1
|
Kanagavalli P, Eissa S. Exploring various carbon nanomaterials-based electrodes modified with polymelamine for the reagentless electrochemical immunosensing of Claudin18.2. Biosens Bioelectron 2024; 259:116388. [PMID: 38761744 DOI: 10.1016/j.bios.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Claudin18.2 (CLDN18.2) is a tight junction protein often overexpressed in various solid tumors, including gastrointestinal and esophageal cancers, serving as a promising target and potential biomarker for tumor diagnosis, treatment assessment, and prognosis. Despite its significance, no biosensor has been reported to date for the detection of CLDN18.2. Here, we present the inaugural immunosensor for CLDN18.2. In this study, an amine-rich conducting polymer of polymelamine (PM) was electrografted onto different carbon nanomaterial-based screen-printed electrodes (SPEs), including carbon (C), graphene (Gr), graphene oxide (GO), carbon nanotube (CNT), and carbon nanofiber (CNF) via cyclic voltammetry. A comparative study was performed to explore the best material for the preparation of the PM-modified electrodes to be used as in-situ redox substrate for the immunosensor fabrication. The surface chemistry and structural features of pristine and PM-deposited electrodes were analyzed using Raman and scanning electron microscopy (SEM) techniques. Our results showed that the PM deposited on Gr and CNT/SPEs exhibited the most significant and stable redox behavior in PBS buffer. The terminal amine moieties on the PM-modified electrode surfaces were utilized for immobilizing anti-CLDN18.2 monoclonal antibodies via N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide chemistry to construct the electrochemical immunosensor platform. Differential pulse voltammetry-based immunosensing of CLDN18.2 protein on BSA/anti-CLDN18.2/PM-Gr/SPE and BSA/anti-CLDN18.2/PM-CNT/SPE exhibited excellent selectivity against other proteins such as CD1, PDCD1, and ErBb2. The limits of detection of these two immunosensor platforms were calculated to be 7.9 pg/mL and 0.104 ng/mL for the CNT and Gr immunosensors, respectively. This study demonstrated that the PM-modified Gr and CNT electrodes offer promising platforms not only for the reagentless signaling but also for covalent immobilization of biomolecules. Moreover, these platforms offer excellent sensitivity and selectivity for the detection of CLDN18.2 due to its enhanced stable redox activity. The immunosensor demonstrated promising results for the sensitive detection of CLDN18.2 in biological samples, addressing the critical need for early gastric cancer diagnosis.
Collapse
Affiliation(s)
- Pandiyaraj Kanagavalli
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
2
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Fitschen LJ, Newing TP, Johnston NP, Bell CE, Tolun G. Half a century after their discovery: Structural insights into exonuclease and annealase proteins catalyzing recombineering. ENGINEERING MICROBIOLOGY 2024; 4:100120. [PMID: 39628787 PMCID: PMC11611040 DOI: 10.1016/j.engmic.2023.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2024]
Abstract
Recombineering is an essential tool for molecular biologists, allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations involving restriction enzymes. The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing (SSA) homologous recombination pathway to repair double-stranded DNA breaks. While there have been several reviews examining recombineering methods and applications, comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway: a 5'→3' exonuclease and a single-strand annealing protein (SSAP or "annealase"). This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in E. coli: the RecET system from E. coli Rac prophage and the λRed system from bacteriophage λ. By comparing the structures of the RecT and Redβ annealases, and the RecE and λExo exonucleases, we provide new insights into how the structures of these proteins dictate their function. Examining the sequence conservation of the λExo and RecE exonucleases gives more profound insights into their critical functional features. Ultimately, as recombineering accelerates and evolves in the laboratory, a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future.
Collapse
Affiliation(s)
- Lucy J. Fitschen
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Timothy P. Newing
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Nikolas P. Johnston
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Charles E. Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Gökhan Tolun
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
4
|
Su A, Luo D, Li S, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for T4 polynucleotide kinase activity assay based on host-guest recognition between phosphate pillar[5]arene@MWCNTs and thionine. Analyst 2024; 149:1271-1279. [PMID: 38226548 DOI: 10.1039/d3an01863f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
T4 polynucleotide kinase helps with DNA recombination and repair. In this study, an electrochemical biosensor was developed for a T4 polynucleotide kinase activity assay and inhibitor screening based on phosphate pillar[5]arene and multi-walled carbon nanotube nanocomposites. The water-soluble pillar[5]arene was employed as the host to complex thionine guest molecules. The substrate DNA with a 5'-hydroxyl group initially self-assembled on the gold electrode surface through chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 polynucleotide kinase. Titanium dioxide nanoparticles served as a bridge to link phosphorylated DNA and phosphate pillar[5]arene and multi-walled carbon nanotube composite due to strong phosphate-Ti4+-phosphate chemistry. Through supramolecular host-guest recognition, thionine molecules were able to penetrate the pillar[5]arene cavity, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 polynucleotide kinase concentration in the range of 10-5 to 15 U mL-1 with a detection limit of 5 × 10-6 U mL-1. It was also effective in measuring HeLa cell lysate-related T4 polynucleotide kinase activity and inhibitor screening. The proposed method offers a unique sensing platform for kinase activity measurement, holding great potential in nucleotide kinase-target drug development, clinical diagnostics, and inhibitor screening.
Collapse
Affiliation(s)
- Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Dan Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Shixuan Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| |
Collapse
|
5
|
Luo D, Liu Z, Su A, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for detection of T4 polynucleotide kinase activity based on host-guest recognition between phosphate pillar[5]arene and methylene blue. Talanta 2024; 266:124956. [PMID: 37499362 DOI: 10.1016/j.talanta.2023.124956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
T4 polynucleotide kinase (T4 PNK) is an important DNA repair-related enzyme that plays a crucial role in DNA recombination, replication and damage repair. Herein, an electrochemical biosensor was developed for detection of T4 PNK activity and inhibitor screening based on supramolecular host-guest recognition between phosphate pillar (Dumitrache and McKinnon, 2017) [5] arene (PP5) and methylene blue (MB). The water-soluble PP5 employed as the host for complexation of MB guest molecules. The substrate DNA with 5'-hydroxyl group was first self-assembled on the gold electrode surface through the chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 PNK and adenosine triphosphate (ATP). TiO2 served as a bridge to link phosphorylated DNA and PP5 via the robust phosphate-Ti4+-phosphate chemistry. The immobilized PP5 captured the MB on electrode surface via the supramolecular host-guest recognition interaction, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 PNK concentration in the range of 2 × 10-4 to 5 U mL-1 with a detection limit of 1 × 10-4 U mL-1. It was also successfully used for PNK inhibitor screening and PNK activity assay in HeLa cell lysates sample. The proposed strategy provides a novel sensing platform for kinase activity assay and inhibitor screening, holding a great potential in clinical diagnostics, inhibitor screening, and nucleotide kinase-target drug discovery.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Zaiqiong Liu
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| |
Collapse
|
6
|
Si J, Zhou W, Fang Y, Zhou D, Gao Y, Yao Q, Shen X, Zhu C. Label-Free Detection of T4 Polynucleotide Kinase Activity and Inhibition via Malachite Green Aptamer Generated from Ligation-Triggered Transcription. BIOSENSORS 2023; 13:bios13040449. [PMID: 37185524 PMCID: PMC10135927 DOI: 10.3390/bios13040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Polynucleotide kinase (PNK) is a key enzyme that is necessary for ligation-based DNA repair. The activity assay and inhibitor screening for PNK may contribute to the prediction and improvement of tumor treatment sensitivity, respectively. Herein, we developed a simple, low-background, and label-free method for both T4 PNK activity detection and inhibitor screening by combining a designed ligation-triggered T7 transcriptional amplification system and a crafty light-up malachite green aptamer. Moreover, this method successfully detected PNK activity in the complex biological matrix with satisfactory outcomes, indicating its great potential in clinical practice.
Collapse
Affiliation(s)
- Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Zhou
- Department of School and Nutrition, Shanghai Yangpu District Center for Disease Control and Prevention, Shanghai 200090, China
| | - Ying Fang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yifan Gao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Zhou X, Zheng B. Surface modification for improving immunoassay sensitivity. LAB ON A CHIP 2023; 23:1151-1168. [PMID: 36636910 DOI: 10.1039/d2lc00811d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunoassays are widely performed in many fields such as biomarker discovery, proteomics, drug development, and clinical diagnosis. There is a growing need for high sensitivity of immunoassays to detect low abundance analytes. As a result, great effort has been made to improve the quality of surfaces, on which the immunoassay is performed. In this review article, we summarize the recent progress in surface modification strategies for improving the sensitivity of immunoassays. The surface modification strategies can be categorized into two groups: antifouling coatings to reduce background noise and nanostructured surfaces to amplify the signals. The first part of the review summarizes the common antifouling coating techniques to prevent nonspecific binding and reduce background noise. The techniques include hydrophilic polymer based self-assembled monomers, polymer brushes, and surface attached hydrogels, and omniphobicity based perfluorinated surfaces. In the second part, some common nanostructured surfaces to amplify the specific detection signals are introduced, including nanoparticle functionalized surfaces, two dimensional (2D) nanoarrays, and 2D nanomaterial coatings. The third part discusses the surface modification techniques for digital immunoassays. In the end, the challenges and the future perspectives of the surface modification techniques for immunoassays are presented.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
8
|
Liu XW, Liu WJ, Meng Y, Hu J, Zhang CY. Development of a tandem signal amplification strategy for label-free sensing polynucleotide kinase activity in cancer cells. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
An enzyme-free and label-free electrochemical biosensor for polynucleotide kinase. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Fata F, Gabriele F, Angelucci F, Ippoliti R, Di Leandro L, Giansanti F, Ardini M. Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020949. [PMID: 36679744 PMCID: PMC9866807 DOI: 10.3390/s23020949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
The demonstration of the first enzyme-based electrode to detect glucose, published in 1967 by S. J. Updike and G. P. Hicks, kicked off huge efforts in building sensors where biomolecules are exploited as native or modified to achieve new or improved sensing performances. In this growing area, bionanotechnology has become prominent in demonstrating how nanomaterials can be tailored into responsive nanostructures using biomolecules and integrated into sensors to detect different analytes, e.g., biomarkers, antibiotics, toxins and organic compounds as well as whole cells and microorganisms with very high sensitivity. Accounting for the natural affinity between biomolecules and almost every type of nanomaterials and taking advantage of well-known crosslinking strategies to stabilize the resulting hybrid nanostructures, biosensors with broad applications and with unprecedented low detection limits have been realized. This review depicts a comprehensive collection of the most recent biochemical and biophysical strategies for building hybrid devices based on bioconjugated nanomaterials and their applications in label-free detection for diagnostics, food and environmental analysis.
Collapse
|
11
|
Wei L, Kong X, Wang M, Zhang Y, Pan R, Cheng Y, Lv Z, Zhou J, Ming J. A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation. Anal Bioanal Chem 2022; 414:7923-7933. [PMID: 36136111 DOI: 10.1007/s00216-022-04327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/01/2022]
Abstract
The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K+ or Na+. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL-1, and the detection limit of 0.0021 U mL-1 could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.
Collapse
Affiliation(s)
- Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Xianglong Kong
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Mengran Wang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Yixin Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Yuanzheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China.
| | - Jingjing Ming
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
12
|
Wang Y, Chen Y, Wan Y, Hong C, Shang J, Li F, Liu X, Wang F. An Autocatalytic DNA Circuit Based on Hybridization Chain Assembly for Intracellular Imaging of Polynucleotide Kinase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31727-31736. [PMID: 35786848 DOI: 10.1021/acsami.2c08523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polynucleotide kinase (PNK) plays an essential role in various cellular events by regulating phosphorylation processes, and abnormal homeostasis of PNK could cause many human diseases. Herein, we proposed an autocatalytic hybridization system (AHS) through the elaborate integration of hybridization chain assembly (HCA) and catalytic DNA assembly (CDA) that enables a highly efficient positive feedback amplification. The PNK-targeting AHS biosensor is composed of three modules: a recognition module, an HCA amplification module, and a CDA autocatalytic module. In the presence of PNK, the recognition module could transform the PNK input into an exposed nucleic acid initiator (I). Then the initiator strand I could trigger the autonomous HCA process in the amplification module, and the resulted HCA products could reassemble the split CDA trigger strand T, subsequently inducing the CDA process in the autocatalytic module to form abundant DNA duplex products. Consequently, the embedded initiator strand I was liberated from the CDA duplex product to autonomously trigger the new rounds of HCA circuit. The rational integration and cooperative cross-activation between the HCA and CDA module could prominently accelerate the reaction and realize the exponential amplification efficiency by initiator regeneration. As a result, the self-sustainable AHS amplifier could implement the sensitive detection of PNK in vitro and in biological samples and further fulfill accurate monitoring of the intracellular PNK activity and the effective screening of PNK inhibitors. This work paves a way for exploiting highly efficient artificial DNA circuits to analyze low-abundance biomarkers, holding great potential in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yushi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yeqing Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fengzhe Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
13
|
Liu B, Zhang Y, Hao Y, Zhu X, Zhang Y, Zhou Y, Tan H, Xu M. All-in-One Luminescent Lanthanide Coordination Polymer Nanoprobe for Facile Detection of Protein Kinase Activity. Anal Chem 2022; 94:10730-10736. [DOI: 10.1021/acs.analchem.2c01307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Baoxia Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yaoyao Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Hongliang Tan
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| |
Collapse
|
14
|
Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS OMEGA 2022; 7:22073-22088. [PMID: 35811879 PMCID: PMC9260923 DOI: 10.1021/acsomega.2c01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 10/04/2023]
Abstract
Advances in nanotechnology over the past decade have emerged as a substitute for conventional therapies and have facilitated the development of economically viable biosensors. Next-generation biosensors can play a significant role in curbing the spread of various viruses, including HCoV-2, and controlling morbidity and mortality. Pertaining to the impact of the current pandemic, there is a need for point-of-care biosensor-based testing as a detection method to accelerate the detection process. Integrating biosensors with nanostructures could be a substitute for ultrasensitive label-free biosensors to amplify sensing and miniaturization. Notably, next-generation biosensors could expedite the detection process. An elaborate description of various types of functionalized nanomaterials and their synthetic aspects is presented. The utility of the functionalized nanostructured materials for fabricating nanobiosensors to detect several types of viral infections is described in this review. This review also discusses the choice of appropriate nanomaterials, as well as challenges and opportunities in the field of nanobiosensors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
- Department
of Chemistry, Kirori Mal College, University
of Delhi, New Delhi, Delhi 110007, India
| | - Ritika Sharma
- Department
of Biochemistry, University of Delhi, New Delhi, Delhi 110021, India
| | - Bhawna
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
| | - Akanksha Gupta
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, Delhi 110021, India
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, Delhi 110021, India
| | - Susheel Kalia
- Department
of Chemistry, Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Pankaj Thakur
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| |
Collapse
|
15
|
Jia D, Fan W, Ren W, Liu C. One-step detection of T4 polynucleotide kinase activity based on single particle-confined enzyme reaction and digital particle counting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Tao J, Liu Z, Zhu Z, Zhang Y, Wang H, Pang P, Yang C, Yang W. Electrochemical detection of T4 polynucleotide kinase activity based on magnetic Fe 3O 4@TiO 2 nanoparticles triggered by a rolling circle amplification strategy. Talanta 2022; 241:123272. [PMID: 35121542 DOI: 10.1016/j.talanta.2022.123272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/29/2022]
Abstract
An ultrasensitive electrochemical detection of the activity and inhibition of T4 polynucleotide kinase (T4 PNK) was developed by using magnetic Fe3O4@TiO2 core-shell nanoparticles, which was triggered by a rolling circle amplification strategy (Fe3O4@TiO2-RCA). We used Fe3O4@TiO2 as a substrate to anchor a DNA primer. DNA S1 with 5'-OH termini was phosphorylated in the presence of T4 PNK and ATP, which was adsorbed on the surface of Fe3O4@TiO2 NPs and served as the primer for subsequent RCA reactions. After adding circular template DNA S2, RCA was initiated in the presence of phi29 DNA polymerase and dNTPs. Then, Fc-labeled DNA S3 (Fc-S3) was hybridized with RCA. The obtained Fe3O4@TiO2-RCA was adsorbed on the surface of a magnetic gold electrode (MGE) by magnetic enrichment, resulting in an enhanced electrochemical signal. The T4 PNK activity can be monitored by measuring the electrochemical signal generated. This electrochemical assay is sensitive to the activity of T4 PNK with a dynamic linear range of 0.00001-20 U/mL and a low detection limit of 3.0 × 10-6 U/mL. The proposed strategy can be used to screen the T4 PNK inhibitors, so it has great potential in the discovery of nucleotide kinase-target drug and early clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Jinpeng Tao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Zaiqiong Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Zhenyu Zhu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China
| | - Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Chun Yang
- Shaanxi Geological Survey Center, Xi'an, 710068, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| |
Collapse
|
17
|
Huang C, Shen G, Ding S, Kan A, Jiang D, Jiang W. Primer-template conversion-based cascade signal amplification strategy for sensitive and accurate detection of polynucleotide kinase activity. Anal Chim Acta 2021; 1187:339139. [PMID: 34753572 DOI: 10.1016/j.aca.2021.339139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Here, a primer-template conversion-based cascade signal amplification strategy is described for the sensitive detection of polynucleotide kinase (PNK) activity. This strategy integrated rolling circle amplification (RCA) and multiple-repeated-strand displacement amplification (MRSDA) with G-quadruplex based fluorescence lighting-up assay. A delicate dumbbell-shaped DNA probe with 5'-hydroxyl terminus was designed, in which G-quadruplex and half recognition site of nicking enzyme Nb.BbvCI were encoded in two loops respectively. Under the action of PNK, the 5' terminus on dumbbell probe was firstly phosphorylated, and then the dumbbell was cyclized with the catalyzation of T4 ligase to become the RCA template. The RCA process produced multiple copies of the prolonged primer. After that, under the assistance of nicking enzyme Nb.BbvCI, a primer-template conversion occurred, which converted the primer and template of RCA into the template and primer of the subsequent MRSDA, respectively. The MRSDA generated multiple repeated ssDNA sequences which possessed G-quadruplexes for outputting signal by lighting-up fluorescence of thioflavin T (ThT). The cascade signal amplification of RCA and MRSDA provided high detection sensitivity, and the target-dependence of template in cascade signal amplification led to a low background. The method showed excellent detection limit of 0.2 × 10-6 U μL-1 in buffer and 5 cells in cell lysate sample. Moreover, this method displayed favorable selectivity when interfering proteins were present. The developed strategy has good practical potential for PNK activity detection in clinical diagnosis and medical research.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Guohong Shen
- Breast Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250013, Jinan, PR China
| | - Shengyong Ding
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, PR China.
| | - Wei Jiang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
18
|
Thapa K, Liu W, Wang R. Nucleic acid-based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1765. [PMID: 34734485 DOI: 10.1002/wnan.1765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
With the increasing importance of accurate and early disease diagnosis and the development of personalized medicine, DNA-based electrochemical biosensor has attracted broad scientific and clinical interests in the past decades due to its unique hybridization specificity, fast response time, and potential for miniaturization. In order to achieve high detection sensitivity, the design of DNA electrochemical biosensors depends critically on the improvement of the accessibility of target molecules and the enhancement of signal readout. Here, we summarize the recent advances in DNA probe immobilization and signal amplification strategies with a special focus on DNA nanostructure-supported DNA probe immobilization method, which provides the opportunity to rationally control the distance between probes and keep them in upright confirmation, as well as the contribution of functional nanomaterials in enhancing the signal amplification. The next challenge of biosensors will be the fabrication of point-of-care devices for clinical testing. The advancement of multidisciplinary areas, including nanofabrication, material science, and biochemistry, has exhibited profound promise in achieving such portable sensing devices. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Krishna Thapa
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA.,Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
19
|
|
20
|
Terminal deoxynucleotidyl transferase combined CRISPR-Cas12a amplification strategy for ultrasensitive detection of uracil-DNA glycosylase with zero background. Biosens Bioelectron 2021; 171:112734. [DOI: 10.1016/j.bios.2020.112734] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
|
21
|
Lin M, Wan H, Zhang J, Wang Q, Hu X, Xia F. Electrochemical DNA Sensors Based on MoS 2-AuNPs for Polynucleotide Kinase Activity and Inhibition Assay. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45814-45821. [PMID: 32877162 DOI: 10.1021/acsami.0c13385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The determination of T4 polynucleotide kinase (PNK) activity and the screening of PNK inhibitors are critical to disease diagnosis and drug discovery. Numerous electrochemical strategies have been developed for the sensitive measurement of PNK activity and inhibition. However, they often suffer from additional labels and multiple steps of the detection process for the electrochemical readout. Herein, we have demonstrated an electrochemical DNA (E-DNA) sensor for the one-step detection of PNK with "signal-on" readout with no need for additional labels. In our design, the highly switchable double-stranded DNA (dsDNA) probes are immobilized on the gold nanoparticle-decorated molybdenum disulfide nanomaterial (MoS2-AuNPs), which possesses large surface area and high conductivity for elevating the signal gain in the PNK detection. This signal-on E-DNA sensor integrated with MoS2-AuNPs exhibits a much higher sensitivity than that without MoS2-AuNPs, showing a detection limit of 2.18 × 10-4 U/mL. Furthermore, this assay shows high selectivity, with the ability to discriminate PNK from other enzymes and proteins, and can be utilized to screen inhibitors. The proposed sensor is easy to operate with one-step readout and robust for PNK detection in the biological matrix and shows great potential for point-of-care in clinical diagnostics and drug screening.
Collapse
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hao Wan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xinyu Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
22
|
Mao J, Chen X, Xu H, Xu X. DNAzyme-driven DNA walker biosensor for amplified electrochemical detection of T4 polynucleotide kinase activity and inhibition. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Cajigas S, Orozco J. Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules 2020; 25:molecules25153542. [PMID: 32756410 PMCID: PMC7436128 DOI: 10.3390/molecules25153542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.
Collapse
|
24
|
Pillon MC, Stanley RE. Nonradioactive Assay to Measure Polynucleotide Phosphorylation of Small Nucleotide Substrates. J Vis Exp 2020. [PMID: 32449708 DOI: 10.3791/61258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polynucleotide kinases (PNKs) are enzymes that catalyze the phosphorylation of the 5' hydroxyl end of DNA and RNA oligonucleotides. The activity of PNKs can be quantified using direct or indirect approaches. Presented here is a direct, in vitro approach to measure PNK activity that relies on a fluorescently-labeled oligonucleotide substrate and polyacrylamide gel electrophoresis. This approach provides resolution of the phosphorylated products while avoiding the use of radiolabeled substrates. The protocol details how to set up the phosphorylation reaction, prepare and run large polyacrylamide gels, and quantify the reaction products. The most technically challenging part of this assay is pouring and running the large polyacrylamide gels; thus, important details to overcome common difficulties are provided. This protocol was optimized for Grc3, a PNK that assembles into an obligate pre-ribosomal RNA processing complex with its binding partner, the Las1 nuclease. However, this protocol can be adapted to measure the activity of other PNK enzymes. Moreover, this assay can also be modified to determine the effects of different components of the reaction, such as the nucleoside triphosphate, metal ions, and oligonucleotides.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health;
| |
Collapse
|
25
|
Olabarria G, Eletxigerra U, Rodriguez I, Bilbao A, Berganza J, Merino S. Highly sensitive and fast Legionella spp. in situ detection based on a loop mediated isothermal amplification technique combined to an electrochemical transduction system. Talanta 2020; 217:121061. [PMID: 32498831 DOI: 10.1016/j.talanta.2020.121061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/25/2022]
Abstract
A rapid highly sensitive genosensor has been developed for monitoring the presence of Legionella spp. in different water systems (domestic hot water, heating/cooling systems or cooling towers) in order to avoid its spreading from the source of contamination. The genosensor integrates a loop mediated isothermal amplification (LAMP) reaction with an electrochemical transduction signal, producing a very simple, rapid to perform and cost effective method, suitable for in situ analyses. This approach detects as low as 10 fg of Legionella nucleic acid, corresponding to only 2 number copies of the bacteria. The use of an electrochemical redox-active double stranded DNA (dsDNA) intercalating molecule, known as methylen blue (MB), allows the immediate electrochemical reading during the DNA polymerization. The sensor can obtain quantitative results in 20 min with a correlation between the electrochemical data and Legionella spp. copy number (at a logarithmic scale) of r = -0.97. In conclusion, a fast, easy to use, and accurate electrochemical genosensor, with high precision, sensitivity, and specificity has been developed for in situ detection of Legionella spp. enabling real time decision making and improving significantly the current detection methods for the prevention and screening of Legionella.
Collapse
Affiliation(s)
- Garbiñe Olabarria
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA). Parque Tecnológico, Edificio 202. 48170, Zamudio, Spain.
| | - Unai Eletxigerra
- Surface Chemistry and Nanotechnologies Unit, Tekniker, Eibar, 20600, Spain
| | - Isabel Rodriguez
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA). Parque Tecnológico, Edificio 202. 48170, Zamudio, Spain
| | - Ainhoa Bilbao
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA). Parque Tecnológico, Edificio 202. 48170, Zamudio, Spain
| | - Jesus Berganza
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA). Parque Tecnológico, Edificio 202. 48170, Zamudio, Spain
| | - Santos Merino
- Surface Chemistry and Nanotechnologies Unit, Tekniker, Eibar, 20600, Spain; Departamento de Electricidad y Electrónica, Universidad Del País Vasco UPV/EHU, 48940, Leioa, Spain
| |
Collapse
|
26
|
Hui Y, Wang B, Ren R, Zhao A, Zhang F, Song S, He Y. An electrochemical aptasensor based on DNA-AuNPs-HRP nanoprobes and exonuclease-assisted signal amplification for detection of aflatoxin B1. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106902] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Jin T, Zhang J, Zhao Y, Huang X, Tan C, Sun S, Tan Y. Magnetic bead-gold nanoparticle hybrids probe based on optically countable gold nanoparticles with dark-field microscope for T4 polynucleotide kinase activity assay. Biosens Bioelectron 2020; 150:111936. [DOI: 10.1016/j.bios.2019.111936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
|
28
|
Du YC, Wang SY, Li XY, Wang YX, Tang AN, Kong DM. Terminal deoxynucleotidyl transferase-activated nicking enzyme amplification reaction for specific and sensitive detection of DNA methyltransferase and polynucleotide kinase. Biosens Bioelectron 2019; 145:111700. [DOI: 10.1016/j.bios.2019.111700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
|
29
|
Yang H, Xu W, Zhou Y. Signal amplification in immunoassays by using noble metal nanoparticles: a review. Mikrochim Acta 2019; 186:859. [DOI: 10.1007/s00604-019-3904-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
30
|
Guo C, Zhang Y, Li Y, Xu S, Wang L. 19F MRI Nanoprobes for the Turn-On Detection of Phospholipase A2 with a Low Background. Anal Chem 2019; 91:8147-8153. [DOI: 10.1021/acs.analchem.9b00435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chang Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yangyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yawei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
31
|
Wang M, Chen J, Su D, Wang G, Su X. Split aptamer based sensing platform for adenosine deaminase detection by fluorescence resonance energy transfer. Talanta 2019; 198:1-7. [PMID: 30876536 DOI: 10.1016/j.talanta.2019.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/27/2022]
Abstract
In this paper, a split aptamer based fluorescence resonance energy transfer (FRET) platform was constructed for the determination of adenosine deaminase (ADA) activity by using gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs). A single adenosine triphosphate (ATP) aptamer was split into two fragments (referred to as P1 and P2). P1 was covalently attached to the AuNCs at the 5' end (P1-AuNCs), and P2 was labeled with AuNPs at the 3' end (P2-AuNPs). In the presence of ATP, ATP bound with the two fragments with high affinity to link P1-AuNCs and P2-AuNPs together, thus the fluorescence of P1-AuNCs was quenched via FRET from P1-AuNCs to P2-AuNPs. With the addition of ADA, ATP was transformed into inosine triphosphate (ITP), and then P1 and P2 were released to cause the fluorescence recovery of the system. So a split aptamer based FRET platform for ADA detection can be established via the fluorescence intensity change of the system. This platform showed a good linear relationship between the fluorescence intensity and ADA concentration in the range of 2-120 U L-1, and the limit of detection (LOD) was 0.72 U L-1. Moreover, the detection of ATP in human serum sample demonstrated the accuracy and applicability of the method for ADA detection in real sample.
Collapse
Affiliation(s)
- Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Junyang Chen
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Dandan Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Guannan Wang
- Department of Chemistry& The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, PR China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
32
|
Shen XP, Ge J, Chen J, Shen YM, Meng HM, Li ZH, Qu LB. A novel fluorescence method for the highly sensitive detection of T4 polynucleotide kinase based on polydopamine nanotubes. NEW J CHEM 2019. [DOI: 10.1039/c9nj04381k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel fluorescence method has been developed for the detection of T4 PNK using FRET between dye-labeled ssDNA and PDANTs.
Collapse
Affiliation(s)
- Xue-Ping Shen
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jia Ge
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Juan Chen
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yan-Mei Shen
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Hong-Min Meng
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhao-Hui Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
33
|
Zhang YP, Cui YX, Li XY, Du YC, Tang AN, Kong DM. A modified exponential amplification reaction (EXPAR) with an improved signal-to-noise ratio for ultrasensitive detection of polynucleotide kinase. Chem Commun (Camb) 2019; 55:7611-7614. [DOI: 10.1039/c9cc03568k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We reported a modified exponential amplification reaction strategy and applied it to design an ultrasensitive biosensor for the detection of endogenous polynucleotide kinase activity at single-cell level.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| |
Collapse
|
34
|
Cui L, Hu J, Li CC, Wang CM, Zhang CY. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosens Bioelectron 2018; 122:168-174. [DOI: 10.1016/j.bios.2018.09.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022]
|
35
|
Zhang Q, Gong Y, Guo XJ, Zhang P, Ding CF. Multifunctional Gold Nanoparticle-Based Fluorescence Resonance Energy-Transfer Probe for Target Drug Delivery and Cell Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34840-34848. [PMID: 30264982 DOI: 10.1021/acsami.8b12897] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Drug delivery system has a profound significance for imaging capabilities and monitoring apoptosis process precisely in cancer therapeutic field. Herein, we designed cysteamine (CS)-stabilized gold nanoparticles, CS-gold nanoparticles (AuNPs)-doxorubicin (DOX), for fluorescence-enhanced cell imaging and target drug delivery. For cancer therapy, DOX was incorporated to CS-AuNPs by disulfide linkages which could be cleaved by glutathione (GSH) in cancer cells specifically. In addition, red-emissive DOX was quenched effectively by particular quenching effect of fluorescence resonance energy transfer from DOX to AuNPs, rendering monitoring target drug release by visual luminescence. The released DOX-SH acted as an indicator for cancer cells with red fluorescence and was further used for stimuli-responsive drug therapy. After an overall investigation of detection for GSH, proapoptosis for cancer cells, and inhibition for tumor tissues in vivo, the CS-AuNPs-DOX nanoprobe shows an obviously enhanced performance. This proposal provides an intelligent strategy for cell imaging and drug delivery, which serves as a promising candidate for anticancer therapeutic applications.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yan Gong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Xin-Jie Guo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Peng Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Cai-Feng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|
36
|
Wang Y, Ning G, Wu Y, Wu S, Zeng B, Liu G, He X, Wang K. Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A. Biosens Bioelectron 2018; 124-125:82-88. [PMID: 30343160 DOI: 10.1016/j.bios.2018.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/22/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Smartly coupling exonuclease-induced target recycling signal amplifications with β-cyclodextrin host-guest recognition, a novel "signal-on" aptamer sensor for sensitive determination of ochratoxin A (OTA) was proposed for the first time. Firstly, the formation of double-strand DNA (dsDNA) was occurred by hybridizing OTA aptamer with its complementary DNA (cDNA) and as the probe DNA the cDNA at its 3' terminal was labeled with methylene blue (MB). Next, when OTA was present, the aptamer tended to form aptamer-OTA complex with conformation of G-quadruplex instead of aptamer-cDNA duplex, leading to thus the probe DNA separating from dsDNA complex. Then the RecJf exonuclease was added, demolishing partially G-quadruplex structure and releasing a certain number of OTA. Sequentially, those released OTA would continue to react with the rest of aptamer in dsDNA, drawn into development of a new round of G-quadruplex complex, where the target cycling was realized. Meanwhile, as a signal molecule, MB modified on cDNA was liberated along with the cDNA being digested into monoucleotides by RecJf exonuclease, capable of diffusing onto the electrode surface due to host-guest recognition with β-cyclodextrin, whereupon the signal was enriched and yielded. In this way, cycles of target with continuous output of signal indicators were undergone, in which the detection of target was in return fulfilled with signal amplification owing to the joint endeavor of exonuclease and β-cyclodextrin. Under the optimal conditions, the raising signal maintained a linear relation with the logarithm of the target concentrations ranging from 10 pg/mL to 10.0 ng/mL and the detection limit reached as low as 3 pg/mL. This brand-new strategy was simple and low-cost but satisfactory in terms of detection limit, range and sensitivity, in all possibility to be applied extensively for diverse targets detection by easily alternating the corresponding aptamers.
Collapse
Affiliation(s)
- Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Shun Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Baiquan Zeng
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Gaoqiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
| |
Collapse
|
37
|
Li CC, Hu J, Lu M, Zhang CY. Quantum dot-based electrochemical biosensor for stripping voltammetric detection of telomerase at the single-cell level. Biosens Bioelectron 2018; 122:51-57. [PMID: 30240966 DOI: 10.1016/j.bios.2018.09.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022]
Abstract
Human telomerase is responsible for the maintenance of chromosome end structures and is a valuable biomarker for malignant growth. However, the accurate measurement of telomerase activity at the single-cell level has remained a great challenge. Here we develop a simple quantum dot (QD)-based electrochemical biosensor for stripping voltammetric detection of telomerase activity at the single-cell level. We designed a thiol-modified capture DNA which may be immobilized on the gold electrode by the gold-sulfur bond. The presence of telomerase enables the addition of the telomere repeats of (TTAGGG)n to the 3' end of the primer, accompanied by the incorporation of abundant biotins in the extension product with the assistance of the biotin-tagged dATP. The subsequent hybridization of extension product with the capture DNA and the addition of streptavidin-coated QDs induce the assembly of large amounts of QDs onto the electrode via specific biotin-streptavidin binding. After the acidic dissolution of QDs, the released Cd (II) can be simply quantified by anodic stripping voltammetry (ASV). Due to the introduction of large amounts of QDs by telomerase-induced primer extension reaction and the synergistic signal amplification induced by the release of Cd (II) from the QDs, this biosensor can detect telomerase activity at the single-cell level without the involvement of any thermal cycling and extra enzymes for signal amplification. Moreover, this assay exhibits a large dynamic range over four orders of magnitude and it is very simple without the involvement of specific hairpin probe design and complicated labelling, holding great potential in point-of-need testing.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China
| | - Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China
| | - Mengfei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
38
|
Cui L, Hu J, Wang M, Diao XK, Li CC, Zhang CY. Mimic Peroxidase- and Bi2S3 Nanorod-Based Photoelectrochemical Biosensor for Signal-On Detection of Polynucleotide Kinase. Anal Chem 2018; 90:11478-11485. [DOI: 10.1021/acs.analchem.8b02673] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Meng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Xing-kang Diao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
39
|
Bhalla N, Estrela P. Exploiting the signatures of nanoplasmon-exciton coupling on proton sensitive insulator-semiconductor devices for drug discovery applications. NANOSCALE 2018; 10:13320-13328. [PMID: 29974109 DOI: 10.1039/c8nr04540b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multimodal sensing methods have a great promise in biosensing applications as they can measure independently several properties that characterise the biomolecular interaction to be detected as well as providing inherent on-chip validation of the sensing signals. This work describes the mechanisms of a concept of insulator-semiconductor field-effect devices coupled with nanoplasmonic sensing as a promising technology, which can be used for a wide range of analytical sensing applications. The developed method involves coupling of the localized surface plasmons (LSPs) within gold nanoparticles (AuNPs) and excitons within pH sensitive silicon nitride (Si3N4) nanofilms for screening inhibitors of kinase, which constitute an important class of chemotherapy drugs. In parallel to this optical sensing, the pH sensitivity of silicon nitride is used to detect the release of protons associated with kinase activity. By changing the insulator and AuNPs characteristics, this work demonstrates the nanoplasmonic-exciton effects taking place, enabling the developed platform to be used for screening kinase inhibitors and as a dual mode electro-optical biosensor for routine bio/chemical sensing applications.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, BA2 7AY, UK.
| | | |
Collapse
|
40
|
Chen W, Yan C, Cheng L, Yao L, Xue F, Xu J. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens Bioelectron 2018; 117:845-851. [PMID: 30096739 DOI: 10.1016/j.bios.2018.07.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022]
Abstract
In this paper, a novel ultrasensitive signal-on electrochemical aptasensor has been proposed for Ochratoxin A (OTA) assay based on DNA controlled layer-by-layer assembly of dual gold nanoparticle (AuNP) conjugates. To construct the aptasensor, the 1st AuNP conjugate was prepared by simultaneous immobilization of the capture probe 2 (CP2) and bridge probe (BP) onto the AuNPs. Then, OTA aptamer was loaded onto 1st AuNPs by hybridization with CP2. The 1st AuNP conjugate can be further immobilized onto the electrode by hybridization between BP and capture probe 1 (CP1), which was pre-immobilized on Au electrode. The 2nd AuNP conjugate was prepared by immobilization of ferrocene (Fc) tagged SH-signal probe (SSP). Due to the recognition between aptamer on 1st AuNP conjugate and OTA, CP2 was reformed in the ssDNA state, which can be utilized as the anchor for immobilization of 2nd AuNP conjugate for electrochemical signal reporting. Because of the high surface-to-volume ratio and good conductivity of AuNPs, this dual AuNPs assembled nanoarchitecture finally lead to greatly improved abilities to load a large number of Fc molecules and significantly amply the electrochemical response even at a low target concentration. Both qualitative and quantitative analysis of OTA were thus realized by differential pulse voltammetry (DPV) signals, resulting in an excellent detection limit of 0.001 ppb and a wide dynamic range from 0.001 to 500 ppb over 6 orders of magnitude. Moreover, the real sample analysis towards OTA spiked wine samples was favorable, implying a great potential for practical applications. We envision that this unique dual AuNP conjugate assembly strategy would pave a new avenue for the development of versatile signal amplified electrochemical aptasensors.
Collapse
Affiliation(s)
- Wei Chen
- School of Food Science and Engineering, Engineering Research Center of Bio-process, MOE, Hefei University of Technology, Hefei 230009, China.
| | - Chao Yan
- School of Food Science and Engineering, Engineering Research Center of Bio-process, MOE, Hefei University of Technology, Hefei 230009, China
| | - Lin Cheng
- School of Food Science and Engineering, Engineering Research Center of Bio-process, MOE, Hefei University of Technology, Hefei 230009, China
| | - Li Yao
- School of Food Science and Engineering, Engineering Research Center of Bio-process, MOE, Hefei University of Technology, Hefei 230009, China
| | - Feng Xue
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigan Road, Nanjing 210095, China
| | - Jianguo Xu
- School of Food Science and Engineering, Engineering Research Center of Bio-process, MOE, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
41
|
A sensitive signal-on photoelectrochemical sensor for tetracycline determination using visible-light-driven flower-like CN/BiOBr composites. Biosens Bioelectron 2018; 111:74-81. [DOI: 10.1016/j.bios.2018.03.054] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 02/05/2023]
|
42
|
Liu N, Hui N, Davis JJ, Luo X. Low Fouling Protein Detection in Complex Biological Media Supported by a Designed Multifunctional Peptide. ACS Sens 2018; 3:1210-1216. [PMID: 29771110 DOI: 10.1021/acssensors.8b00318] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of sensitive and selective biosensors capable of detecting specific targets in complex biological samples remains a challenge highly relevant to a range of sensor/diagnostic applications. Herein, we have utilized a multifunctional peptide to present an interface that supports the very specific recruitment of targets from serum. The novel peptide sequence designed contains an anchoring domain (CPPPP-), an antifouling domain (-NQNQNQNQDHWRGWVA), and a human immunoglobulin G (IgG) recognition domain (-HWRGWVA), and the whole peptide was designed to be antifouling. These were integrated into polyaniline nanowire arrays in supporting the quantification of IgG (with a limit of detection of 0.26 ng mL-1) in neat serum and real clinical samples. The strategy of utilizing multisegment peptide films to underpin highly selective target recruitment is, of course, readily extended to a broad range of targets for which an affinity sequence can be generated.
Collapse
Affiliation(s)
- Nianzu Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ni Hui
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
43
|
Dual-reaction triggered sensitivity amplification for ultrasensitive peptide-cleavage based electrochemical detection of matrix metalloproteinase-7. Biosens Bioelectron 2018; 108:46-52. [DOI: 10.1016/j.bios.2018.02.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/20/2018] [Indexed: 01/16/2023]
|
44
|
Qi H, Yue S, Bi S, Ding C, Song W. Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors. Biosens Bioelectron 2018; 110:207-217. [PMID: 29625328 DOI: 10.1016/j.bios.2018.03.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
As a conventional amplification technique, polymerase chain reaction (PCR) has been widely applied to detect a variety of analytes with exponential amplification efficiency. However, the requirement of thermocycling procedures largely limits the application of PCR-based methods. Alternatively, several isothermal amplification techniques have been developed since the early 1990s. In particular, according to the reaction kinetics, isothermal exponential amplification techniques possess higher amplification efficiency and detection sensitivity. The isothermal exponential amplification techniques can be mainly divided into two categories: enzyme-based isothermal exponential amplification and enzyme-free isothermal exponential amplification. Considering the advantages of high sensitivity and selectivity, high signal-to-noise ratio, low cost and rapid response time, exponential amplification electrochemical biosensors have attracted considerable attention. In this review, we introduce the basic principles of isothermal exponential amplification techniques and summarize their applications in electrochemical biosensors during the past five years. We also highlighted the present challenges and further perspectives of isothermal exponential amplification-based electrochemical biosensors.
Collapse
Affiliation(s)
- Hongjie Qi
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, PR China
| | - Shuzhen Yue
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, PR China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, PR China.
| | - Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Weiling Song
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
45
|
Ding C, Xu Y, Zhao Y, Zhong H, Luo X. Fabrication of BSA@AuNC-Based Nanostructures for Cell Fluoresce Imaging and Target Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8947-8954. [PMID: 29457719 DOI: 10.1021/acsami.7b18493] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drug delivery which can offer efficient and localized drug transportation together with imaging capabilities is highly demanded in the development of cancer theranostic approaches. Herein, we report the construction of bovine serum albumin (BSA) gold nanoclusters (BSA@AuNCs) for cell fluoresce imaging and target drug delivery. BSA@AuNCs were modified with cyclic arginine-glycine-aspartate with the product RGD-BSA@AuNCs to enhance cell internalization of the nanoclusters. Furthermore, doxorubicin hydrochloride or doxorubicin (DOX), a widely used chemotherapy drug, was also used to modify RGD-BSA@AuNCs. The final design of the DOX/RGD-BSA@AuNC system was constructed through the disulfide bond. The physical microstructure and biological characterization of the BSA@AuNCs were realized through high-resolution transmission electron microscopy and confocal laser fluorescence microscopy. As the disulfide bonds were cleaved by glutathione in cancer cells, DOX-SH molecules were released from the nanosystem to inhibit the growth of cancer cells. The as-prepared DOX/RGD-BSA@AuNC system can be used not only to deliver drug but also to achieve the antitumor effect by in vivo imaging, demonstrating its promising applications in cancer treatment.
Collapse
Affiliation(s)
- Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| | - Yujuan Xu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| | - Yanan Zhao
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| | - Hua Zhong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| |
Collapse
|
46
|
Eissa S, Alshehri N, Rahman AMA, Dasouki M, Abu-Salah KM, Zourob M. Electrochemical immunosensors for the detection of survival motor neuron (SMN) protein using different carbon nanomaterials-modified electrodes. Biosens Bioelectron 2018; 101:282-289. [DOI: 10.1016/j.bios.2017.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
|
47
|
Lawal AT. Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 2018; 106:149-178. [PMID: 29414083 DOI: 10.1016/j.bios.2018.01.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed.
Collapse
|
48
|
Li XY, Du YC, Pan YN, Su LL, Shi S, Wang SY, Tang AN, Kim K, Kong DM. Dual enzyme-assisted one-step isothermal real-time amplification assay for ultrasensitive detection of polynucleotide kinase activity. Chem Commun (Camb) 2018; 54:13841-13844. [DOI: 10.1039/c8cc08616h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel, simple, one-step and one-tube detection method for polynucleotide kinase (PNK) activity based on isothermal real-time amplification assay was proposed.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Yan-Nian Pan
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Li-Li Su
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Shuo Shi
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Si-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Kwangil Kim
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| |
Collapse
|
49
|
Zhang Y, Fang X, Zhu Z, Lai Y, Xu C, Pang P, Wang H, Yang C, Barrow CJ, Yang W. A sensitive electrochemical assay for T4 polynucleotide kinase activity based on titanium dioxide nanotubes and a rolling circle amplification strategy. RSC Adv 2018; 8:38436-38444. [PMID: 35559107 PMCID: PMC9090566 DOI: 10.1039/c8ra07745b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
An ultrasensitive electrochemical biosensor was developed for detection of T4 polynucleotide kinase (T4 PNK) activity based on titanium dioxide nanotubes (TiO2 NTs) and a rolling circle amplification (RCA) strategy. In this study, the immobilized T4 PNK substrate probe with a 5′ terminus hydroxyl was phosphorylated by T4 PNK in the presence of adenosine triphosphate (ATP), and the resulting 5-phosphoryl can be linked with the TiO2 NTs and further conjugated with the phosphate-labeled primer. RCA was initiated by adding circular template, phi29 DNA polymerase and deoxyribonucleoside 5-triphosphate mixture (dNTPs). Biotin-labeled probes are chosen as a signal indicator by strong biotin–streptavidin interaction and the high loading of horseradish peroxidase–streptavidin (HRP–SA) for electrochemical signal generation and amplification. A dual-signaling amplification strategy has been established, which exhibited an excellent performance with a wide linear range from 0.0001–15 U mL−1 and a low detection limit of 0.00003 U mL−1 for T4 PNK detection. The inhibition effect of (NH4)2SO4 on the activity of T4 PNK is also evaluated. This new dual-signaling electrochemical biosensor can be used for the detection of the activity and inhibition of other nucleic acid enzymes. An ultrasensitive electrochemical biosensor was developed for detection of T4 polynucleotide kinase activity based on titanium dioxide nanotubes and a rolling circle amplification strategy.![]()
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Xiang Fang
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Zhenyu Zhu
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Yanqiong Lai
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Chunli Xu
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Pengfei Pang
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Hongbin Wang
- Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions
- Yunnan Minzu University
- Kunming 650500
- P. R. China
| | - Chun Yang
- Shaanxi Geological Survey Center
- Xi'an 710068
- P. R. China
| | - Colin J. Barrow
- School of Life and Environmental Sciences
- Deakin University
- Geelong
- Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences
- Deakin University
- Geelong
- Australia
| |
Collapse
|
50
|
Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Mikrochim Acta 2017; 185:33. [PMID: 29594625 DOI: 10.1007/s00604-017-2606-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/01/2017] [Indexed: 01/27/2023]
Abstract
The authors are presenting a rapid method for the determination of theophylline using unique non-crosslinking gold nanoparticle (AuNP) aggregation. An RNA aptamer against theophylline is firstly split into two RNA fragments which then interact with bare AuNPs. The two RNA probes cause an enhancement of the salt tolerance of AuNPs. However, in the presence of theophylline, the RNA probes form a complex with theophylline so that less RNA probes are available to protect the AuNPs from salt-induced aggregation. Theophylline induced aggregation of AuNPs is accompanied by a color change from red to blue. The color change can be detected visually and via UV-vis absorptiometry by ratioing the absorbances at 650 and 520 nm. The ratio increases linearly in the 0.1 to 20 μM theophylline concentration range, with a 67 nM limit of detection. The method is highly sensitive and selective. Graphical abstract Single-stranded split RNA aptamers (R1 and R2) protect gold nanoparticles (AuNPs) from salt-induced non-crosslinking aggregation. After recognition of theophylline by the RNA probe, the unprotected AuNPs aggregate and undergo a color change from red to blue, and this is used to quantify the theophylline concentration.
Collapse
|