1
|
Wang X, Wang Y, Liu Y, Cao X, Zhang F, Xia J, Wang Z. MOF-derived porous carbon nanozyme-based flexible electrochemical sensing system for in situ and real-time monitoring of H 2O 2 released from cells. Talanta 2024; 266:125132. [PMID: 37651906 DOI: 10.1016/j.talanta.2023.125132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
A novel flexible electrochemical sensor based on porous carbon nanosheets (PCNSs) nanozyme has been constructed for in situ and real-time monitoring of H2O2 released by cells. The PCNSs are prepared with the integration of thermal transformation, thermal activation and sonochemical exfoliation by using zeolitic imidazolate frameworks as template. The PCNSs exhibit high electrical conductivity, electrochemical activity and peroxidase-like catalytic properties, which is beneficial to H2O2 assay. With the transfer printing method, the flexible electrochemical sensor is obtained, which has excellent performances for H2O2 electrochemical detecting with wide linear range from 1 μM to 20 mM and a low detection limit of 0.76 μM. Owing to the great biocompatibility, the flexible sensor guarantees the growth of living cells for 72 h and realizes in situ and real-time monitoring the release of H2O2 from HeLa cells. The strategy of porous nanozyme preparation and flexible sensor construction provided a promising way for in situ and real-time assay of small molecules in the cellular microenvironment.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Yanan Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Yali Liu
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266000, PR China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
2
|
Microporous PdCuB nanotag-based electrochemical aptasensor with Au@CuCl 2 nanowires interface for ultrasensitive detection of PD-L1-positive exosomes in the serum of lung cancer patients. J Nanobiotechnology 2023; 21:86. [PMID: 36906540 PMCID: PMC10008610 DOI: 10.1186/s12951-023-01845-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Programmed cell death ligand 1 protein-positive (PD-L1+) exosomes have been found to be a potential biomarker for the diagnosis of non-small cell lung cancer (NSCLC). However, the development of highly sensitive detection technique for PD-L1+ exosomes is still a challenge in clinical applications. Herein, a sandwich electrochemical aptasensor based on ternary metal-metalloid palladium-copper-boron alloy microporous nanospheres (PdCuB MNs) and Au@CuCl2 nanowires (NWs) was designed for the detection of PD-L1+ exosomes. The excellent peroxidase-like catalytic activity of PdCuB MNs and the high conductivity of Au@CuCl2 NWs endow the fabricated aptasensor with intense electrochemical signal, thus enabling the detection of low abundance exosomes. The analytical results revealed that the aptasensor maintained favorable linearity over a wide concentration range of 6 orders of magnitude and reached a low detection limit of 36 particles/mL. The aptasensor is successfully applied to the analysis of complex serum samples and achieves the accurate identification of clinical NSCLC patients. Overall, the developed electrochemical aptasensor provides a powerful tool for early diagnosis of NSCLC.
Collapse
|
3
|
Liu L, Liang X, Li Z, Zhang M, Gao M. Detection of ATP in cancer cells with a label-free fluorescent aptasensor. Nanomedicine (Lond) 2022; 17:765-774. [PMID: 35642581 DOI: 10.2217/nnm-2021-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a new detection technique for ATP in cancer cells using fluorescent biosensing. Materials & methods: This research presents a new label-free fluorescent aptasensor for ATP measurement that incorporates a DNA aptamer, SYBR Gold and single-walled carbon nanohorns. Results: The aptasensor showed selectivity toward ATP and a low limit of detection (37.6 nM). The linear detection range was 100-50,000 nM, and the fluorescence intensity and ATP concentration logarithm showed an excellent linear correlation (R2 = 0.9924). Conclusion: The developed aptasensor may be used to detect cellular ATP in cancer cells and could be employed for biological sample analysis. The benefits of the aptasensor, such as its simplicity, speed, cost-effectiveness, specificity and sensitivity, give it promising implications as a potentially adaptable sensing platform.
Collapse
Affiliation(s)
- Liying Liu
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiuju Liang
- Department of Oncology, No. 960 Hospital, The People's Liberation Army, Jinan, 250031, China
| | - Zhaoming Li
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - MingZhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Gao
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
4
|
Xiong L, Zhang Y, Wu S, Chen F, Lei L, Yu L, Li C. Co 3O 4 Nanoparticles Uniformly Dispersed in Rational Porous Carbon Nano-Boxes for Significantly Enhanced Electrocatalytic Detection of H 2O 2 Released from Living Cells. Int J Mol Sci 2022; 23:ijms23073799. [PMID: 35409159 PMCID: PMC8999007 DOI: 10.3390/ijms23073799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
A facile and ingenious method to chemical etching-coordinating a metal-organic framework (MOF) followed by an annealing treatment was proposed to prepare Co3O4 nanoparticles uniformly dispersed in rational porous carbon nano-boxes (Co3O4@CNBs), which was further used to detect H2O2 released from living cells. The Co3O4@CNBs H2O2 sensor delivers much higher sensitivity than non-etching/coordinating Co3O4, offering a limit of detection of 2.32 nM. The wide working range covers 10 nM-359 μM H2O2, while possessing good selectivity and excellent reproducibility. Moreover, this biosensor was used to successfully real-time detect H2O2 released from living cells, including both healthy and tumor cells. The excellent performance holds great promise for Co3O4@CNBs’s applications in electrochemical biomimetic sensing, particularly real-time monitor H2O2 released from living cells.
Collapse
Affiliation(s)
- Lulu Xiong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China; (L.X.); (Y.Z.); (S.W.); (F.C.); (L.L.)
| | - Yuanyuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China; (L.X.); (Y.Z.); (S.W.); (F.C.); (L.L.)
| | - Shiming Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China; (L.X.); (Y.Z.); (S.W.); (F.C.); (L.L.)
| | - Feng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China; (L.X.); (Y.Z.); (S.W.); (F.C.); (L.L.)
| | - Lingli Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China; (L.X.); (Y.Z.); (S.W.); (F.C.); (L.L.)
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China; (L.X.); (Y.Z.); (S.W.); (F.C.); (L.L.)
- Correspondence: (L.Y.); (C.L.)
| | - Changming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China; (L.X.); (Y.Z.); (S.W.); (F.C.); (L.L.)
- Institute for Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
- Institute of Advanced Cross-Field Science and College of Life Science, Qingdao University, Qingdao 266071, China
- Correspondence: (L.Y.); (C.L.)
| |
Collapse
|
5
|
Song R, Li Z, Mishra RK, Wei P, Zhao X, Zhu Z. Octahedral Cuprous Oxide Decorated Flexible Reduced Graphene Oxide Paper for Food Sensing Application. ELECTROANAL 2021. [DOI: 10.1002/elan.202100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Runmin Song
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- School of Environmental and Materials Engineering Shanghai Polytechnic University 2360 Jinhai Road Shanghai 201209 China
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- School of Environmental and Materials Engineering Shanghai Polytechnic University 2360 Jinhai Road Shanghai 201209 China
| | - Rupesh K. Mishra
- Amity Institute of Biotechnology Amity University Rajasthan Jaipur 303002 India
| | - Pengju Wei
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- School of Environmental and Materials Engineering Shanghai Polytechnic University 2360 Jinhai Road Shanghai 201209 China
| | - Xueling Zhao
- School of Environmental and Materials Engineering Shanghai Polytechnic University 2360 Jinhai Road Shanghai 201209 China
| | - Zhigang Zhu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- School of Environmental and Materials Engineering Shanghai Polytechnic University 2360 Jinhai Road Shanghai 201209 China
| |
Collapse
|
6
|
Guo Z, Tian J, Cui C, Wang Y, Yang H, Yuan M, Yu H. A label-free aptasensor for turn-on fluorescent detection of ochratoxin a based on SYBR gold and single walled carbon nanohorns. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107741] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Murphy M, Theyagarajan K, Thenmozhi K, Senthilkumar S. Direct electrochemistry of covalently immobilized hemoglobin on a naphthylimidazolium butyric acid ionic liquid/MWCNT matrix. Colloids Surf B Biointerfaces 2021; 199:111540. [PMID: 33383549 DOI: 10.1016/j.colsurfb.2020.111540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 01/15/2023]
Abstract
Monitoring the concentration levels of hydrogen peroxide (H2O2) is significant in both clinical and industrial applications. Herein, we develop a facile biosensor for the detection of H2O2 based on direct electron transfer of hemoglobin (Hb), which was covalently immobilized on a hydrophobic naphthylimidazolium butyric acid ionic liquid (NIBA-IL) over a multiwalled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) to obtain an Hb/NIBA-IL/MWCNT/GCE. Highly water-soluble Hb protein was firmly immobilized on NIBA-IL via stable amide bonding between the free NH2 groups of Hb and COOH groups of NIBA-IL via EDC/NHS coupling. Thus fabricated biosensor showed a well resolved redox peak with a cathodic peak potential (Epc) at -0.35 V and anodic peak potential (Epa) at -0.29 V with a formal potential (E°') of -0.32 V, which corresponds to the deeply buried FeIII/FeII redox centre of Hb, thereby direct electrochemistry of Hb was established. Further, the modified electrode demonstrated very good electrocatalytic activity towards H2O2 reduction and showed a wide linear range of detection from 0.01 to 6.3 mM with a limit of detection and sensitivity of 3.2 μM and 111 μA mM-1 cm-2, respectively. Moreover, the developed biosensor displayed high operational stability under dynamic conditions as well as during continuous potential cycles and showed reliable reproducibility. The superior performance of the fabricated biosensor is attributed to the effective covalent immobilization of Hb on the newly developed highly conducting and biocompatible NIBA-IL/MWCNT/GCE platform.
Collapse
Affiliation(s)
- Manoharan Murphy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - K Theyagarajan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
8
|
Hao B, Song T, Ye M, Liu X, Qiu J, Huang X, Lu G, Qian W. Gold/SH-functionalized nanographene oxide/polyamidamine/poly(ethylene glycol) nanocomposites for enhanced non-enzymatic hydrogen peroxide detection. Biomater Sci 2020; 8:6037-6044. [PMID: 32996946 DOI: 10.1039/d0bm01286f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrogen peroxide (H2O2) is an important mediator in biological medicine, disease diagnosis and environmental analyses and therefore it is essential to develop a detection approach for H2O2 in physical environments. Herein, we designed and prepared a series of AuNP-containing nanocomposites (AuNPs@NGO-PEG, AuNPs@G1-PAMAM-NGO-PEG and AuNPs@G3-PAMAM-NGO-PEG) for enhanced non-enzymatic H2O2 detection. We firstly demonstrated functionalized nanographene oxide (NGO) based materials, which combined advantages of biocompatible poly(ethylene glycol) (PEG), hyperbranched polyamidamine (PAMAM) dendrimer and thiol active site, as compatible platforms. Gold nanoparticles (AuNPs) were then aptly in situ grown on these functionalized NGO based materials via the reduction of HAuCl4 under mild conditions, i.e. AuNPs@NGO-PEG, AuNPs@G1-PAMAM-NGO-PEG and AuNPs@G3-PAMAM-NGO-PEG nanocomposites, which possess stable and uniform AuNPs standing on the functionalized NGO sheets. For H2O2 detection, these nanocomposites were cast on a glassy carbon electrode (GCE) conveniently, i.e. GCE/AuNPs@NGO-PEG, GCE/AuNPs@G1-PAMAM-NGO-PEG and GCE/AuNPs@G3-PAMAM-NGO-PEG. It is evident that these GCEs could be applied as efficient non-enzymatic H2O2 detectors resulting from the corresponding cyclic voltammetric curves and typical ready-state amperometric curves. GCE/AuNPs@G1-PAMAM-NGO-PEG exhibited the fastest electron transfer rate among these modified GCEs. We envisage that these GCEs could provide efficient sensors for H2O2 detection and a new strategy for sensor design.
Collapse
Affiliation(s)
- Bingjie Hao
- Department of Stomatology, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai 200032, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang Y, Zhang H, Wang Z, Li X, Abdelsamie Abdelrahim Abdelsamie A, Yuan X, Fan X, Zhang R, Chang H. Highly Sensitive Electrochemical Detection of Reactive Oxygen Species in Living Cancer Cells Using Monolithic Metallic Foam Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Yang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Ministry of Education Key Laboratory of Micro/Nano Systems for AerospaceNorthwestern Polytechnical University Xi'an 710072 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
- State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical University Xi'an 710072 China
| | - Heng Zhang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| | - Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology School of Life SciencesNorthwestern Polytechnical University
| | - Xuepeng Li
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
| | | | - Xichen Yuan
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
- Key Laboratory for Space Bioscience and Biotechnology School of Life SciencesNorthwestern Polytechnical University
| | - Xiaomeng Fan
- State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical University Xi'an 710072 China
| | - Ruirong Zhang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| | - Honglong Chang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| |
Collapse
|
10
|
Li M, Lv J, Wang S, Wang J, Lin Y. Expanded mesoporous silica-encapsulated ultrasmall Pt nanoclusters as artificial enzymes for tracking hydrogen peroxide secretion from live cells. Anal Chim Acta 2020; 1104:180-187. [PMID: 32106950 DOI: 10.1016/j.aca.2020.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023]
Abstract
Design of synthetic structures that possess the similar functions to natural enzymes held great promise in environmental detection and biomedical application. Herein, a new concept for the fabrication of solid-supported catalysts as peroxidase mimic have been proposed to realize high-catalytic activity and stability by utilizing expanded mesoporous silica (EMSN)-encapsulated Pt nanoclusters. Compared with PtNCs, the introduction of amino group modified EMSN would enrich H2O2 on the surface of PtNCs and increase the catalytic sites for H2O2 decomposition, which gave rise to the higher catalytic activity of EMSN-PtNCs over a broad pH range, especially in weakly acidic and neural solutions. This would facilitate their applications for real-time monitoring the secretion of H2O2 from living cancer cells stimulated by various anticancer drugs. Our findings not only pave the way to use porous matrix as the structural component for the design of the biomimetic catalysts, but also provide a simple and reliable platform to monitor H2O2 released from living cells in real time, which holds great potential for elucidating the biological roles of H2O2 and underlying molecular mechanisms of drug cytotoxicity as well as drug therapeutic effects.
Collapse
Affiliation(s)
- Meng Li
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuangling Wang
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Wang
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yulong Lin
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
11
|
Sanjuan-Alberte P, Saleh E, Shaw AJ, Lacalendola N, Willmott G, Vaithilingam J, Alexander MR, Hague RJM, Rawson FJ. Remotely Controlled in Situ Growth of Silver Microwires Forming Bioelectronic Interfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8928-8936. [PMID: 30735349 DOI: 10.1021/acsami.8b22075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is a pressing need to advance our ability to construct three-dimensional (3D) functional bioelectronic interfaces. Additionally, to ease the transition to building cellular electronic systems, a remote approach to merge electrical components with biology is desirable. By combining 3D digital inkjet printing with bipolar electrochemistry, we remotely control and fabricate conductive wires, forming a first of its kind contactless bionic manufacturing procedure. It enables controlled fabrication of conductive wires in a three-dimensional configuration. Moreover, we demonstrate that this technology could be used to grow and interface conductive conduits in situ with mammalian cells, offering a new strategy to engineering bioelectronic interfaces. This represents a step change in the production of functional complex circuitry and considerably increases the manufacturing capabilities of merging cells with electronics. This approach provides a platform to construct bioelectronics in situ offering a potential paradigm shift in the methods for building bioelectronics with potential applications in biosensing and bioelectronic medicine.
Collapse
Affiliation(s)
| | | | | | - Nicola Lacalendola
- The MacDiarmid Institute for Advanced Materials and Technology, Department of Physics and Chemistry , The University of Auckland , Auckland 1010 , New Zealand
| | - Geoff Willmott
- The MacDiarmid Institute for Advanced Materials and Technology, Department of Physics and Chemistry , The University of Auckland , Auckland 1010 , New Zealand
| | | | | | | | | |
Collapse
|
12
|
Li C, Wu R, Zou J, Zhang T, Zhang S, Zhang Z, Hu X, Yan Y, Ling X. MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells. Biosens Bioelectron 2018; 116:81-88. [DOI: 10.1016/j.bios.2018.05.045] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 02/01/2023]
|
13
|
Mazaheri M, Simchi A, Aashuri H. Enzymatic biosensing by covalent conjugation of enzymes to 3D-networks of graphene nanosheets on arrays of vertically aligned gold nanorods: Application to voltammetric glucose sensing. Mikrochim Acta 2018; 185:178. [PMID: 29594471 DOI: 10.1007/s00604-018-2722-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 01/26/2023]
Abstract
The authors demonstrate efficient direct electron transfer from the enzyme glucose oxidase to vertically aligned gold nanorods with a diameter of ~160 nm and a length of ~2 μm that are covalently linkage to a 3-dimensional network of reduced graphene oxide nanosheets. The assembly can be prepared by a 2-step electrochemical procedure. This hybrid structure holds the enzyme in a favorable position while retaining its functionality that ultimately provides enhanced performance for enzymatic sensing of glucose without utilizing mediators. The nanorod assembly was applied to the voltammetric detection of glucose. Figures of merit include an electrochemical sensitivity of 12 μA·mM-1·cm-2 (obtained from cathodic peak current at a voltage of -0.45 V vs. Ag/AgCl), a 3 μM detection limit (at signal/noise = 3), and a wide linear range (0.01-7 mM). The hybrid nanostructure has a heterogeneous electron transfer rate constant (ks) of 2.9 s-1. The high electrochemical activity is attributed to the synergistic effect of a large active surface and an enhanced electron transfer efficiency due to covalent amide linkage. Graphical Abstract Schematic of the procedure utilized for the fabrication of an electrochemical biosensor based on gold nanorods (AuNRs) modified with a reduced graphene oxide (rGO)/glucose oxidase (GOx) conjugate. The enzyme electrode was employed to the determination of glucose by differential pulse voltammetry.
Collapse
Affiliation(s)
- Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9466, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9466, Tehran, Iran. .,Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9466, Tehran, Iran.
| | - Hossein Aashuri
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9466, Tehran, Iran
| |
Collapse
|
14
|
Wang Y, Zhao KJ, Tao DP, Zhai FG, Yang HB, Zhang ZQ. Application of pyrite and chalcopyrite as sensor electrode for amperometric detection and measurement of hydrogen peroxide. RSC Adv 2018; 8:5013-5019. [PMID: 35539526 PMCID: PMC9078032 DOI: 10.1039/c7ra13628e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022] Open
Abstract
The sensing performance of solid-state amperometric sensors based on natural sulfide minerals, i.e., pyrite and chalcopyrite, has been characterized for the detection and measurement of hydrogen peroxide (H2O2) in aqueous medium.
Collapse
Affiliation(s)
- Y. Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| | - K. J. Zhao
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| | - D. P. Tao
- School of Mining Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| | - F. G. Zhai
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| | - H. B. Yang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| | - Z. Q. Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| |
Collapse
|
15
|
Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Mikrochim Acta 2017; 185:27. [PMID: 29594393 DOI: 10.1007/s00604-017-2592-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/27/2017] [Indexed: 01/29/2023]
Abstract
The authors describe an aptamer based assay for the food mycotoxin ochratoxin A (OTA). It is based on the use of exonuclease III (Exo III) which assists in signal amplification, and of single-walled carbon nanohorns (SWCNHs) which act as quenchers of fluorescence. The detection scheme employs a hairpin probe (HP) and a signal probe (SP) labeled with carboxyfluorescein (FAM) at its 5'-end. The fluorescence of intact SPs (best measured at excitation/emission wavelengths of 495/518 nm) is quenched by SWCNHs. The HP contains the OTA-specific aptamer sequence and is partially complementary to the SP. After addition of OTA, the aptamer binds OTA and thus exposes a single-stranded sequence that can hybridize with the SP. Exo III digests the SP to liberate the free fluorophore labels. The damaged SPs no longer are adsorbed by the SWCNHs so that fluorescence is no longer quenched. The method has a detection range that is linear from 10 nM to 1000 nM (with a correlation coefficient of 0.997). The limit of detection (LOD), calculated on the basis of a signal to noise ratio of 3, is 4.2 nM. The procedure was validated by the quantitation of OTA in spiked real samples and were found to be free of interference by the sample matrix. Recoveries ranged from 93.8 to 113.0% in beer and from 92.0 to115.9% in red wine. Graphical abstract After adding ochratoxin A (OTA), the aptamer region in hairpin probe (HP) combined with OTA and thus exposed a single-stranded sequence to hybridize with signal probe (SP). Exonuclease III (Exo III) digested SP to liberate the free fluorophore (FAM).
Collapse
|