmonic Biosensor Construction. BIOSENSORS 2022; 12:bios12060418. [PMID: 35735565 PMCID: PMC9220935 DOI: 10.3390/bios12060418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Since 2010, DNA nanotechnology has advanced rapidly, helping overcome limitations in the use of DNA solely as genetic material. DNA nanotechnology has thus helped develop a new method for the construction of biosensors. Among bioprobe materials for biosensors, nucleic acids have shown several advantages. First, it has a complementary sequence for hybridizing the target gene. Second, DNA has various functionalities, such as DNAzymes, DNA junctions or aptamers, because of its unique folded structures with specific sequences. Third, functional groups, such as thiols, amines, or other fluorophores, can easily be introduced into DNA at the 5′ or 3′ end. Finally, DNA can easily be tailored by making junctions or origami structures; these unique structures extend the DNA arm and create a multi-functional bioprobe. Meanwhile, nanomaterials have also been used to advance plasmonic biosensor technologies. Nanomaterials provide various biosensing platforms with high sensitivity and selectivity. Several plasmonic biosensor types have been fabricated, such as surface plasmons, and Raman-based or metal-enhanced biosensors. Introducing DNA nanotechnology to plasmonic biosensors has brought in sight new horizons in the fields of biosensors and nanobiotechnology. This review discusses the recent progress of DNA nanotechnology-based plasmonic biosensors.
Collapse
Affiliation(s)
- Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
| | - Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Yein Kwon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
| | - Jin-Ho Lee
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea
- Correspondence: (J.-H.L.); (T.L.); Tel.: +82-51-510-8547 (J.-H.L.); +82-2-940-5771 (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
- Correspondence: (J.-H.L.); (T.L.); Tel.: +82-51-510-8547 (J.-H.L.); +82-2-940-5771 (T.L.)
| |
Collapse
|
6
|
Banik S, Uchil A, Kalsang T, Chakrabarty S, Ali MA, Srisungsitthisunti P, Mahato KK, Surdo S, Mazumder N. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2022; 43:465-483. [PMID: 35410564 DOI: 10.1080/07388551.2022.2034733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidics is revolutionizing the way research on cellular biology has been traditionally conducted. The ability to control the cell physicochemical environment by adjusting flow conditions, while performing cellular analysis at single-cell resolution and high-throughput, has made microfluidics the ideal choice to replace traditional in vitro models. However, such a revolution only truly started with the advent of polydimethylsiloxane (PDMS) as a microfluidic structural material and soft-lithography as a rapid manufacturing technology. Indeed, before the "PDMS age," microfluidic technologies were: costly, time-consuming and, more importantly, accessible only to specialized laboratories and users. The simplicity of molding PDMS in various shapes along with its inherent properties (transparency, biocompatibility, and gas permeability) has spread the applications of innovative microfluidic devices to diverse and important biological fields and clinical studies. This review highlights how PDMS-based microfluidic systems are innovating pre-clinical biological research on cells and organs. These devices were able to cultivate different cell lines, enhance the sensitivity and diagnostic effectiveness of numerous cell-based assays by maintaining consistent chemical gradients, utilizing and detecting the smallest number of analytes while being high-throughput. This review will also assist in identifying the pitfalls in current PDMS-based microfluidic systems to facilitate breakthroughs and advancements in healthcare research.
Collapse
Affiliation(s)
- Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ashwini Uchil
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Kalsang
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pornsak Srisungsitthisunti
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Salvatore Surdo
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Wang X, Zhao Y, Hua Q, Lu J, Tang F, Sun W, Luan F, Zhuang X, Tian C. An ultrasensitive electrochemiluminescence biosensor for the detection of total bacterial count in environmental and biological samples based on a novel sulfur quantum dot luminophore. Analyst 2022; 147:1716-1721. [DOI: 10.1039/d2an00153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemiluminescence sensor for total bacterial count detection based on sulfur quantum dots with β-nicotinamide adenine dinucleotide as an important parameter.
Collapse
Affiliation(s)
- Xiaobin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yuqing Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Qing Hua
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiaojiao Lu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feiyan Tang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenjie Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
8
|
RNA-cleaving DNAzymes as a diagnostic and therapeutic agent against antimicrobial resistant bacteria. Curr Genet 2021; 68:27-38. [PMID: 34505182 DOI: 10.1007/s00294-021-01212-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The development of nucleic-acid-based antimicrobials such as RNA-cleaving DNAzyme (RCD), a short catalytically active nucleic acid, is a promising alternative to the current antibiotics. The current rapid spread of antimicrobial resistance (AMR) in bacteria renders some antibiotics useless against bacterial infection, thus creating the need for alternative antimicrobials such as DNAzymes. This review summarizes recent advances in the use of RCD as a diagnostic and therapeutic agent against AMR. Firstly, the recent diagnostic application of RCD for the detection of bacterial cells and the associated resistant gene(s) is discussed. The next section summarises the therapeutic application of RCD in AMR bacterial infections which includes direct targeting of the resistant genes and indirect targeting of AMR-associated genes. Finally, this review extends the discussion to challenges of utilizing RCD in real-life applications, and the potential of combining both diagnostic and therapeutic applications of RCD into a single agent as a theranostic agent.
Collapse
|
9
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
10
|
Manoj D, Shanmugasundaram S, Anandharamakrishnan C. Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Qian S, Jiang M, Liu Z. Inertial migration of aerosol particles in three-dimensional microfluidic channels. PARTICUOLOGY 2021; 55:23-34. [PMID: 38620251 PMCID: PMC7431404 DOI: 10.1016/j.partic.2020.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 04/17/2024]
Abstract
In recent years, manipulation of particles by inertial microfluidics has attracted significant attention. However, most studies focused on inertial focusing of particles suspended within liquid phase, in which the ratio of the density of the particle to that of the medium is O(1). The investigation on manipulation of aerosol particles in an inertial microfluidics is very limited. In this study, we numerically investigate the aerosol particle's motion in a 3D straight microchannel with rectangular cross section by fully resolved simulation of the particle-air flow. The air flow is modeled by the Navier-Stokes equations. The particle's motions, including translation and rotation, are governed, respectively, by the Newton's second law and the Euler equations without using any approximation models for the lift and drag forces. The coupled mathematical model is numerically solved by combining immersed boundary with lattice Boltzmann method (IB-LBM). We find that the Reynolds number (Re), the particle's initial position, particle's density and diameter are the influential parameters in this process. The equilibrium positions and their stabilities of aerosols are different from those suspended in liquid.
Collapse
Affiliation(s)
- Shizhi Qian
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Maoqiang Jiang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY 14853, USA
| | - Zhaohui Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Rothenbroker M, McConnell EM, Gu J, Urbanus ML, Samani SE, Ensminger AW, Filipe CDM, Li Y. Selection and Characterization of an RNA‐Cleaving DNAzyme Activated by
Legionella pneumophila. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meghan Rothenbroker
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Erin M. McConnell
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Jimmy Gu
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | | | | | | | | | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
13
|
Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem 2021; 413:4563-4579. [PMID: 33506341 PMCID: PMC7840224 DOI: 10.1007/s00216-020-03124-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms such as viruses and bacteria pose a great threat to human health. Although a significant progress has been obtained in the diagnosis and prevention of infectious diseases, it still remains challenging to develop rapid and cost-effective detection approaches and overcome the side effects of therapeutic agents and pathogen resistance. Functional nucleic acids (FNAs), especially the most widely used aptamers and DNAzymes, hold the advantages of high stability and flexible design, which make them ideal molecular recognition tools for bacteria and viruses, as well as potential therapeutic drugs for infectious diseases. This review summarizes important advances in the selection and detection of bacterial- and virus-associated FNAs, along with their potential prevention ability of infectious disease in recent years. Finally, the challenges and future development directions are concluded.
Collapse
|
14
|
Rothenbroker M, McConnell EM, Gu J, Urbanus ML, Samani SE, Ensminger AW, Filipe CDM, Li Y. Selection and Characterization of an RNA‐Cleaving DNAzyme Activated by
Legionella pneumophila. Angew Chem Int Ed Engl 2021; 60:4782-4788. [DOI: 10.1002/anie.202012444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Meghan Rothenbroker
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Erin M. McConnell
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Jimmy Gu
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | | | | | | | | | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
15
|
Fang YL, Wang CH, Chen YS, Chien CC, Kuo FC, You HL, Lee MS, Lee GB. An integrated microfluidic system for early detection of sepsis-inducing bacteria. LAB ON A CHIP 2021; 21:113-121. [PMID: 33232424 DOI: 10.1039/d0lc00966k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since early diagnosis of sepsis may assist clinicians in initiating timely, effective, and prognosis-improving antibiotic therapy, we developed an integrated microfluidic chip (IMC) for rapid isolation of both Gram-positive and Gram-negative bacteria from blood. The device comprised a membrane-based filtration module (90 min operating time), a bacteria-capturing module using a micro-mixer containing magnetic beads coated with "flexible neck" regions of mannose-binding lectin proteins for bacteria capture (20 min), and a miniature polymerase chain reaction (PCR) module for bacteria identification (90 min via TaqMan® probe technology). The filter separated all white blood cells and 99.5% of red blood cells from bacteria, which were captured at rates approaching 85%. The PCR assay's limit of detection was 5 colony-forming units (CFU) per reaction, and the entire process was completed in only 4 h. Since this is far less than that for culture-based approaches, this IMC may serve as a promising device for detection of sepsis.
Collapse
Affiliation(s)
- Yen-Ling Fang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhou Z, Zhang Y, Guo M, Huang K, Xu W. Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. Biosens Bioelectron 2020; 167:112475. [DOI: 10.1016/j.bios.2020.112475] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
|
17
|
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2020; 61:1852-1876. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.
Collapse
Affiliation(s)
- Nuno M M Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China.,Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Ås, Norway
| | - Tao Dong
- Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Luís F B A da Silva
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
18
|
McConnell EM, Morrison D, Rey Rincon MA, Salena BJ, Li Y. Selection and applications of synthetic functional DNAs for bacterial detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Akkilic N, Geschwindner S, Höök F. Single-molecule biosensors: Recent advances and applications. Biosens Bioelectron 2019; 151:111944. [PMID: 31999573 DOI: 10.1016/j.bios.2019.111944] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
Single-molecule biosensors serve the unmet need for real time detection of individual biological molecules in the molecular crowd with high specificity and accuracy, uncovering unique properties of individual molecules which are hidden when measured using ensemble averaging methods. Measuring a signal generated by an individual molecule or its interaction with biological partners is not only crucial for early diagnosis of various diseases such as cancer and to follow medical treatments but also offers a great potential for future point-of-care devices and personalized medicine. This review summarizes and discusses recent advances in nanosensors for both in vitro and in vivo detection of biological molecules offering single-molecule sensitivity. In the first part, we focus on label-free platforms, including electrochemical, plasmonic, SERS-based and spectroelectrochemical biosensors. We review fluorescent single-molecule biosensors in the second part, highlighting nanoparticle-amplified assays, digital platforms and the utilization of CRISPR technology. We finally discuss recent advances in the emerging nanosensor technology of important biological species as well as future perspectives of these sensors.
Collapse
Affiliation(s)
- Namik Akkilic
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Stefan Geschwindner
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
20
|
Su Y, Zhang Q, Miao X, Wen S, Yu S, Chu Y, Lu X, Jiang LP, Zhu JJ. Spatially Engineered Janus Hybrid Nanozyme toward SERS Liquid Biopsy at Nano/Microscales. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41979-41987. [PMID: 31621282 DOI: 10.1021/acsami.9b17618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials with intrinsic enzyme-mimicking properties (nanozymes) have been widely considered as artificial enzymes in biomedicine. However, manipulating inorganic nanozymes for multivariant targeted bioanalysis is still challenging because of the insufficient catalytic efficiency and biological blocking effect. Here, we rationally designed a spatially engineered hollow Janus hybrid nanozyme vector (h-JHNzyme) based on the bifacial modulation of Ag-Au nanocages. The silver face inside the h-JHNzyme served as an interior gate to promote the enzymatic activity of the Ag-Au nanozyme, whereas two-dimensional DNAzyme-motif nanobrushes deposited on the exterior surface of the h-JHNzyme endowed it with the targeting function and tremendously enhanced the peroxidase-mimicking activity. We demonstrated that the spatially separated modulation of the h-JHNzyme propelled it as a powerful "all-in-one" enzymatic vector with excellent biocompatibility, specific vectorization, remarkable enzymatic performance, and clinical practicability. Further, we programmed it into a stringent catalytic surface-enhanced Raman scattering (SERS) liquid biopsy platform to trace multidimensional tumor-related biomarkers, such as microRNAs and circulating tumor cells, with a limit of detection of fM and single cell level, respectively. The developed enzymatic platform showed great potential in facilitating reliable quantitative SERS liquid biopsy for on-demand clinical diagnosis.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xuran Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Shengping Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Sha Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Yanxin Chu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
21
|
Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol Adv 2019; 37:107440. [PMID: 31476421 DOI: 10.1016/j.biotechadv.2019.107440] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Infectious diseases such as HIV-1/AIDS, tuberculosis (TB), hepatitis B (HBV), and malaria still exert a tremendous health burden on the developing world, requiring rapid, simple and inexpensive diagnostics for on-site diagnosis and treatment monitoring. However, traditional diagnostic methods such as nucleic acid tests (NATs) and enzyme linked immunosorbent assays (ELISA) cannot be readily implemented in point-of-care (POC) settings. Recently, plasmonic-based biosensors have emerged, offering an attractive solution to manage infectious diseases in the developing world since they can achieve rapid, real-time and label-free detection of various pathogenic biomarkers. Via the principle of plasmonic-based optical detection, a variety of biosensing technologies such as surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), colorimetric plasmonic assays, and surface enhanced Raman spectroscopy (SERS) have emerged for early diagnosis of HIV-1, TB, HBV and malaria. Similarly, plasmonic-based colorimetric assays have also been developed with the capability of multiplexing and cellphone integration, which is well suited for POC testing in the developing world. Herein, we present a comprehensive review on recent advances in surface chemistry, substrate fabrication, and microfluidic integration for the development of plasmonic-based biosensors, aiming at rapid management of infectious diseases at the POC, and thus improving global health.
Collapse
|
22
|
A supersensitive MSPQC bacterium sensor based on 16S rRNA and “DNA-RNA switch”. Biosens Bioelectron 2019; 138:111302. [DOI: 10.1016/j.bios.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
|
23
|
Gorgannezhad L, Stratton H, Nguyen NT. Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. MICROMACHINES 2019; 10:E408. [PMID: 31248141 PMCID: PMC6630468 DOI: 10.3390/mi10060408] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective bacterial detection is a hot topic, because the progress in this research area has had a broad range of applications. Novel and innovative strategies for detection and identification of bacterial nucleic acids are important for practical applications. Microfluidics is an emerging technology that only requires small amounts of liquid samples. Microfluidic devices allow for rapid advances in microbiology, enabling access to methods of amplifying nucleic acid molecules and overcoming difficulties faced by conventional. In this review, we summarize the recent progress in microfluidics-based polymerase chain reaction devices for the detection of nucleic acid biomarkers. The paper also discusses the recent development of isothermal nucleic acid amplification and droplet-based microfluidics devices. We discuss recent microfluidic techniques for sample preparation prior to the amplification process.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| |
Collapse
|
24
|
Cao T, Wang Y, Zhao LL, Wang Y, Tao Y, Heyman JA, Weitz DA, Zhou YL, Zhang XX. A simple mix-and-read bacteria detection system based on a DNAzyme and a molecular beacon. Chem Commun (Camb) 2019; 55:7358-7361. [DOI: 10.1039/c9cc03746b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A simple improved mix-and-read method for the detection of bacteria is developed based on a DNAzyme and a molecular beacon.
Collapse
Affiliation(s)
- Ting Cao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yongcheng Wang
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
- Wyss Institute for Biologically Inspired Engineering
| | - Ling-Li Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Ye Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Ye Tao
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
| | - John A. Heyman
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
- Wyss Institute for Biologically Inspired Engineering
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
25
|
Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens Bioelectron 2018; 114:52-65. [DOI: 10.1016/j.bios.2018.05.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023]
|
27
|
Zhang D, Bi H, Liu B, Qiao L. Detection of Pathogenic Microorganisms by Microfluidics Based Analytical Methods. Anal Chem 2018; 90:5512-5520. [PMID: 29595252 DOI: 10.1021/acs.analchem.8b00399] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microfluidics based biochemical analysis shows distinctive advantages for fast detection of pathogenic microorganisms. This Feature summarizes the progress in the past decade on microfluidic methods for purification and detection of pathogenic bacteria and viruses as well as their applications in food safety control, environmental monitoring, and clinical diagnosis.
Collapse
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai , China 200433
| | - Hongyan Bi
- College of Food Science and Engineering , Shanghai Ocean University , Shanghai , China 201306
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai , China 200433
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai , China 200433
| |
Collapse
|
28
|
Yang X, Dang Y, Lou J, Shao H, Jiang X. D-alanyl-D-alanine-Modified Gold Nanoparticles Form a Broad-Spectrum Sensor for Bacteria. Theranostics 2018; 8:1449-1457. [PMID: 29507633 PMCID: PMC5835949 DOI: 10.7150/thno.22540] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/23/2017] [Indexed: 02/02/2023] Open
Abstract
Rationale: Rapid and facile detection of pathogenic bacteria is challenging due to the requirement of large-scale instruments and equipment in conventional methods. We utilize D-amino acid as molecules to selectively target bacteria because bacteria can incorporate DADA in its cell wall while mammalian cells or fungi cannot. Methods: We show a broad-spectrum bacterial detection system based on D-amino acid-capped gold nanoparticles (AuNPs). AuNPs serve as the signal output that we can monitor without relying on any complex instruments. Results: In the presence of bacteria, the AuNPs aggregate and the color of AuNPs changes from red to blue. This convenient color change can distinguish between Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA). This system can be applied for detection of ascites samples from patients. Conclusion: These D-amino acid-modified AuNPs serve as a promising platform for rapid visual identification of pathogens in the clinic.
Collapse
|
29
|
Zhang X, Cui Y, Bai J, Sun Z, Ning B, Li S, Wang J, Peng Y, Gao Z. Novel Biomimic Crystalline Colloidal Array for Fast Detection of Trace Parathion. ACS Sens 2017; 2:1013-1019. [PMID: 28750527 DOI: 10.1021/acssensors.7b00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel gold doped inverse opal photonic crystal (IO PC) was successfully fabricated with combination of molecularly imprinted technical for the fast determination of parathion. First, a closest silica array arrangement behaved as the 3D photonic crystal precursors to build the opal photonic crystal (O PC). Second, the parathion-containing polymeric solution with gold nanoparticles was drawn into the 3D array cracks. After polymerization, the well-designed O PC was treated with HF solution for the etching of the silica skeleton. Finally, the template parathion was removed and the Au-MIP IO PCs were obtained. The morphology of SiO2 and Au NPs was characterized by transmission electron microscopy (TEM), and the eluted influence of the IO PCs was monitored by scanning electron microscopy (SEM). The cross-linking effect was well optimized according to the best spectrum signal of parathion. The as-synthesized Au-MIP IO PCs displayed the specificity toward parathion and the selectivity to other competitive pesticide molecules. The response time was only 5 min, and the parathion could be well detected from real water samples. The recoveries were between 95.5% and 101.5%.
Collapse
Affiliation(s)
- Xihao Zhang
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Yanguang Cui
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Jialei Bai
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Zhiyong Sun
- No. 11
Hospital
of PLA, Yining 835000, China
| | - Baoan Ning
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Shuang Li
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Jiang Wang
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Yuan Peng
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Zhixian Gao
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| |
Collapse
|
30
|
Abstract
Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.
Collapse
Affiliation(s)
- Longhua Tang
- State
Key Laboratory of Modern Optical Instrumentation, College of Optical
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jinghong Li
- Department
of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|