1
|
Hasanzadeh A, Ebadati A, Saeedi S, Kamali B, Noori H, Jamei B, Hamblin MR, Liu Y, Karimi M. Nucleic acid-responsive smart systems for controlled cargo delivery. Biotechnol Adv 2024; 74:108393. [PMID: 38825215 DOI: 10.1016/j.biotechadv.2024.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arefeh Ebadati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular and Cell Biology, University of California, Merced, Merced, USA
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kamali
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Jamei
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Pan Y, Liu J, Wang J, Gao Y, Ma N. Application of Biosensors and Biomimetic Sensors in Dairy Products Testing. J Dairy Sci 2024:S0022-0302(24)00894-4. [PMID: 38851568 DOI: 10.3168/jds.2024-24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
This article summarizes the applications of biosensors and biomimetic sensors in the detection of residues in dairy products. Biosensors utilize biological molecules such as enzymes or antibodies to detect residual substances in dairy products, demonstrating high specificity and sensitivity. Biomimetic sensors, inspired by biosensors, use synthetic materials to mimic biological sensing mechanisms, enhancing stability and reproducibility. Both sensor types have achieved significant success in detecting pesticide residues, veterinary drugs, bacteria, and other contaminants in dairy products. The applications of biological and biomimetic sensors not only improve the efficiency of residue detection in dairy products but also have the potential to reduce the time and cost of traditional methods. Their specificity and high sensitivity make them powerful tools in the dairy industry, thus contributing to ensuring the quality and safety of dairy products and meeting the growing consumer demands for health and food safety.
Collapse
Affiliation(s)
- Yinchuan Pan
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Jing Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Jianping Wang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| |
Collapse
|
3
|
Osman EA, Rynes TP, Wang YL, Mruk K, McKeague M. Non-invasive single cell aptasensing in live cells and animals. Chem Sci 2024; 15:4770-4778. [PMID: 38550682 PMCID: PMC10967030 DOI: 10.1039/d3sc05735f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024] Open
Abstract
We report a genetically encoded aptamer biosensor platform for non-invasive measurement of drug distribution in cells and animals. We combined the high specificity of aptamer molecular recognition with the easy-to-detect properties of fluorescent proteins. We generated six encoded aptasensors, showcasing the platform versatility. The biosensors display high sensitivity and specificity for detecting their specific drug target over related analogs. We show dose dependent response of biosensor performance reaching saturating drug uptake levels in individual live cells. We designed our platform for integration into animal genomes; thus, we incorporated aptamer biosensors into zebrafish, an important model vertebrate. The biosensors enabled non-invasive drug biodistribution imaging in whole animals across different timepoints. To our knowledge, this is the first example of an aptamer biosensor-expressing transgenic vertebrate that is carried through generations. As such, our encoded platform addresses the need for non-invasive whole animal biosensing ideal for pharmacokinetic-pharmacodynamic analyses that can be expanded to other organisms and to detect diverse molecules of interest.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, Faculty of Science, McGill University Montreal QC H3A 0B8 Canada
| | - Thomas P Rynes
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville NC 27834 USA
| | - Y Lucia Wang
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University Montreal QC H3G 1Y6 Canada
| | - Karen Mruk
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville NC 27834 USA
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University Montreal QC H3A 0B8 Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University Montreal QC H3G 1Y6 Canada
| |
Collapse
|
4
|
Hwang HG, Ye DY, Jung GY. Biosensor-guided discovery and engineering of metabolic enzymes. Biotechnol Adv 2023; 69:108251. [PMID: 37690614 DOI: 10.1016/j.biotechadv.2023.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
A variety of chemicals have been produced through metabolic engineering approaches, and enhancing biosynthesis performance can be achieved by using enzymes with high catalytic efficiency. Accordingly, a number of efforts have been made to discover enzymes in nature for various applications. In addition, enzyme engineering approaches have been attempted to suit specific industrial purposes. However, a significant challenge in enzyme discovery and engineering is the efficient screening of enzymes with the desired phenotype from extensive enzyme libraries. To overcome this bottleneck, genetically encoded biosensors have been developed to specifically detect target molecules produced by enzyme activity at the intracellular level. Especially, the biosensors facilitate high-throughput screening (HTS) of targeted enzymes, expanding enzyme discovery and engineering strategies with advances in systems and synthetic biology. This review examines biosensor-guided HTS systems and highlights studies that have utilized these tools to discover enzymes in diverse areas and engineer enzymes to enhance their properties, such as catalytic efficiency, specificity, and stability.
Collapse
Affiliation(s)
- Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
5
|
Wang Z, Lou X. Recent Progress in Functional-Nucleic-Acid-Based Fluorescent Fiber-Optic Evanescent Wave Biosensors. BIOSENSORS 2023; 13:bios13040425. [PMID: 37185500 PMCID: PMC10135899 DOI: 10.3390/bios13040425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Biosensors capable of onsite and continuous detection of environmental and food pollutants and biomarkers are highly desired, but only a few sensing platforms meet the "2-SAR" requirements (sensitivity, specificity, affordability, automation, rapidity, and reusability). A fiber optic evanescent wave (FOEW) sensor is an attractive type of portable device that has the advantages of high sensitivity, low cost, good reusability, and long-term stability. By utilizing functional nucleic acids (FNAs) such as aptamers, DNAzymes, and rational designed nucleic acid probes as specific recognition ligands, the FOEW sensor has been demonstrated to be a general sensing platform for the onsite and continuous detection of various targets ranging from small molecules and heavy metal ions to proteins, nucleic acids, and pathogens. In this review, we cover the progress of the fluorescent FNA-based FOEW biosensor since its first report in 1995. We focus on the chemical modification of the optical fiber and the sensing mechanisms for the five above-mentioned types of targets. The challenges and prospects on the isolation of high-quality aptamers, reagent-free detection, long-term stability under application conditions, and high throughput are also included in this review to highlight the future trends for the development of FOEW biosensors capable of onsite and continuous detection.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| |
Collapse
|
6
|
Cao X, Chen C, Zhu Q. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta 2023; 253:123977. [PMID: 36201957 DOI: 10.1016/j.talanta.2022.123977] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
In the past few years, with the in-depth research of functional nucleic acids and isothermal amplification techniques, their applications in the field of biosensing have attracted great interest. Since functional nucleic acids have excellent flexibility and convenience in their structural design, they have significant advantages as recognition elements in biosensing. At the same time, isothermal amplification techniques have higher amplification efficiency, so the combination of functional nucleic acids and isothermal amplification techniques can greatly promote the widespread application of biosensors. For the purpose of further improving the performance of biosensors, this review introduces several widely used functional nucleic acids and isothermal amplification techniques, as well as their classification, basic principles, application characteristics, and summarizes their important applications in the field of biosensing. We hope to provide some references for the design and construction of new tactics to enhance the detection sensitivity and detection range of biosensing.
Collapse
Affiliation(s)
- Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Zhang W, He Y, Feng Z, Zhang J. Recent advances of functional nucleic acid-based sensors for point-of-care detection of SARS-CoV-2. Mikrochim Acta 2022; 189:128. [PMID: 35235065 PMCID: PMC8889384 DOI: 10.1007/s00604-022-05242-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022]
Abstract
This review focuses on critical scientific barriers that the field of point-of-care (POC) testing of SARS-CoV-2 is facing and possible solutions to overcome these barriers using functional nucleic acid (FNA)-based technology. Beyond the summary of recent advances in FNA-based sensors for COVID-19 diagnostics, our goal is to outline how FNA might serve to overcome the scientific barriers that currently available diagnostic approaches are suffering. The first introductory section on the operationalization of the COVID-19 pandemic in historical view and its clinical features contextualizes essential SARS-CoV-2-specific biomarkers. The second part highlights three major scientific barriers for POC COVID-19 diagnosis, that is, the lack of a general method for (1) designing receptors of SARS-CoV-2 variants; (2) improving sensitivity to overcome false negatives; and (3) signal readout in resource-limited settings. The subsequent part provides fundamental insights into FNA and technical tricks to successfully achieve effective COVID-19 diagnosis by using in vitro selection of FNA to overcome receptor design barriers, combining FNA with multiple DNA signal amplification strategies to improve sensitivity, and interfacing FNA with portable analyzers to overcome signal readout barriers. This review concludes with an overview of further opportunities and emerging applications for FNA-based sensors against COVID-19.
Collapse
Affiliation(s)
- Wenxian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ying He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhe Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Maru B, Nadeau L, McKeague M. Enhancing CAR-T Cell Therapy with Functional Nucleic Acids. ACS Pharmacol Transl Sci 2021; 4:1716-1727. [PMID: 34927006 DOI: 10.1021/acsptsci.1c00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a relatively new form of immunotherapy that has had success in treating patients with hematologic malignancies, leading to three recent United States Food and Drug Administration approvals. However, several challenges hinder the widespread use of CAR-T therapy. Here, we review the application of functional nucleic acids such as aptamers and ribozymes as novel tools to improve a variety of steps in CAR-T cell therapy development. We critically examine key studies that highlight the benefits of functional nucleic acids at different stages of cell-based therapy and discuss the feasibility of their practical clinical application. Finally, we offer insights into potential opportunities where chemists can significantly contribute to the innovative incorporation of functional nucleic acids to overcome challenges associated with this cutting-edge immunotherapy.
Collapse
Affiliation(s)
- Bruktawit Maru
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Lea Nadeau
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Maureen McKeague
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.,Department of Chemistry, Faculty of Science, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
9
|
Spectroscopic studies upon chimeric molecular beacons with i-motif forming sequence in the loop. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Dembska A, Świtalska A, Fedoruk-Wyszomirska A, Juskowiak B. Development of fluorescence oligonucleotide probes based on cytosine- and guanine-rich sequences. Sci Rep 2020; 10:11006. [PMID: 32620895 PMCID: PMC7335195 DOI: 10.1038/s41598-020-67745-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The properties of cytosine- and guanine-rich oligonucleotides contributed to employing them as sensing elements in various biosensors. In this paper, we report our current development of fluorescence oligonucleotide probes based on i-motif or G-quadruplex forming oligonucleotides for cellular measurements or bioimaging applications. Additionally, we also focus on the spectral properties of the new fluorescent silver nanoclusters based system (ChONC12-AgNCs) that is able to anchor at the Langmuir monolayer interface, which is mimicking the surface of living cells membrane.
Collapse
Affiliation(s)
- Anna Dembska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
| | - Angelika Świtalska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
| | | | - Bernard Juskowiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| |
Collapse
|
11
|
|
12
|
Low-cost and user-friendly biosensor to test the integrity of mRNA molecules suitable for field applications. Biosens Bioelectron 2019; 137:199-206. [PMID: 31100599 DOI: 10.1016/j.bios.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
The use of mRNA in biotechnology has expanded with novel applications such as vaccines and therapeutic mRNA delivery recently demonstrated. For mRNA to be used in patients, quality control assays will need to be routinely established. Currently, there is a gap between the highly sophisticated RNA integrity tests available and broader application of mRNA-based products by non-specialist users, e.g. in mass vaccination campaigns. Therefore, the aim of this work was to develop a low-cost biosensor able to test the integrity of a mRNA molecule with low technological requirements and easy end-user application. The biosensor is based on a bi-functional fusion protein, composed by the λN peptide that recognizes its cognate aptamer encoded on the 5' end of the RNA under study and β-lactamase, which is able to produce a colorimetric response through a simple test. We propose two different mechanisms for signal processing adapted to two levels of technological sophistication, one based on spectrophotometric measurements and other on visual inspection. We show that the proposed λN-βLac chimeric protein specifically targets its cognate RNA aptamer, boxB, using both gel shift and biolayer interferometry assays. More importantly, the results presented confirm the biosensor performs reliably, with a wide dynamic range and a proportional response at different percentages of full-length RNA, even when gene-sized mRNAs were used. Thus, the features of the proposed biosensor would allow to end-users of products such as mRNA vaccines to test the integrity of the product before its application in a low-cost fashion, enabling a more reliable application of these products.
Collapse
|
13
|
Wang T, Yin H, Zhang Y, Wang L, Du Y, Zhuge Y, Ai S. Electrochemical aptasensor for ampicillin detection based on the protective effect of aptamer-antibiotic conjugate towards DpnII and Exo III digestion. Talanta 2019; 197:42-48. [PMID: 30771956 DOI: 10.1016/j.talanta.2019.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 01/21/2023]
Abstract
A simple and sensitive electrochemical method was developed for ampicillin detection based on the protective effect of aptamer-antibiotic conjugate towards endonuclease DpnII activity. Without ampicillin, DNA aptamer firstly hybridizes with the capture probe to form double strand DNA (dsDNA) structure. Then, dsDNA is cleaved by DpnII restriction endonuclease to form two dsDNA fragments. In which, one fragment is released from electrode surface and the other fragment is kept on electrode surface. Then, the dsDNA fragment kept on electrode surface is further digested by Exo III, which leads to the release of the dsDNA fragment from electrode surface. Thus, the electrochemical signal increases due to the decrease of the interface electron transfer resistance causing by the release of dsDNA from electrode surface. However, the formation of dsDNA is blocked when forming aptamer-ampicillin conjugate, which makes the obstruction of the digestion of DpnII and Exo III towards capture probe. Thus, a weak electrochemical signal is achieved due to the increase of the interface electron transfer resistance causing by the dsDNA on the electrode surface. Based on the relationship between ampicillin concentration and the decrease of the electrochemical signal, antibiotic is detected with low detection limit of 32 pM under optimal conditions, which is lower than the mandated maximum residue limit of European Union (9.93 nM). The developed method also presents good detection selectivity. Moreover, the applicability is confirmed by detecting antibiotic in milk and water samples with satisfactory results.
Collapse
Affiliation(s)
- Tingting Wang
- College of Resources and Environment, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China.
| | - Yuting Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| | - Linkui Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| | - Yue Du
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| | - Yuping Zhuge
- College of Resources and Environment, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| |
Collapse
|
14
|
Zhou Y, Yin H, Wang Y, Sui C, Wang M, Ai S. Electrochemical aptasensors for zeatin detection based on MoS 2 nanosheets and enzymatic signal amplification. Analyst 2018; 143:5185-5190. [PMID: 30264075 DOI: 10.1039/c8an01356j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A simple and sensitive electrochemical aptasensor was constructed for zeatin detection, where MoS2 nanosheets were used as the immobilization matrix for gold nanoparticles (AuNPs), and AuNPs were employed as the immobilization matrix to probe DNA. After the aptamer DNA and assist DNA hybridized with probe DNA, Y-type DNA can be formed with two biotins at the terminals of aptamer DNA. Then, avidin modified alkaline phosphatase (Avidin-ALP) can be further modified on the electrode surface through the biotin and avidin interaction. Under the catalytic effect of ALP, p-nitrophenylphosphate disodium (PNPP) can be hydrolyzed to produce p-nitrophenol (PNP). However, in the presence of zeatin, the formed Y-type DNA can be destroyed due to the formation of the zeatin-aptamer conjugate, which further reduces the amount of PNP and leads to the decrease of the oxidation signal of PNP. Under the optimum conditions, the change of the oxidation peak current of PNP was inversely proportional to the logarithm value of zeatin concentration in the range of 50 pM-50 nM. The detection limit was calculated to be 16.6 pM. This electrochemical method also showed good detection selectivity and stability. The potential applicability of this method was proved by detecting zeatin in real samples.
Collapse
Affiliation(s)
- Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, P.R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens Bioelectron 2018; 122:263-283. [PMID: 30268964 DOI: 10.1016/j.bios.2018.09.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022]
Abstract
Antibiotics are a type of antimicrobial drug with the ubiquitous presence in foodstuff that effectively applied to treat the diseases and promote the animal growth worldwide. Chloramphenicol as one of the antibiotics with the broad action spectrum against Gram-positive and Gram-negative bacteria is widely applied for the effective treatment of infectious diseases in humans and animals. Unfortunately, the serious side effects of chloramphenicol, such as aplastic anemia, kidney damage, nausea, and diarrhea restrict its application in foodstuff and biomedical fields. Development of the sufficiently sensitive methods to detect chloramphenicol residues in food and clinical diagnosis seems to be an essential demand. Biosensors have been introduced as the promising tools to overcome the requirement. As one of the newest types of the biosensors, aptamer-based biosensors (aptasensors) are the efficient sensing platforms for the chloramphenicol monitoring. In the present review, we summarize the recent achievements of the accessible aptasensors for qualitative detection and quantitative determination of chloramphenicol as a candidate of the antibiotics. The present chloramphenicol aptasensors can be classified in two main optical and electrochemical categories. Also, the other formats of the aptasensing assays like the high performance liquid chromatography (HPLC) and microchip electrophoresis (MCE) have been reviewed. The enormous interest in utilizing the diverse nanomaterials is also highlighted in the fabrication of the chloramphenicol aptasensors. Finally, some results are presented based on the advantages and disadvantages of the studied aptasensors to achieve a promising perspective for designing the novel antibiotics test kits.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Verdian
- Department of food safety and quality control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Rouhbakhsh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Duan Y, Yuan T, Xu Y, Zhao M, Guo B, Cheng W, Ding S. Detection of BCR/ABL Fusion Gene Based on MNAzyme-mediated Target-cycling and ssDNA-assisted Cascade Hybridization Reaction. ELECTROANAL 2018. [DOI: 10.1002/elan.201800254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yu Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); College of Laboratory Medicine, Chongqing Medical University; Chongqing 400016 China
| | - Taixian Yuan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); College of Laboratory Medicine, Chongqing Medical University; Chongqing 400016 China
| | - Yongjie Xu
- Department of Laboratory Medicine; Guizhou Provincial People's Hospital; Guiyang 550002 China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); College of Laboratory Medicine, Chongqing Medical University; Chongqing 400016 China
| | - Bin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); College of Laboratory Medicine, Chongqing Medical University; Chongqing 400016 China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection; The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016 China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); College of Laboratory Medicine, Chongqing Medical University; Chongqing 400016 China
| |
Collapse
|
17
|
Carpenter AC, Paulsen IT, Williams TC. Blueprints for Biosensors: Design, Limitations, and Applications. Genes (Basel) 2018; 9:E375. [PMID: 30050028 PMCID: PMC6115959 DOI: 10.3390/genes9080375] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Biosensors are enabling major advances in the field of analytics that are both facilitating and being facilitated by advances in synthetic biology. The ability of biosensors to rapidly and specifically detect a wide range of molecules makes them highly relevant to a range of industrial, medical, ecological, and scientific applications. Approaches to biosensor design are as diverse as their applications, with major biosensor classes including nucleic acids, proteins, and transcription factors. Each of these biosensor types has advantages and limitations based on the intended application, and the parameters that are required for optimal performance. Specifically, the choice of biosensor design must consider factors such as the ligand specificity, sensitivity, dynamic range, functional range, mode of output, time of activation, ease of use, and ease of engineering. This review discusses the rationale for designing the major classes of biosensor in the context of their limitations and assesses their suitability to different areas of biotechnological application.
Collapse
Affiliation(s)
- Alexander C Carpenter
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| |
Collapse
|
18
|
Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H. Label-free Electrochemical Bisphenol A Aptasensor Based on Designing and Fabrication of a Magnetic Gold Nanocomposite. ELECTROANAL 2018. [DOI: 10.1002/elan.201800158] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mehdi Baghayeri
- Department of Chemistry, Faculty of Science; Hakim Sabzevari University; PO. Box 397 Sabzevar Iran
| | - Reza Ansari
- Department of Chemistry, Faculty of Science; University of Guilan; Namjoo Street PO. Box 1914 Rasht Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science; University of Guilan; Namjoo Street PO. Box 1914 Rasht Iran
| | - Iman Razavipanah
- Department of Chemistry, Faculty of Sciences; Ferdowsi University of Mashhad; Mashhad Iran
| | - Hojat Veisi
- Department of Chemistry; Payame Noor University; 19395-4697 Tehran Iran
| |
Collapse
|
19
|
Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe 3O 4@gold nanocomposite. Mikrochim Acta 2018; 185:320. [PMID: 29881880 DOI: 10.1007/s00604-018-2838-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/06/2018] [Indexed: 01/11/2023]
Abstract
The present study describes an electrochemical aptamer-based method for the determination of bisphenol A (BPA). It is making use of gold nanoparticles (AuNPs) immobilized on a conjugate between multiwalled carbon nanotubes and thiol-functionalized magnetic nanoparticles (MWCNT/Fe3O4-SH) that are modified with an aptamer. The nanocomposite was characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, elemental mapping analysis and energy dispersive X-ray diffraction. The aptasensor, typically operated at 0.20 V (vs. Ag/AgCl), has a linear response in the 0.1 to 8 nM BPA concentration range, a low detection limit (0.03 nM), and high sensitivity (86.43 μA nM-1 cm-2). Voltammetric experiments were performed by using the hexacyanoferrate redox system as an electrochemical probe. The results indicate that the presence of AuNPs, magnetic nanoparticles and MWCNTs results a synergistic electrochemical augmentation. The method is highly selective, sensitive, efficient and environmentally friendly. The method was successfully applied to the determination of BPA in spiked real samples. Graphical abstract Aptasensor fabricated by MWCNT/Fe3O4-SH@Au nanocomposite and anti-BPA aptamer. The conformation of aptamer change after BPA binding, triggering a decrease in the electron transfer of Fe(CN)63-/4- on the electrode surface. The observed decline was detectable as a function of BPA concentration.
Collapse
|
20
|
Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron 2018; 116:130-147. [PMID: 29879539 DOI: 10.1016/j.bios.2018.05.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
The serious threats of mercury (Hg2+) and lead (Pb2+) ions for the public health makes it important to achieve the detection methods of the ions with high affinity and specificity. Metal ions usually coexist in some environment and foodstuff or clinical samples. Therefore, it is very necessary to develop a fast and simple method for simultaneous monitoring the amount of metal ions, especially when Hg2+ and Pb2+ coexist. DNAzyme-based biosensors and aptasensors have been highly regarded for this purpose as two main groups of the functional nucleic acid (FNA)-based biosensors. In this review, we summarize the recent achievements of functional nucleic acid-based biosensors for the simultaneous detection of Hg2+ and Pb2+ ions in two main optical and electrochemical groups. The tremendous interest in utilizing the various nanomaterials is also highlighted in the fabrication of the FNA-based biosensors. Finally, some results are presented based on the advantages and disadvantages of the studied FNA-based biosensors to compare their validation.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
21
|
A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification. Biosens Bioelectron 2018; 102:652-660. [DOI: 10.1016/j.bios.2017.12.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
|
22
|
Chen S, Li Q, Wang X, Yang YW, Gao H. Multifunctional bacterial imaging and therapy systems. J Mater Chem B 2018; 6:5198-5214. [DOI: 10.1039/c8tb01519h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced antibacterial materials are classified and introduced, and their applications in multimodal imaging and therapy are reviewed.
Collapse
Affiliation(s)
- Shuai Chen
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Qiaoying Li
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xin Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying-Wei Yang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
23
|
Neves MAD, Shoara AA, Reinstein O, Abbasi Borhani O, Martin TR, Johnson PE. Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer. ACS Sens 2017; 2:1539-1545. [PMID: 28929744 DOI: 10.1021/acssensors.7b00619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding how aptamer structure and function are related is crucial in the design and development of aptamer-based biosensors. We have analyzed a series of cocaine-binding aptamers with different lengths of their stem 1 in order to understand the role that this stem plays in the ligand-induced structure-switching binding mechanism utilized in many of the sensor applications of this aptamer. In the cocaine-binding aptamer, the length of stem 1 controls whether the structure-switching binding mechanism for this aptamer occurs or not. We varied the length of stem 1 from being one to seven base pairs long and found that the structural transition from unfolded to folded in the unbound aptamer is when the aptamer elongates from 3 to 4 base pairs in stem 1. We then used this knowledge to achieve new binding selectivity of this aptamer for quinine over cocaine by using an aptamer with a stem 1 two base pairs long. This selectivity is achieved by means of the greater affinity quinine has for the aptamer compared with cocaine. Quinine provides enough free energy to both fold and bind the 2-base pair-long aptamer while cocaine does not. This tuning of binding selectivity of an aptamer by reducing its stability is likely a general mechanism that could be used to tune aptamer specificity for tighter binding ligands.
Collapse
Affiliation(s)
- Miguel A. D. Neves
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Aron A. Shoara
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Oren Reinstein
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Okty Abbasi Borhani
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Taylor R. Martin
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Philip E. Johnson
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
24
|
McKeague M. Aptamers for DNA Damage and Repair. Int J Mol Sci 2017; 18:ijms18102212. [PMID: 29065503 PMCID: PMC5666892 DOI: 10.3390/ijms18102212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
DNA is damaged on a daily basis, which can lead to heritable mutations and the activation of proto-oncogenes. Therefore, DNA damage and repair are critical risk factors in cancer, aging and disease, and are the underlying bases of most frontline cancer therapies. Much of our current understanding of the mechanisms that maintain DNA integrity has been obtained using antibody-based assays. The oligonucleotide equivalents of antibodies, known as aptamers, have emerged as potential molecular recognition rivals. Aptamers possess several ideal properties including chemical stability, in vitro selection and lack of batch-to-batch variability. These properties have motivated the incorporation of aptamers into a wide variety of analytical, diagnostic, research and therapeutic applications. However, their use in DNA repair studies and DNA damage therapies is surprisingly un-tapped. This review presents an overview of the progress in selecting and applying aptamers for DNA damage and repair research.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| |
Collapse
|
25
|
Synthesis of innovative biochemical active mixed ligand metal(II) complexes with thiazole containing Schiff base: In vitro
antimicrobial profile. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|