1
|
Vacek J, Zatloukalová M, Dorčák V, Cifra M, Futera Z, Ostatná V. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Mikrochim Acta 2023; 190:442. [PMID: 37847341 PMCID: PMC10582152 DOI: 10.1007/s00604-023-05999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic.
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Vlastimil Dorčák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, 18200, Prague, Czech Republic
| | - Zdeněk Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Kralovopolska 135, 61200, Brno, Czech Republic
| |
Collapse
|
2
|
Zatloukalova M, Poltorak L, Bilewicz R, Vacek J. Lipid-based liquid crystalline materials in electrochemical sensing and nanocarrier technology. Mikrochim Acta 2023; 190:187. [PMID: 37071228 PMCID: PMC10113356 DOI: 10.1007/s00604-023-05727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/02/2023] [Indexed: 04/19/2023]
Abstract
Some biologically active substances are unstable and poorly soluble in aqueous media, at the same time exhibiting low bioavailability. The incorporation of these biologically active compounds into the structure of a lipid-based lyotropic liquid crystalline phase or nanoparticles can increase or improve their stability and transport properties, subsequent bioavailability, and applicability in general. The aim of this short overview is (1) to clarify the principle of self-assembly of lipidic amphiphilic molecules in an aqueous environment and (2) to present lipidic bicontinuous cubic and hexagonal phases and their current biosensing (with a focus on electrochemical protocols) and biomedical applications.
Collapse
Affiliation(s)
- Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Miszta P, Nazaruk E, Nieciecka D, Możajew M, Krysiński P, Bilewicz R, Filipek S. The EcCLC antiporter embedded in lipidic liquid crystalline films - molecular dynamics simulations and electrochemical methods. Phys Chem Chem Phys 2022; 24:3066-3077. [PMID: 35040466 DOI: 10.1039/d1cp03992j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipidic-liquid crystalline nanostructures (lipidic cubic phases), which are biomimetic and stable in an excess of water, were used as a convenient environment to investigate the transport properties of the membrane antiporter E. coli CLC-1 (EcCLC). The chloride ion transfer by EcCLC was studied by all-atom molecular dynamics simulations combined with electrochemical methods at pH 7 and pH 5. The cubic phase film was used as the membrane between the chloride donor and receiving compartments and it was placed on the glassy carbon electrode and immersed in the chloride solution. Structural characterization of lipidic mesoscopic systems with and without the incorporation of EcCLC was performed using small-angle X-ray scattering. The EcCLC transported chloride ions more efficiently at more acidic pH, and the resistance of the film decreased at lower pH. 4,4-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) employed as an inhibitor of the protein was shown to decrease the transport efficiency upon hydrolysis to DADS at both pH 7 and pH 5. The molecular dynamics simulations, performed for the first time in lipidic cubic phases for EcCLC, allowed studying the collective movements of chloride ions which can help in elucidating the mechanism of transporting the ions by the EcCLC antiporter. The protein modified lipidic cubic phase film is a convenient and simple system for screening potential inhibitors of integral membrane proteins, as demonstrated by the example of the EcCLC antiporter. The use of lipidic cubic phases may also be important for the further development of new electrochemical sensors for membrane proteins and enzyme electrodes.
Collapse
Affiliation(s)
- Przemysław Miszta
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Dorota Nieciecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Mariusz Możajew
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Paweł Krysiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Renata Bilewicz
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Sławomir Filipek
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
4
|
Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment. Int J Mol Sci 2022; 23:ijms23031210. [PMID: 35163132 PMCID: PMC8835872 DOI: 10.3390/ijms23031210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
In this paper, the techniques used to study the function of mitochondrial potassium channels are critically reviewed. The majority of these techniques have been known for many years as a result of research on plasma membrane ion channels. Hence, in this review, we focus on the critical evaluation of techniques used in the studies of mitochondrial potassium channels, describing their advantages and limitations. Functional analysis of mitochondrial potassium channels in comparison to that of plasmalemmal channels presents additional experimental challenges. The reliability of functional studies of mitochondrial potassium channels is often affected by the need to isolate mitochondria and by functional properties of mitochondria such as respiration, metabolic activity, swelling capacity, or high electrical potential. Three types of techniques are critically evaluated: electrophysiological techniques, potassium flux measurements, and biochemical techniques related to potassium flux measurements. Finally, new possible approaches to the study of the function of mitochondrial potassium channels are presented. We hope that this review will assist researchers in selecting reliable methods for studying, e.g., the effects of drugs on mitochondrial potassium channel function. Additionally, this review should aid in the critical evaluation of the results reported in various articles on mitochondrial potassium channels.
Collapse
|
5
|
Jakubec M, Novák D, Zatloukalová M, Císařová I, Cibulka R, Favereau L, Crassous J, Cytryniak A, Bilewicz R, Hrbáč J, Storch J, Žádný J, Vacek J. Flavin-Helicene Amphiphilic Hybrids: Synthesis, Characterization, and Preparation of Surface-Supported Films. Chempluschem 2021; 86:982-990. [PMID: 33977667 DOI: 10.1002/cplu.202100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Indexed: 11/07/2022]
Abstract
This work reports on the preparation and structural characterization of flavo[7]helicene 1 (flavin-[7]helicene conjugate), which was subsequently characterized at the molecular level in either an aqueous environment or an organic phase, at the supramolecular level in the form of polymeric layers, and also embedded in a lipidic mesophase environment to study the resulting properties of such a hybrid relative to its parent molecules. The flavin benzo[g]pteridin-2,4-dione (isoalloxazine) was selected for conjugation because of its photoactivity and reversible redox behavior. Compound 1 was prepared from 2-nitroso[6]helicene and 6-methylamino-3-methyluracil, and characterized using common structural and spectroscopic tools: circular dichroism (CD), circularly polarized luminescence (CPL) spectroscopy, cyclic voltammetry (CV), and DFT quantum calculations. In addition, a methodology that allows the loading of 1 enantiomers into an internally nanostructured lipid (1-monoolein) matrix was developed.
Collapse
Affiliation(s)
- Martin Jakubec
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - David Novák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40, Prague 2, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Ludovic Favereau
- Univ. Rennes, CNRS, ISCR-UMR 6226, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Jeanne Crassous
- Univ. Rennes, CNRS, ISCR-UMR 6226, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Adrianna Cytryniak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Jan Hrbáč
- Institute of Chemistry, Masaryk University, Kamenice 5, Brno, 725 00, Czech Republic
| | - Jan Storch
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - Jaroslav Žádný
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| |
Collapse
|
6
|
van Dalsen L, Weichert D, Caffrey M. In meso crystallogenesis. Compatibility of the lipid cubic phase with the synthetic digitonin analogue, glyco-diosgenin. J Appl Crystallogr 2020; 53:530-535. [PMID: 32280324 PMCID: PMC7133060 DOI: 10.1107/s1600576720002289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/18/2020] [Indexed: 11/10/2022] Open
Abstract
Digitonin has long been used as a mild detergent for extracting proteins from membranes for structure and function studies. As supplied commercially, digitonin is inhomogeneous and requires lengthy pre-treatment for reliable downstream use. Glyco-diosgenin (GDN) is a recently introduced synthetic surfactant with features that mimic digitonin. It is available in homogeneously pure form. GDN is proving to be a useful detergent, particularly in the area of single-particle cryo-electron microscopic studies of membrane integral proteins. With a view to using it as a detergent for crystallization trials by the in meso or lipid cubic phase method, it was important to establish the carrying capacity of the cubic mesophase for GDN. This was quantified in the current study using small-angle X-ray scattering for mesophase identification and phase microstructure characterization as a function of temperature and GDN concentration. The data show that the lipid cubic phase formed by hydrated monoolein tolerates GDN to concentrations orders of magnitude in excess of those used for membrane protein studies. Thus, having GDN in a typical membrane protein preparation should not deter use of the in meso method for crystallogenesis.
Collapse
Affiliation(s)
- Leendert van Dalsen
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Dietmar Weichert
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| |
Collapse
|
7
|
García-Molina G, Natale P, Valenzuela L, Alvarez-Malmagro J, Gutiérrez-Sánchez C, Iglesias-Juez A, López-Montero I, Vélez M, Pita M, De Lacey AL. Potentiometric detection of ATP based on the transmembrane proton gradient generated by ATPase reconstituted on a gold electrode. Bioelectrochemistry 2020; 133:107490. [PMID: 32126488 DOI: 10.1016/j.bioelechem.2020.107490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP) is a key molecule as energy vector for living organisms, therefore its detection reveals the presence of microbial colonies. Environments where the existence of microbial pathogens suppose a health hazard can benefit from real time monitoring of such molecule. We report a potentiometric biosensor based on ATP-synthase from Escherichia coli reconstituted in a floating phospholipid bilayer over gold electrodes modified with a 4-aminothiophenol self-assembled monolayer. The use of a pH-dependent redox probe on the electrode surface allows a simple, specific and reliable on site determination of ATP concentration from 1 μM to 1 mM. The broad range ATP biosensor can offer an alternative way of measuring in a few minutes the presence of microbial contamination.
Collapse
Affiliation(s)
- Gabriel García-Molina
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain
| | - Paolo Natale
- Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital Doce de Octubre (imas12), Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Laura Valenzuela
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | - Ana Iglesias-Juez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain
| | - Iván López-Montero
- Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital Doce de Octubre (imas12), Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain.
| | - Antonio L De Lacey
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Self-assembling in situ gel based on lyotropic liquid crystals containing VEGF for tissue regeneration. Acta Biomater 2019; 99:84-99. [PMID: 31521813 DOI: 10.1016/j.actbio.2019.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Current tissue-regenerative biomaterials confront two critical issues: the uncontrollable delivery capacity of vascular endothelial growth factor (VEGF) for adequate vascularization and the poor mechanical properties of the system for tissue regeneration. To overcome these two issues, a self-assembling in situ gel based on lyotropic liquid crystals (LLC) was developed. VEGF-LLC was administrated as a precursor solution that would self-assemble into an in situ gel with well-defined internal inverse bicontinuous cubic phases when exposed to physiological fluid at a defect site. The inverse cubic phase with a 3D bicontinuous water channel enabled a 7-day sustained release of VEGF. The release profile of VEGF-LLC was controlled using octyl glucoside (OG) as a hydration-modulating agent, which could enlarge the water channel, yielding a 2-fold increase in water channel size and a 7-fold increase in VEGF release. For the mechanical properties, the elastic modulus was found to decrease from ∼100 kPa to ∼1.2 kPa, which might be more favorable for angiogenesis. Furthermore, the self-recovery ability of the VEGF-LLC gel was confirmed by quick recovery of the inner network in step-strain measurements. In vitro, VEGF-LLC considerably promoted the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) as compared to free VEGF (p < 0.05). Furthermore, angiogenesis was successfully induced in rats after subcutaneous injection of VEGF-LLC. The self-assembling LLC gel showed satisfactory degradability and mild inflammatory response with little impact on the surrounding tissue. The controllable release profile and unique mechanical properties of VEGF-LLC offer a new approach for tissue regeneration. STATEMENT OF SIGNIFICANCE: The potential clinical use of currently available biomaterials in tissue regeneration is limited by their uncontrollable drug delivery capacity and poor mechanical properties. Herein, a self-assembling in situ gel based on lyotropic liquid crystals (LLC) for induced angiogenesis was developed. The results showed that the addition of octyl glucoside (OG) could change the water channel size of LLC, which enabled the LLC system to release VEGF in a sustained manner and to possess a suitable modulus to favor angiogenesis simultaneously. Moreover, the self-recovery capability allowed the gel to match the deformation of surrounding tissues during body motion to maintain its properties and reduce discomfort. In vivo, angiogenesis was induced by VEGF-LLC 14 days after administering subcutaneous injection. These results highlight the potential of LLC as a promising sustained protein drug delivery system for vascular formation and tissue regeneration.
Collapse
|
9
|
Zatloukalova M, Nazaruk E, Bilewicz R. Electrogenic transport of Na+/K+-ATPase incorporated in lipidic cubic phases as a model biomimetic membrane. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Matyszewska D, Zatloukalova M, Bilewicz R. Activity of Na+/K+-ATPase in model lipid membrane at air-water interface. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Brand I, Sęk S. Preface. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|