1
|
Yaiwong P, Jakmunee J, Pimalai D, Ounnunkad K, Bamrungsap S. An electrochemical/SERS dual-mode immunosensor using TMB/Au nanotag and Au@2D-MoS 2 modified screen-printed electrode for sensitive detection of prostate cancer biomarker. Colloids Surf B Biointerfaces 2024; 243:114124. [PMID: 39079182 DOI: 10.1016/j.colsurfb.2024.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 09/17/2024]
Abstract
This study describes a novel dual-mode immunosensor that combines electrochemical (EC) and surface-enhanced Raman scattering (SERS) techniques for the detection of prostate-specific antigen (PSA), a biomarker associated with prostate cancer. The sensor consists of a nanocomposite of gold nanoparticles (AuNPs) deposited on two-dimensional (2D) molybdenum disulfide (Au@MoS2) modified on a working carbon electrode of a screen-printed electrode (SPE). Subsequently, the primary antibody (Ab1) is immobilized on the modified electrode, creating Ab1/Au@MoS2/SPE for specific recognition of the target PSA. In parallel, AuNPs are conjugated with a secondary antibody (Ab2) and a probe molecule, 3,3',5,5'-tetramethylbenzidine (TMB), leading nanotags (TMB/Ab2/AuNPs) formation exhibiting strong SERS and EC responses. Upon the presence of the target, sandwich immunocomplexes can be formed through antigen-antibody interactions (Ab1-PSA-Ab2). The differential pulse voltammetry (DPV) technique is employed for EC detection mode, while a handheld Raman spectrometer with a 785 nm excitation laser is utilized to collect SERS signals. The developed system demonstrates excellent selectivity and sensitivity, with low limits of detection (LODs) of 3.58 pg mL-1 and 4.83 pg mL-1 for EC and SERS sensing, respectively. Importantly, the dual-mode immunosensor proves effective quantifying PSA protein in human serum samples with good recovery. Given its high sensitivity and proficiency in analyzing biological samples, this proposed immunosensor holds promise as an alternative tool for the early diagnosis of cancers.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dechnarong Pimalai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
2
|
Xiong H, Zhang X, Sun J, Xue Y, Yu W, Mou S, Hsia KJ, Wan H, Wang P. Recent advances in biosensors detecting biomarkers from exhaled breath and saliva for respiratory disease diagnosis. Biosens Bioelectron 2024; 267:116820. [PMID: 39374569 DOI: 10.1016/j.bios.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
The global demand for rapid and non-invasive diagnostic methods for respiratory diseases has significantly intensified due to the wide spread of respiratory infectious diseases. Recent advancements in respiratory disease diagnosis through the analysis of exhaled breath and saliva has attracted great attention all over the world. Among various analytical methods, biosensors can offer non-invasive, efficient, and cost-effective diagnostic capabilities, emerging as promising tools in this area. This review intends to provide a comprehensive overview of various biosensors for the detection of respiratory disease related biomarkers in exhaled breath and saliva. Firstly, the characteristics of exhaled breath and saliva, including their generation, composition, and relevant biomarkers are introduced. Subsequently, the design and application of various biosensors for detecting these biomarkers are presented, along with the innovative materials employed as sensitive components. Different types of biosensors are reviewed, including electrochemical, optical, piezoelectric, semiconductor, and other novel biosensors. At last, the challenges, limitations, and future trends of these biosensors are discussed. It is anticipated that biosensors will play a significant role in respiratory disease diagnosis in the future.
Collapse
Affiliation(s)
- Hangming Xiong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weijie Yu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Shimeng Mou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - K Jimmy Hsia
- Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Wang B, Zhao W, Wang L, Kang K, Li X, Zhang D, Ren J, Ji X. Binary-amplifying electrochemiluminescence sensor for sensitive assay of catechol and luteolin based on HKUST-1 derived CuO nanoneedles as a novel luminophore. Talanta 2024; 273:125836. [PMID: 38458080 DOI: 10.1016/j.talanta.2024.125836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 03/10/2024]
Abstract
Herein, a highly novel and effective electrochemiluminescence (ECL) sensor based on metal-organic framework (MOF, HKUST-1) derived CuO nanoneedles (HKUST-1 derived CuO NNs), gold nanoparticles (AuNPs) and TiO2 was developed for ultrasensitive detection of catechol and luteolin. The HKUST-1 derived CuO NNs were employed as luminophore for the first time, which were successfully fabricated by using HKUST-1 as precursor. The results revealed that the HKUST-1 derived CuO NNs exhibit excellent ECL activity ascribed to its abundant active site and the high specific surface area, thus obviously promoting the separation and transfer of charge and further improving the current density of ECL sensor. To binary-amplify the signal of the ECL sensor, the AuNPs and TiO2 nano-materials with good biocompatibility, great electron transport efficiency and high catalytic activity were used as co-reaction accelerators in the ECL process. Dependent on the above brilliant strategy, the proposed ECL sensor achieved wide linear ranges from 3 × 10-9 - 1 × 10-4 M for catechol and 1 × 10-8 - 2 × 10-4 M for luteolin, with the detection limits of 1.5 × 10-9 M for catechol and 5.3 × 10-9 M for luteolin, respectively. Furthermore, the ECL sensor exhibited outstanding selectivity, repeatability, stability and obtained great feedback on determination of catechol and luteolin in actual samples. The method not only filled a gap in the ECL application of MOF-derived materials but also provided a novel sight for design other highly efficient luminescent materials.
Collapse
Affiliation(s)
- Beibei Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenrui Zhao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lin Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kai Kang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xianrui Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Duo Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jujie Ren
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Xueping Ji
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, 050017, China.
| |
Collapse
|
5
|
Li L, Wang T, Zhong Y, Li R, Deng W, Xiao X, Xu Y, Zhang J, Hu X, Wang Y. A review of nanomaterials for biosensing applications. J Mater Chem B 2024; 12:1168-1193. [PMID: 38193143 DOI: 10.1039/d3tb02648e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A biosensor is a device that reacts with the analyte to be analyzed, detects its concentration, and generates readable information, which plays an important role in medical diagnosis, detection of physiological indicators, and disease prevention. Nanomaterials have received increasing attention in the fabrication and improvement of biosensors due to their unique physicochemical and optical properties. In this paper, the properties of nanomaterials such as the size effect, optical and electrical properties, and their advantages in the field of biosensing are briefly summarized, and the application of nanomaterials can effectively improve the sensitivity and reduce the detection limit of biosensors. The advantages of commonly used nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), quantum dots (QDs), graphene, and magnetic nanobeads for biosensor applications are also reviewed. Besides, the two main types of biosensors using nanomaterials involved in their construction and their working principles are described, and the toxicity and biocompatibility of nanomaterials and the future direction of nanomaterial biosensors are discussed.
Collapse
Affiliation(s)
- Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Tianshu Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ruyi Li
- Rotex Co., Ltd, Chengdu, Sichuan, 610043, China
| | - Wei Deng
- Department of Orthopedics, Pidu District People's Hospital, the Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 611730, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
6
|
Ben Moussa F, Kutner W, Beduk T, Sena-Torralba A, Mostafavi E. Electrochemical bio- and chemosensors for cancer biomarkers: Natural (with antibodies) versus biomimicking artificial (with aptamers and molecularly imprinted polymers) recognition. Talanta 2024; 267:125259. [PMID: 37806110 DOI: 10.1016/j.talanta.2023.125259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Electrochemical (EC) bio- and chemosensors are highly promising for on-chip and point-of-care testing (POST) devices. They can make a breakthrough in early cancer diagnosis. Most current EC sensors for cancer biomarkers' detection and determination use natural antibodies as recognition units. However, those quickly lose their biorecognition ability upon exposure to harsh environments, comprising extreme pH, humidity, temperature, etc. So-called "plastic antibodies," including aptamers and molecularly imprinted polymers (MIPs), are hypothesized to be a smart alternative to antibodies. They have attracted the interest of the sensor research community, offering a low cost-to-performance ratio with high stability, an essential advantage toward their commercialization. Herein, we critically review recent technological advances in devising and fabricating EC bio- and chemosensors for cancer biomarkers, classifying them according to the type of recognition unit used into three categories, i.e., antibody-, aptamer-, and MIP-based EC sensors for cancer biomarkers. Each sensor fabrication strategy has been discussed, from the devising concept to cancer sensing applications, including using different innovative nanomaterials and signal transduction strategies. Moreover, employing each recognition unit in the EC sensing of cancer biomarkers has been critically compared in detail to enlighten each recognition unit's advantages, effectiveness, and limitations.
Collapse
Affiliation(s)
- Fatah Ben Moussa
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, Ouargla, 30000, Algeria.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wo ycickiego 1/3, 01-815, Warsaw, Poland
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, 9524, Villach, Austria
| | - Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Huang H, Chen Y, Zuo J, Deng C, Fan J, Bai L, Guo S. MXene-incorporated C 60NPs and Au@Pt with dual-electric signal outputs for accurate detection of Mycobacterium tuberculosis ESAT-6 antigen. Biosens Bioelectron 2023; 242:115734. [PMID: 37832350 DOI: 10.1016/j.bios.2023.115734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Rapid and effective detection of Mycobacterium tuberculosis (MTB) is the crux of minimizing tuberculosis (TB) spread. Consequently, a new electrochemical aptasensor based on dual-signal output for ultrasensitive detection of MTB early secreted antigenic target 6 (ESAT-6) antigen was developed. Especially, a new nanocomposite MXene/C60NPs/Au@Pt was synthesized for signal generation and amplification. In this biosensing architecture, dual independent signal outputs were achieved by coupling the electrochemical redox activity of fullerene nanoparticles (C60NPs) with the effective electrocatalytic activity of Au@Pt nanoparticles. MXene possesses a large specific surface area, allowing densely loaded of these two electroactive materials, further improved sensing capability. In addition, specific ESAT-6 antigen binding aptamers were attached to Au@Pt to create the tracer label. With a typical sandwich format along with the introduction of the gold nanoparticle-loaded molybdenum disulfide (MoS2-Au) as the sensing interface, the limit of detection (LOD) of the proposed aptasensor was 2.88 fg mL-1 (DPV measurement) and 13.50 fg mL-1 (IT measurement), respectively, with a broad linear range of 100 fg mL-1 to 50 ng mL-1. Significantly, it exhibited better specificity and accuracy with a sensitivity of 97.5% and a specificity of 96.7% to distinguish healthy donors, other lung diseases and TB patients compared to commercial ELISA assay, holding a promising prospect in clinical diagnosis.
Collapse
Affiliation(s)
- He Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianli Zuo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Can Deng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Junling Fan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
8
|
Chen H, Zhang J, Huang R, Wang D, Deng D, Zhang Q, Luo L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules 2023; 28:molecules28083605. [PMID: 37110837 PMCID: PMC10144570 DOI: 10.3390/molecules28083605] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Disease-related biomarkers may serve as indicators of human disease. The clinical diagnosis of diseases may largely benefit from timely and accurate detection of biomarkers, which has been the subject of extensive investigations. Due to the specificity of antibody and antigen recognition, electrochemical immunosensors can accurately detect multiple disease biomarkers, including proteins, antigens, and enzymes. This review deals with the fundamentals and types of electrochemical immunosensors. The electrochemical immunosensors are developed using three different catalysts: redox couples, typical biological enzymes, and nanomimetic enzymes. This review also focuses on the applications of those immunosensors in the detection of cancer, Alzheimer's disease, novel coronavirus pneumonia and other diseases. Finally, the future trends in electrochemical immunosensors are addressed in terms of achieving lower detection limits, improving electrode modification capabilities and developing composite functional materials.
Collapse
Affiliation(s)
- Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dejia Wang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Kowalczyk A, Nisiewicz MK, Bamburowicz-Klimkowska M, Kasprzak A, Ruzycka-Ayoush M, Koszytkowska-Stawińska M, Nowicka AM. Effective voltammetric tool for simultaneous detection of MMP-1, MMP-2, and MMP-9; important non-small cell lung cancer biomarkers. Biosens Bioelectron 2023; 229:115212. [PMID: 36958204 DOI: 10.1016/j.bios.2023.115212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Simultaneous detection of multiple biomarkers can allow to reduce the costs of medical diagnostics, and thus improve the accuracy and effectiveness of disease diagnosis and prognosis. Here, for the first time, we present a low-cost, simple, and rapid method for simultaneous detection of three matrix metalloproteinases (MMP-1, MMP-2, and MMP-9) that play important roles in the progression of lung cancer. The sensor matrix was constructed using a G2 polyamidoamine dendrimer (PAMAM) containing amino, carboxyl, and sulfhydryl groups. The recognition process was based on specific enzymatic cleavage of the Gly-Ile peptide bond by MMP-1, Gly-Leu bond by MMP-2, and Gly-Met bond by MMP-9, and monitoring was done by square wave voltammetry. The activity of metalloproteinases was detected based on the change of current signals of redox receptors (dipeptides labeled with electroactive compounds) covalently anchored onto the electrode surface. The conditions of the biosensor construction, including the concentration of receptors on the sensor surface and the time of interaction of the receptor with the analyte, were carefully optimized. Under optimal conditions, the linear response of the developed method ranged from 1.0⋅10-8 to 1.0 mg⋅L-1, and the limit of detection for MMP-1, MMP-2, and MMP-9 was 0.35, 0.62, and 1.10 fg⋅mL-1, respectively. The constructed biosensor enabled us to efficiently profile the levels of active forms of MMP-1, MMP-2, and MMP-9 in tissue samples (plasma and lung and tumor extracts). Thus, the developed biosensor can aid in the early detection and diagnosis of lung cancer.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland
| | - Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Magdalena Bamburowicz-Klimkowska
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Monika Ruzycka-Ayoush
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | | | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland.
| |
Collapse
|
10
|
Tincu B, Burinaru T, Enciu AM, Preda P, Chiriac E, Marculescu C, Avram M, Avram A. Vertical Graphene-Based Biosensor for Tumor Cell Dielectric Signature Evaluation. MICROMACHINES 2022; 13:mi13101671. [PMID: 36296024 PMCID: PMC9610743 DOI: 10.3390/mi13101671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/10/2023]
Abstract
The selective and rapid detection of tumor cells is of critical consequence for the theragnostic field of tumorigenesis; conventional methods, such as histopathological diagnostic methods, often require a long analysis time, excessive analytical costs, complex operations, qualified personnel and deliver many false-positive results. We are considering a new approach of an electrochemical biosensor based on graphene, which is evidenced to be a revolutionary nanomaterial enabling the specific and selective capture of tumor cells. In this paper, we report a biosensor fabricated by growing vertically aligned graphene nanosheets on the conductive surface of interdigitated electrodes which is functionalized with anti-EpCAM antibodies. The dielectric signature of the three types of tumor cells is determined by correlating the values from the Nyquist and Bode diagram: charge transfer resistance, electrical double layer capacity, Debye length, characteristic relaxation times of mobile charges, diffusion/adsorption coefficients, and variation in the electrical permittivity complex and of the phase shift with frequency. These characteristics are strongly dependent on the type of membrane molecules and the electromagnetic resonance frequency. We were able to use the fabricated sensor to differentiate between three types of tumor cell lines, HT-29, SW403 and MCF-7, by dielectric signature. The proposed evaluation method showed the permittivity at 1 MHz to be 3.63 nF for SW403 cells, 4.97 nF for HT 29 cells and 6.9 nF for MCF-7 cells.
Collapse
Affiliation(s)
- Bianca Tincu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Tiberiu Burinaru
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- University of Agronomic Sciences and Veterinary Medicine, 59 Mărăști, 011464 Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, 99–101 Splaiul Independenţei, 050096 Bucharest, Romania
- Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Petruta Preda
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Eugen Chiriac
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Catalin Marculescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Marioara Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Andrei Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| |
Collapse
|
11
|
Wang Q, Xin H, Wang Z. Label-Free Immunosensor Based on Polyaniline-Loaded MXene and Gold-Decorated β-Cyclodextrin for Efficient Detection of Carcinoembryonic Antigen. BIOSENSORS 2022; 12:bios12080657. [PMID: 36005052 PMCID: PMC9405772 DOI: 10.3390/bios12080657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Multiple strategies have been employed to improve the performance of label-free immunosensors, among which building highly conductive interfaces and introducing suitable biocompatible carriers for immobilizing antibodies or antigens are believed to be efficient in most cases. Inspired by this, a label-free immunosensor for carcinoembryonic antigen (CEA) detection was constructed by assembling AuNPs and β-CD (Au-β-CD) on the surface of FTO modified with PANI-decorated f-MXene (MXene@PANI). Driven by the high electron conductivity of MXene@PANI and the excellent capability of Au-β-CD for antibody immobilization, the BSA/anti-CEA/Au-β-CD/MXene@PANI/FTO immunosensor exhibits balanced performance towards CEA detection, with a practical linear range of 0.5–350 ng/mL and a low detection limit of 0.0429 ng/mL. Meanwhile, the proposed sensor presents satisfying selectivity, repeatability, and stability, as well as feasibility in clinic serum samples. This work would enlighten the prospective research on the alternative strategies in constructing advanced immunosensors.
Collapse
|
12
|
Chen M, Zhao L, Wu D, Tu S, Chen C, Guo H, Xu Y. Highly sensitive sandwich-type immunosensor with enhanced electrocatalytic durian-shaped MoS2/AuPtPd nanoparticles for human growth differentiation factor-15 detection. Anal Chim Acta 2022; 1223:340194. [DOI: 10.1016/j.aca.2022.340194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022]
|
13
|
An ultrasensitive immunosensor based on cellulose nanofibrils/polydopamine/Cu-Ag nanocomposite for the detection of AFP. Bioelectrochemistry 2022; 147:108200. [PMID: 35816908 DOI: 10.1016/j.bioelechem.2022.108200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022]
Abstract
In this work, an ultrasensitive immunosensor for amperometric determination of alpha-fetoprotein (AFP) was developed utilizing Ag and Cu nanoparticles on polydopamine (PDA) functionalized cellulose nanofibrils (CNFs) composite (CNFs/PDA/Cu-Ag) as signal amplifier. PDA was first prepared by self-polymerizing of dopamine, and then was adsorbed on CNFs. The obtained CNFs/PDA was applied as substrate to electrolessly deposit Cu-Ag nanoparticles, using NaBH4 as reducing agent. The structure and morphology of the synthesized CNFs/PDA/Cu-Ag nanocomposite were analyzed through Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, scanning electron microscopy, particle size analyzer and transmission electron microscopy. The CNFs/PDA/Cu-Ag modified glassy carbon electrode can fix AFP antibody (Ab), and further capture AFP specifically. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the assembly process of immunosensor. The immunoreaction was amplified by electrocatalytical reduction of H2O2 on Cu-Ag nanoparticles, through which AFP was quantitatively detected. The developed sensor exhibits wide linear range of 0.01-100 ng mL-1 (R2 = 0.9963) with low detection limit of 4.27 pg mL-1 (S/N = 3). In addition, it has been used for the detection of AFP in human serum, manifesting its preeminent application prospect in early liver cancer diagnosis.
Collapse
|
14
|
Hu C, Wei G, Zhu F, Wu A, Luo L, Shen S, Zhang J. Platinum-Based Nanocomposite Pt@BSA as an Efficient Electrochemical Biosensing Interface for Rapid and Ultrasensitive Determination of Folate Receptor-Positive Tumor Cells. ACS APPLIED BIO MATERIALS 2022; 5:3038-3048. [PMID: 35544589 DOI: 10.1021/acsabm.2c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing a cytosensing strategy based on electrochemical approaches has attracted wide interest due to the low cost, rapid response, and simple instrumentation. In this work, an electrochemical cytosensor employing the Pt@BSA nanocomposite as the biosensing substrate along with the covalent cross-linking of targeting molecules folic acid (FA) was constructed for highly sensitive determination of folate receptor (FR)-positive tumor cells. The prepared Pt@BSA nanocomposite revealed excellent biocompatibility for cell adhesion and proliferation, which was confirmed by cell viability evaluation using thiazolyl blue tetrazolium bromide (MTT) colorimetric methods. Due to the satisfactory electrical conductivity originating from Pt@BSA and the high binding affinity of FA to FR on the cell surface, an ultrasensitive and specific cytosensing device was designed for rapid and quantitative determination of HeLa cells (a model system) by differential pulse voltammetry (DPV) tests. This proposed cytosensor resulted in a wide HeLa cell determination range of 2.8 × 101-2.8 × 106 cells mL-1 with a low DPV detection limit of 9 cells mL-1. The developed cytosensing approach exhibited highly specific recognition of FR-positive tumor cells, excellent inter-assay reproducibility with a relative standard deviation (RSD) of 4.7%, acceptable intra-assay precision, and favorable storage stability, expanding the application of electrochemical measurement technology in the biomedical field of early detection and diagnosis of cancers.
Collapse
Affiliation(s)
- Chenyi Hu
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanghua Wei
- SJTU-Paris Tech Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengjuan Zhu
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiming Wu
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liuxuan Luo
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, Key Laboratory of Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Hong SP, Mohd‐Naim NF, Keasberry NA, Ahmed MU. Electrochemical Detection of β‐Lactoglobulin Allergen Using Titanium Dioxide/Carbon Nanochips/Gold Nanocomposite‐based Biosensor. ELECTROANAL 2022. [DOI: 10.1002/elan.202100207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shyang Pei Hong
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd‐Naim
- PAPRSB Institute of Health Sciences Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Natasha Ann Keasberry
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
16
|
Niu H, Cai S, Liu X, Huang X, Chen J, Wang S, Zhang S. A novel electrochemical sandwich-like immunosensor based on carboxyl Ti 3C 2T x MXene and rhodamine b/gold/reduced graphene oxide for Listeria monocytogenes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:843-849. [PMID: 35156973 DOI: 10.1039/d1ay02029c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Listeria monocytogenes (LM) is one of the most common food-borne pathogens and can induce a series of diseases with a high mortality rate to humans; hence, it is very necessary to develop a highly sensitive method for LM detection. Based on this need, a new sandwich-like electrochemical immunosensing platform was developed herein by preparing carboxyl Ti3C2Tx MXene (C-Ti3C2Tx MXene) as the sensing platform and rhodamine b/gold/reduced graphene oxide (RhB/Au/RGO) as the signal amplifier. The high conductivity and large surface area of C-Ti3C2Tx MXene make it a desirable nanomaterial to fix the primary antibody of LM (PAb), while the prepared Au/RGO/RhB nanohybrid is dedicated to assembling the secondary antibody (SAb) of LM, offering an amplified response signal. Through the use of RhB molecule as the signal probe, the experiments showed that the peak currents of RhB increase along with an increase in the concentration of LM from 10 to 105 CFU mL-1, and an extremely low limit of detection (2 CFU mL-1) was obtained on the basis of the proposed immunosensing platform after optimizing various conditions. Hence, it is confirmed that the developed sandwich-like immunosensor based on C-Ti3C2Tx MXene and RhB/Au/Gr has great application in the detection of LM and other analytes.
Collapse
Affiliation(s)
- Huimin Niu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Shumei Cai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Xueke Liu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Xiaoming Huang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Juan Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian 350025, PR China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou, Fujian 350025, PR China
| |
Collapse
|
17
|
Eduarda Schneider M, Guillade L, Correa-Duarte MA, Moreira FT. Development of a biosensor for Phosphorylated Tau 181 Protein detection in Early-Stage Alzheimer’s Disease. Bioelectrochemistry 2022; 145:108057. [DOI: 10.1016/j.bioelechem.2022.108057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
|
18
|
Kartika AE, Setiyanto H, Manurung RV, Jenie SNA, Saraswaty V. Silver Nanoparticles Coupled with Graphene Nanoplatelets Modified Screen-Printed Carbon Electrodes for Rhodamine B Detection in Food Products. ACS OMEGA 2021; 6:31477-31484. [PMID: 34869974 PMCID: PMC8637599 DOI: 10.1021/acsomega.1c03414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
A rapid, simple, and sensitive voltammetric sensor has been fabricated to determine Rhodamine B (RhB), a textile coloring agent. Silver nanoparticles (AgNPs) were synthesized by the chemical reduction method of silver nitrate and sodium citrate. Graphene nanoplatelets (GPLs) and AgNPs were drop-casted on the surface of a working electrode of a screen-printed carbon electrode (SPCE), forming the SPCE-GPLs/AgNPs samples. Scanning electron microscopy-energy dispersive X-ray and cyclic voltammetry confirmed the altered surface of the SPCE. The square wave voltammetry was used for the electrochemical determination of RhB. The SPCE-GPLs/AgNPs demonstrated electrochemical responses to detect RhB with a linear range of 2-100 μM, and the limit of detection was 1.94 μM. The SPCE-GPLs/AgNPs demonstrated a selective detection of RhB in the presence of common interfering compounds present in the food samples, including sucrose and monosodium glutamate. Furthermore, the sensor presented good reproducibility as well as repeatability in the detection of RhB. When the sensor was used to determine RhB in an actual food sample, similar results were shown as suggested by UV-vis spectroscopy analysis. Hence, the fabricated sensor can be applied for the detection of RhB in food samples.
Collapse
Affiliation(s)
- Andi Eka Kartika
- Department
of Chemistry (Analytical Chemistry Research Group), Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Bandung 40132, Indonesia
| | - Henry Setiyanto
- Department
of Chemistry (Analytical Chemistry Research Group), Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Bandung 40132, Indonesia
- . Fax: +62-22-2504154. Phone: +62-22-2502103
| | - Robeth Viktoria Manurung
- Research
Center for Electronics & Telecommunication, National Research and Innovation Agency Republic of Indonesia, Bandung 40135, Indonesia
- . Phone: +62 815 871 4667
| | - Siti Nurul Aisyiyah Jenie
- Research
Center for Chemistry, National Research
and Innovation Agency Republic of Indonesia, Tangerang Selatan 15314 Indonesia
| | - Vienna Saraswaty
- Research
Unit for Clean Technology, National Research
and Innovation Agency Republic of Indonesia, Bandung 40135, Indonesia
| |
Collapse
|
19
|
Zhang Z, Peng M, Li D, Yao J, Li Y, Wu B, Wang L, Xu Z. Carbon Material Based Electrochemical Immunosensor for Gastric Cancer Markers Detection. Front Chem 2021; 9:736271. [PMID: 34532312 PMCID: PMC8438142 DOI: 10.3389/fchem.2021.736271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors, and early diagnosis will be of great significance to improve the survival quality and overall treatment outcome evaluation of patients. Nanoelectrochemical immunosensor is an emerging biosensor combining nanotechnology, electrochemical analysis method and immunological technology, which has simple operation, fast analysis speed, high sensitivity, and good selectivity. This mini-review summarized immunoassay techniques, nanotechnology and electrochemical sensing for the early detection of gastric cancer. In particular, we focus on the tension of carbon nanomaterials in this field, including the functionalized preparation of materials, signal enhancement and the construction of novel sensing interfaces. Currently, various tumor markers are being developed, but the more recognized gastric cancer tumor markers are carcinoembryonic antigen (CEA), carbohydrate antigen (CA), CD44V9, miRNAs, and programmed death ligand 1. Among them, the electrochemical immunosensor allows the detection of CEA, CA, and miRNAs. The mini-review focused on the development of using carbon based materials, especially carbon nanotubes and graphene for immunosensor fabrication and gastric cancer markers detection.
Collapse
Affiliation(s)
- Zhuliang Zhang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Minsi Peng
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yingxue Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Benhua Wu
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Zhenglei Xu
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|
20
|
Feng G, Yang Y, Zeng J, Zhu J, Liu J, Wu L, Yang Z, Yang G, Mei Q, Chen Q, Ran F. Highly sensitive electrochemical determination of rutin based on the synergistic effect of 3D porous carbon and cobalt tungstate nanosheets. J Pharm Anal 2021; 12:453-459. [PMID: 35811621 PMCID: PMC9257437 DOI: 10.1016/j.jpha.2021.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022] Open
Abstract
Rutin, a flavonoid found in fruits and vegetables, is a potential anticancer compound with strong anticancer activity. Therefore, electrochemical sensor was developed for the detection of rutin. In this study, CoWO4 nanosheets were synthesized via a hydrothermal method, and porous carbon (PC) was prepared via high-temperature pyrolysis. Successful preparation of the materials was confirmed, and characterization was performed by transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. A mixture of PC and CoWO4 nanosheets was used as an electrode modifier to fabricate the electrochemical sensor for the electrochemical determination of rutin. The 3D CoWO4 nanosheets exhibited high electrocatalytic activity and good stability. PC has a high surface-to-volume ratio and superior conductivity. Moreover, the hydrophobicity of PC allows large amounts of rutin to be adsorbed, thereby increasing the concentration of rutin at the electrode surface. Owing to the synergistic effect of the 3D CoWO4 nanosheets and PC, the developed electrochemical sensor was employed to quantitively determine rutin with high stability and sensitivity. The sensor showed a good linear range (5–5000 ng/mL) with a detection limit of 0.45 ng/mL. The developed sensor was successfully applied to the determination of rutin in crushed tablets and human serum samples. Highly sensitive electrochemical sensor based on 3D porous carbon and CoWO4 nanosheets. Electrochemical signal of rutin is mainly based on its concentration at the electrode surface. The introduction of porous carbon improved the electrochemical performance of 3D CoWO4. The sensor was successfully applied to determine rutin in human serum samples.
Collapse
|
21
|
Chen K, Zhao H, Wang Z, Lan M. A novel signal amplification label based on AuPt alloy nanoparticles supported by high-active carbon for the electrochemical detection of circulating tumor DNA. Anal Chim Acta 2021; 1169:338628. [PMID: 34088375 DOI: 10.1016/j.aca.2021.338628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
The detection of circulating tumor DNA (ctDNA) has increasingly received a great deal of attention considering its significance in cancer diagnosis. And the signal amplification plays an important role in the development of sensitive ctDNA biosensors. Herein, the nanocomposites (denoted as HAC-AuPt), integrating from high-active carbon (HAC) and AuPt alloy nanoparticles, were synthesized and subsequently used as a signal amplification label to fabricate a sandwich-type ctDNA electrochemical biosensor. Characterizations demonstrated that HAC presents uniform size distribution and AuPt alloy nanoparticles were successfully loaded on HAC. The current response could be amplified to a great extent by the resultant HAC-AuPt due to its excellent electrochemical property. The nanocomposites were further bounded with DNA signal probes (SPs) via Au-S or Pt-S assembly to form SPs-label. After the capture probes (CPs) were immobilized on the electrode surface, the target DNA (tDNA) and SPs-label were stepwise incubated on the CPs-modified electrode, thus forming a sandwich-type structure. By monitoring the catalytic signal of HAC-AuPt towards the reduction process of H2O2, this biosensor provided a wide linear range of 10-8 mol/L - 10-16 mol/L with a low detection limit of 3.6 × 10-17 mol/L (S/N = 3) for the detection of the tDNA. Furthermore, obvious differences in response signals among different DNAs were observed benefitting from the excellent selectivity of the biosensor. Besides, the long-term stability, reproducibility, and recovery rate were proved to be outstanding. These results indicate that the established biosensor holds a potential application in the clinical diagnosis of ctDNA.
Collapse
Affiliation(s)
- Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
22
|
Jalil O, Pandey CM, Kumar D. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry 2020; 138:107733. [PMID: 33429154 DOI: 10.1016/j.bioelechem.2020.107733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
An ultrasensitive, electrochemical biosensor has been fabricated by utilizing molybdenum disulfide (MoS2) grafted reduced graphene oxide (MoS2@rGO) nanohybrid as a sensing platform. Biomolecular-assisted synthetic method was adopted to synthesize MoS2@rGO nanohybrid, where L-cys was used to reduce GO. The MoS2@rGO nanohybrid exhibits improved electrochemical performance when it has been electrophoretically deposited onto the indium tin oxide (ITO) coated glass substrate. Further, epithelialcell adhesion moleculeantibodies (anti-EpCAM) specific to cancer biomarker has been covalently immobilized on the MoS2@rGO/ITO electrodes for label-free detection of EpCAM. Electrochemical results confirm that anti-EpCAM/MoS2@rGO/ITO based biosensor can detect EpCAM in the concentration range of 0.001-20 ng mL-1 with a detection limit of 44.22 fg mL-1 (S/N = 3). The biosensor's excellent analytical performance has been attributed to the efficient immobilization of EpCAM antibodies on the MoS2@rGO surface, which results in high specificity for EpCAM antigen. The fabricated biosensor showed good selectivity, reproducibility, and stability. The successful detection of EpCAM antigen in spiked samples (human saliva, serum and urine) makes this platform an alternative method for early screening of cancer biomarker.
Collapse
Affiliation(s)
- Owais Jalil
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Chandra Mouli Pandey
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India.
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
23
|
Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020; 25:E5787. [PMID: 33302537 PMCID: PMC7763225 DOI: 10.3390/molecules25245787] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the rise in public health awareness, research on point-of-care testing (POCT) has significantly advanced. Electrochemical biosensors (ECBs) are one of the most promising candidates for the future of POCT due to their quick and accurate response, ease of operation, and cost effectiveness. This review focuses on the use of metal nanoparticles (MNPs) for fabricating ECBs that has a potential to be used for POCT. The field has expanded remarkably from its initial enzymatic and immunosensor-based setups. This review provides a concise categorization of the ECBs to allow for a better understanding of the development process. The influence of structural aspects of MNPs in biocompatibility and effective sensor design has been explored. The advances in MNP-based ECBs for the detection of some of the most prominent cancer biomarkers (carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), Herceptin-2 (HER2), etc.) and small biomolecules (glucose, dopamine, hydrogen peroxide, etc.) have been discussed in detail. Additionally, the novel coronavirus (2019-nCoV) ECBs have been briefly discussed. Beyond that, the limitations and challenges that ECBs face in clinical applications are examined and possible pathways for overcoming these limitations are discussed.
Collapse
Affiliation(s)
- Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| |
Collapse
|
24
|
Ma J, Mao X, Cong H, Li X, Sun J, Wang M, Wang H. A robust composite hydrogel consisting of polypyrrole and β-cyclodextrin-based supramolecular complex for the label-free amperometric immunodetection of motilin with well-defined dual signal response and high sensitivity. Biosens Bioelectron 2020; 173:112810. [PMID: 33212402 DOI: 10.1016/j.bios.2020.112810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
The label-free amperometric immunosensor is a simple, convenient and reliable method for the detection of diseases markers. Its performance heavily relies on the properties of the sensing substrate. In this paper, we proposed a robust composite hydrogel that consists of polypyrrole and vinyl ferrocene/mono-aldehyde β-cyclodextrin (β-CD) complex as a sensing and immobilizing substrate. Surprisingly, it was observed that the microstructure of the hybrid hydrogel could be well regulated by the feed ratio of vinylferrocene and so are the electrochemical properties. Depending on the dual electrochemical active compositions, a large loading capacity of antibodies and meanwhile the excellent conductivity, the square wave voltammetry results of the optimized immunosensor for the detection of motilin exhibited a well-defined dual signal response, with a wide linear range both from 10 pg mL-1 to 100 ng mL-1 for motilin, and an ultralow limit of detection of 6.29 pg mL-1 and 2.73 pg mL-1. More importantly, the immunosensor exhibited an especially sensitive response with the slope value as high as 31.342 and 25.751 respectively, which makes great sense in the practical diagnosis.
Collapse
Affiliation(s)
- Jiao Ma
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Xiaohui Mao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Hongxiao Cong
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Xiaoting Li
- North Automatic Control Technology Institute, Taiyuan, Shanxi, 030006, PR China
| | - Jing Sun
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Meiling Wang
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Hua Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| |
Collapse
|
25
|
Zhang L, Si X, Yan X, He H, Deng D, Luo L. A Novel Electrochemical Sensor Based on Au-rGO Nanocomposite Decorated with Poly(L-cysteine) for Determination of Paracetamol. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016999200414145325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background:
Paracetamol is a common antipyretic and analgesic drug, but its excessive
intake can accumulate toxic metabolites and cause kidney and liver damage, so it is critical to determine
the content of paracetamol for clinical diagnosis and dose use.
Methods:
Au-reduced graphene oxide (Au-rGO) nanocomposite decorated with poly(L-cysteine) on
carbon paste electrode was fabricated for the determination of paracetamol. Au-rGO was first coelectrodeposited
on the carbon paste electrode surface. Afterwards, L-cysteine was electropolymerized
to fabricate the Au-rGO/poly(L-cysteine) modified carbon paste electrode. Scanning electron
microscope was used to characterize the morphology of Au-rGO and poly(L-cysteine)/Au-rGO. The
electrochemical properties of the sensor were studied by cyclic voltammetry and differential pulse
voltammetry.
Results:
After exploring the optimal conditions, the sensor showed a wide linear response for paracetamol
detection in the range of 1-200 μM with a detection limit of 0.5 μM (S/N = 3).
Conclusion:
The fabricated sensor demonstrated good sensitivity with rapid detection capacity in real
samples.
Collapse
Affiliation(s)
- Lin Zhang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaojing Si
- Food Department, Shanghai Business School, Shanghai 200235, China
| | - Xiaoxia Yan
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Haibo He
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
26
|
Boosting electrochemical immunosensing performance by employing acetaminophen as a peroxidase substrate. Biosens Bioelectron 2020; 165:112337. [DOI: 10.1016/j.bios.2020.112337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 11/24/2022]
|
27
|
Bioreceptor-free, sensitive and rapid electrochemical detection of patulin fungal toxin, using a reduced graphene oxide@SnO2 nanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110916. [DOI: 10.1016/j.msec.2020.110916] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
|
28
|
Zheng S, Hu J, Cui X, Hu T, Zhang Y, Guo J, Tang J, Wang X. In situ
Growth of a Cobalt‐based Metal‐organic Framework on Multi‐walled Carbon Nanotubes for Simultaneously Detection of Hydroquinone and Catechol. ELECTROANAL 2020. [DOI: 10.1002/elan.202000023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shengbiao Zheng
- College of Chemistry and Material Engineering Anhui Science and Technology University 233000 Bengbu Anhui Province China
| | - Jiaqi Hu
- College of Chemistry and Material Engineering Anhui Science and Technology University 233000 Bengbu Anhui Province China
| | - Xue Cui
- College of Chemistry and Material Engineering Anhui Science and Technology University 233000 Bengbu Anhui Province China
| | - Tao Hu
- College of Chemistry and Material Engineering Anhui Science and Technology University 233000 Bengbu Anhui Province China
| | - Yuyang Zhang
- College of Chemistry and Material Engineering Anhui Science and Technology University 233000 Bengbu Anhui Province China
| | - Jiahao Guo
- College of Chemistry and Material Engineering Anhui Science and Technology University 233000 Bengbu Anhui Province China
| | - Jing Tang
- College of Chemistry and Material Engineering Anhui Science and Technology University 233000 Bengbu Anhui Province China
| | - Xuchun Wang
- College of Chemistry and Material Engineering Anhui Science and Technology University 233000 Bengbu Anhui Province China
| |
Collapse
|
29
|
Tang J, Liu Y, Hu J, Zheng S, Wang X, Zhou H, Jin B. Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: A sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Butmee P, Tumcharern G, Thouand G, Kalcher K, Samphao A. An ultrasensitive immunosensor based on manganese dioxide-graphene nanoplatelets and core shell Fe 3O 4@Au nanoparticles for label-free detection of carcinoembryonic antigen. Bioelectrochemistry 2020; 132:107452. [PMID: 31927189 DOI: 10.1016/j.bioelechem.2019.107452] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
A novel electrochemical immunosensor was developed for label-free detection of carcinoembryonic antigen (CEA) as a cancer biomarker. The designed immunosensor was based on CEA antibody (anti-CEA) anchored with core shell Fe3O4@Au nanoparticles which were immobilized on a screen-printed carbon electrode modified with manganese dioxide decorating on graphene nanoplatelets (SPCE/GNP-MnO2/Fe3O4@Au-antiCEA). The SPCE was placed onto a home-made electrode holder for easy handling. The approach was based on direct binding of CEA to a fixed amount of anti-CEA on the modified electrode for the specific detection using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) monitored in a solution containing 5 mM [Fe(CN)63-/4-] prepared in 0.1 M phosphate buffer at pH 7.4. The difference in signal response owing to the redox reaction of [Fe(CN)6]3-/4- before and after interaction with CEA was regarded as the immunosensor response corresponding directly to the CEA concentration. Under optimized conditions, the linear range of 0.001-100 ng/mL, and the detection limits of 0.10 pg/mL (LSV) and 0.30 pg/mL (EIS) were evaluated. The applicability of the immunosensor was verified by well-corresponding determination of CEA in diluted human serum samples by electrochemiluminescence (ECL) immunoassay. Therefore, the proposed immunosensor could be suitable enough for a real sample analysis of CEA.
Collapse
Affiliation(s)
- Preeyanut Butmee
- Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani 34190, Thailand
| | - Gamolwan Tumcharern
- National Nanotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Gerald Thouand
- Nntes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche sur Yon, France
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, University of Graz, A-8010 Graz, Austria.
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani 34190, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani 34190, Thailand.
| |
Collapse
|
31
|
Wang CF, Sun XY, Su M, Wang YP, Lv YK. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules. Analyst 2020; 145:1550-1562. [DOI: 10.1039/c9an02047k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of biomacromolecule functionalized graphene electrochemical biosensors in the detection of pathogens and disease markers was reviewed.
Collapse
Affiliation(s)
- Chen-Feng Wang
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Xin-Yue Sun
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Ming Su
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Yi-Peng Wang
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| |
Collapse
|
32
|
Zhao X, Wang W, Liu L, Hu Y, Xu Z, Liu L, Wu N, Li N. Microstructure evolution of sandwich graphite oxide/interlayer-embedded Au nanoparticles induced from γ-rays for carcinoembryonic antigen biosensor. NANOTECHNOLOGY 2019; 30:495501. [PMID: 31443101 DOI: 10.1088/1361-6528/ab3e1e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the capability of inducing small particle sizes of supported metal in graphite oxide (GO), the γ-ray irradiation method applied for preparing graphite oxide-gold (GO-Au) nanocomposites as electrochemical immunosensors has attracted specific attention recently. To study the accurate factors influencing the precise morphology and final performance of the prepared composites in the γ-irradiation system, we proposed a facile method to investigate the evolution of the GO structure, size and dispersion of Au nanoparticles (AuNPs) produced with the addition of isopropyl alcohol to the system. The GO-Au nanocomposites were characterized by Fourier transform infrared spectroscopy, x-ray diffraction spectra, Raman spectra, x-ray photoelectron spectroscopy and high resolution transmission electron microscopy. These nanocomposites with sandwich morphology exhibited an excellent immunosensor performance with a low detection limit of 15.8 pg ml-1 (S/N = 3) and a wide linear range from 1 to 40 ng ml-1 for detecting carcinoembryonic antigens. The enhanced biosensing performance is attributed to the synergistic effect of γ-irradiation and the precise structure of GO, which endows the smaller size and more uniform distribution of AuNPs on the GO as well as the good signal amplification capability. Furthermore, adopting the γ-irradiation method and use of GO as a precursor is propitious for application in large-scale production because of its high-efficiency and high-yielding characteristics.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Shen G, Shen Y. Label-Free Electrochemical Immunosensor Based on β-Cyclodextrin-Functionalized Helical Carbon Nanotube and Ionic Liquid Containing Ferrocene and Aldehyde Groups. ACS OMEGA 2019; 4:20252-20256. [PMID: 31815227 PMCID: PMC6893954 DOI: 10.1021/acsomega.9b02559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
We fabricated an electrochemical immunosensor for the detection of cardiac troponin I using β-cyclodextrin-functionalized helical carbon nanotube and ionic liquid functionalized with ferrocene and aldehyde groups. β-Cyclodextrin-functionalized helical carbon nanotube was first modified on the electrode surface. Then, ferrocene- and aldehyde-functionalized ionic liquid was modified on the surface of the electrode through host-guest interaction, resulting in an interface with aldehyde groups. The aldehyde groups attached to the ionic liquid capture antibody directly, which simplifies the fabrication of immunosensor. Because of the use of ionic liquid and helical carbon nanotube, the conductivity of the sensing interface was improved. Thus, the sensitivity of the fabricated immunosensor was increased. The immunosensor for cardiac troponin I shows a linear range from 0.05 to 20 ng mL-1 with a detection limit of 0.04 ng mL-1 (S/N = 3).
Collapse
Affiliation(s)
- Guangyu Shen
- Hunan
Province Cooperative Innovation Center for The Construction
& Development of Dongting Lake Ecological Economic Zone and College of Chemistry
and Material Engineering, Hunan University
of Arts and Science, Changde 415000, China
| | - Youming Shen
- Hunan
Province Cooperative Innovation Center for The Construction
& Development of Dongting Lake Ecological Economic Zone and College of Chemistry
and Material Engineering, Hunan University
of Arts and Science, Changde 415000, China
| |
Collapse
|
34
|
He B, Liu H. Electrochemical determination of nitrofuran residues at gold nanoparticles/graphene modified thin film gold electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104108] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Augustine S, Kumar P, Malhotra BD. Amine-Functionalized MoO3@RGO Nanohybrid-Based Biosensor for Breast Cancer Detection. ACS APPLIED BIO MATERIALS 2019; 2:5366-5378. [DOI: 10.1021/acsabm.9b00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shine Augustine
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042 India
| | - Pragati Kumar
- Administrative Supervisor, Department of Electrical Engineering, Delhi Technological University, Delhi, 110042 India
| | - Bansi D. Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042 India
| |
Collapse
|
36
|
Ma C, Zhao C, Li W, Song Y, Hong C, Qiao X. Sandwich-type electrochemical immunosensor constructed using three-dimensional lamellar stacked CoS 2@C hollow nanotubes prepared by template-free method to detect carcinoembryonic antigen. Anal Chim Acta 2019; 1088:54-62. [PMID: 31623716 DOI: 10.1016/j.aca.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 01/01/2023]
Abstract
Effective treatment of cancer depends on early detection of tumor markers. In this paper, an effective template-free method was used to prepare CoS2@C three-dimensional hollow sheet nanotubes as the matrix of the immunosensor. The unique three-dimensional hybrid hollow tubular nanostructure provides greater contact area and enhanced detection limit. The CoS2@C-NH2-HRP nanomaterial was synthesized as a marker and had a high specific surface area, which can effectively improve the electrocatalytic ability of hydrogen peroxide (H2O2) reduction while increasing the amount of capture-fixed carcinoembryonic antigen antibody (anti-CEA). In addition, the co-bonded horseradish peroxidase (HRP) can further promote the redox of H2O2 and amplify the electrical signal. Carcinoembryonic antigen (CEA) was quantified by immediate current response (i-t), and the prepared immunosensor had good analytical performance under optimized conditions. The current signal and the concentration of CEA were linear in the range of 0.001-80 ng/mL, and the detection limit was 0.33 pg/mL (S/N = 3). The designed immunosensor has good selectivity, repeatability and stability, and the detection of human serum samples shows good performance. Furthermore, electrochemical immunosensor has broad application prospects in the clinical diagnosis of CEA.
Collapse
Affiliation(s)
- Chaoyun Ma
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chulei Zhao
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Wenjun Li
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Yiju Song
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chenglin Hong
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| | - Xiuwen Qiao
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| |
Collapse
|
37
|
Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Yang SY, Wang YF, Yue Y, Bian SW. Flexible polyester yarn/Au/conductive metal-organic framework composites for yarn-shaped supercapacitors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Electrochemiluminescent immunoassay for insulin by using a quencher pair consisting of CdS:Eu nanoclusters loaded with multiwalled carbon nanotubes on reduced graphene oxide nanoribbons and gold nanoparticle-loaded octahedral Cu2O. Mikrochim Acta 2019; 186:505. [DOI: 10.1007/s00604-019-3640-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022]
|
41
|
Afzali M, Mostafavi A, Nekooie R, Jahromi Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Lima D, Inaba J, Clarindo Lopes L, Calaça GN, Los Weinert P, Lenzi Fogaça R, Ferreira de Moura J, Magalhães Alvarenga L, Cavalcante de Figueiredo B, Wohnrath K, Andrade Pessôa C. Label-free impedimetric immunosensor based on arginine-functionalized gold nanoparticles for detection of DHEAS, a biomarker of pediatric adrenocortical carcinoma. Biosens Bioelectron 2019; 133:86-93. [PMID: 30909017 DOI: 10.1016/j.bios.2019.02.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/23/2019] [Indexed: 12/17/2022]
Abstract
Pediatric adrenocortical carcinoma (pACC) is a rare and aggressive malignancy of high occurrence in Southern Brazil. pACC is characterized by the usual overproduction of dehydroepiandrosterone sulfate (DHEAS), whose detection in serum or plasma can be effective to the early diagnosis of the disease. Therefore, the present paper reports, for the first time, the construction and application of a label-free impedimetric immunosensor to detect DHEAS, which was based on the modification of an oxidized glassy carbon electrode with arginine-functionalized gold nanoparticles (AuNPs-ARG) and anti-DHEA IgM antibodies (ox-GCE/AuNPs-ARG/IgM). AuNPs-ARG was synthesized by a green route, and characterized by UV-VIS spectroscopy, FTIR, TEM, DLS, and XRD. The construction of ox-GCE/AuNPs-ARG/IgM was optimized through factorial design and response surface methodology. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were employed to characterize the optimized immunosensor. The DHEAS detection principle was based on the variation of charge transfer resistance (∆Rct) relative to the Fe(CN)64-/3- electrochemical probe after immunoassays in the presence of the biomarker. A linear relationship between ∆Rct and DHEAS concentration was verified in the range from 10.0 to 110.0 µg dL-1, with a LOD of 7.4 µg dL-1. Besides the good sensitivity, the immunosensor displayed accuracy, stability, and specificity to detect DHEAS. The promising analytical performance of ox-GCE/AuNPs-ARG/IgM was confirmed by quantifying DHEAS in real patient plasma samples, with results that were comparable to the reference chemiluminescence assay. Our results suggest that the presented immunosensor can find clinical applications in the early diagnosis of pACC and to monitor DHEAS levels in other adrenal pathologies.
Collapse
Affiliation(s)
- Dhésmon Lima
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil
| | - Juliana Inaba
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil
| | - Luma Clarindo Lopes
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil
| | - Giselle Nathaly Calaça
- Department of Chemistry, Instituto Federal do Paraná, Rodovia PR 323, KM 310, 87507-014 Umuarama, Paraná, Brazil
| | - Patrícia Los Weinert
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil
| | - Rafaela Lenzi Fogaça
- Department of Basic Pathology, Universidade Federal do Paraná, Av. Coronel Francisco H. dos Santos, 100, 81530-000 Curitiba, Paraná, Brazil
| | - Juliana Ferreira de Moura
- Department of Basic Pathology, Universidade Federal do Paraná, Av. Coronel Francisco H. dos Santos, 100, 81530-000 Curitiba, Paraná, Brazil
| | - Larissa Magalhães Alvarenga
- Department of Basic Pathology, Universidade Federal do Paraná, Av. Coronel Francisco H. dos Santos, 100, 81530-000 Curitiba, Paraná, Brazil
| | - Bonald Cavalcante de Figueiredo
- Department of Community Health, Universidade Federal do Paraná, Rua Padre Camargo, 261, 80069-240 Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, 80250-060 Curitiba, Paraná, Brazil
| | - Karen Wohnrath
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil
| | - Christiana Andrade Pessôa
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
43
|
Tang J, Huang R, Zheng S, Jiang S, Yu H, Li Z, Wang J. A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Ma Z, Li S, Wang H, Cheng W, Li Y, Pan L, Shi Y. Advanced electronic skin devices for healthcare applications. J Mater Chem B 2018; 7:173-197. [PMID: 32254546 DOI: 10.1039/c8tb02862a] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic skin, a kind of flexible electronic device and system inspired by human skin, has emerged as a promising candidate for wearable personal healthcare applications. Wearable electronic devices with skin-like properties will provide platforms for continuous and real-time monitoring of human physiological signals such as tissue pressure, body motion, temperature, metabolites, electrolyte balance, and disease-related biomarkers. Transdermal drug delivery devices can also be integrated into electronic skin to enhance its non-invasive, real-time dynamic therapy functions. This review summarizes the recent progress in electronic skin devices for applications in human health monitoring and therapy systems as well as several potential mass production technologies such as inkjet printing and 3D printing. The opportunities and challenges in broadening the applications of electronic skin devices in practical healthcare are also discussed.
Collapse
Affiliation(s)
- Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Wang HT, Liu YN, Kang XH, Wang YF, Yang SY, Bian SW, Zhu Q. Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns. J Colloid Interface Sci 2018; 532:527-535. [DOI: 10.1016/j.jcis.2018.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 11/27/2022]
|
46
|
Ko WY, Tien TJ, Hsu CY, Lin KJ. Ultrasensitive label- and amplification-free photoelectric protocols based on sandwiched layer-by-layer plasmonic nanocomposite films for the detection of alpha-fetoprotein. Biosens Bioelectron 2018; 126:455-462. [PMID: 30472442 DOI: 10.1016/j.bios.2018.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 11/25/2022]
Abstract
A label- and amplification-free photoelectric immunosensor based on well-defined layer-by-layer sandwich-structured AuNP/TNW/AuNP composite is proposed for direct and ultrasensitive detection of α-fetoprotein (AFP). The AuNP/TNW/AuNP composite is produced by assembling an Au nanoparticle underlayer and anatase TiO2 nanowires (TNW) onto the FTO substrate, followed by decorating Au nanoparticles onto the TNW surface, through a simple sputtering and hydrothermal process. The resulting AuNP/TNW/AuNP electrode exhibits a 14-fold and 2-fold enhancement in photocurrent density under simulated sunlight compared with that of bare TNW and AuNP/TNW, respectively, which benefits from the SPR-induced photoabsorption increment and charge separation improvement in Au nanoparticle and interfacial charge transfer promotion at the TiO2/substrate interface in the Au underlayer. As a proof of concept, the AFP antigen can be quantitatively detected by the proposed AuNP/TNW/AuNP coupled with anti-AFP through the analysis of the photocurrent change. This novel AFP photoelectric immunosensor exhibited sensitive detection of AFP with an ultrahigh sensitivity of 0.001 ng mL-1 and good specific selectivity. Moreover, the practical determination of AFP in human serum is also investigated, demonstrating its applicability and potential attraction for clinical tests and disease diagnosis.
Collapse
Affiliation(s)
- Wen-Yin Ko
- Department of Chemistry and Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Jung Tien
- Department of Chemistry and Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | | | - Kuan-Jiuh Lin
- Department of Chemistry and Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
47
|
Jia H, Tian Q, Xu J, Lu L, Ma X, Yu Y. Aerogels prepared from polymeric β-cyclodextrin and graphene aerogels as a novel host-guest system for immobilization of antibodies: a voltammetric immunosensor for the tumor marker CA 15–3. Mikrochim Acta 2018; 185:517. [DOI: 10.1007/s00604-018-3056-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 12/28/2022]
|
48
|
Tang J, Jiang S, Liu Y, Zheng S, Bai L, Guo J, Wang J. Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Mikrochim Acta 2018; 185:486. [PMID: 30276484 DOI: 10.1007/s00604-018-3025-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022]
Abstract
A composite was prepared from a Co(II)-based zeolitic imidazolate framework (ZIF-67) and graphene oxide (GO) by an in situ growth method. The material was electrodeposited on a glassy carbon electrode (GCE). The modified GCE was used for the simultaneous voltammetric determination of dopamine (DA) and uric acid (UA), typically at working potentials of 0.11 and 0.25 V (vs. SCE). The morphology and structure of the nanocomposite were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The modified electrode exhibits excellent electroanalytical performance for DA and UA owing to the synergistic effect of the high electrical conductivity of GO and the porosity of ZIF-67. By applying differential pulse voltammetry, a linear response is found for DA in the 0.2 to 80 μM concentration range, and for UA between 0.8 and 200 μM, with detection limits of 50 and 100 nM (at S/N = 3), respectively. Further studies were performed on the effect of potential interferents, and on electrode stability and reproducibility. The modified GCE was applied to the simultaneous detection of DA and UA in spiked human urine and gave satisfying recoveries. Graphical abstract Schematic of the preparation procedure of GO-ZIF67 and electrochemical reaction mechanisms of UA and DA at the GO-ZIF67-modified glassy carbon electrode (GCE). GO: graphene oxide; ZIF-67: Co(II)-based zeolitic imidazolate framework.
Collapse
Affiliation(s)
- Jing Tang
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China.
| | - Sixun Jiang
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Yu Liu
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Shengbiao Zheng
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Lei Bai
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Jiahao Guo
- College of Chemistry and Material Engineering, Anhui Science and Technology University, 1501 Huangshan Road, Bengbu, 233000, Anhui Province, China
| | - Jianfei Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, Anhui Province, China.
| |
Collapse
|
49
|
Tang J, Mao Y, Guo J, Li Z, Zhang C, Jin B. Simultaneous Determination of TBH2Q and BHA Antioxidants in Food Samples Using Eosin Y Film Modified Electrode. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1314-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. SENSORS 2018; 18:s18072010. [PMID: 29932161 PMCID: PMC6069457 DOI: 10.3390/s18072010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Electrochemical enzyme-linked immunosorbent assay (ELISA)-based immunoassays for cancer biomarker detection have recently attracted much interest owing to their higher sensitivity, amplification of signal, ease of handling, potential for automation and combination with miniaturized analytical systems, low cost and comparative simplicity for mass production. Their developments have considerably improved the sensitivity required for detection of low concentrations of cancer biomarkers present in bodily fluids in the early stages of the disease. Recently, various attempts have been made in their development and several methods and processes have been described for their development, amplification strategies and testing. The present review mainly focuses on the development of ELISA-based electrochemical immunosensors that may be utilized for cancer diagnosis, prognosis and therapy monitoring. Various fabrication methods and signal enhancement strategies utilized during the last few years for the development of ELISA-based electrochemical immunosensors are described.
Collapse
|