1
|
Ye Z, Yu Z, Zeng Y, Deng P, Peng B, Kuang Y, Wu K, Qiao D, Jiang F. Superior flame retardancy, thermal insulation, and mechanical properties of konjac glucomannan/sodium alginate biomass aerogel modified by supramolecular assembled phytic acid-melamine nanosheet. Int J Biol Macromol 2024; 282:137026. [PMID: 39486713 DOI: 10.1016/j.ijbiomac.2024.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The development of biomass-based eco-friendly aerogel with superior flame retardancy, thermal insulation, and mechanical properties at the same time has long been a tough challenge. In this study, the polysaccharide-based aerogels composed of konjac glucomannan, sodium alginate, and supramolecular assembled melamine phytate (MPA) nanosheets were successfully fabricated through the freeze-drying method. Owing to the excellent charcoal-forming and non-combustible gas-releasing effect of MPA nanosheets, the thermal stability and flame retardancy properties of the aerogels were both significantly enhanced, with the highest limiting oxygen index value reaching 42.4 %. Meanwhile, appropriate MPA embedded in the pore walls greatly enhanced the compressive strength of the aerogel (364.9 kPa) and can withstand >7100 times its weight without visual deformation. Moreover, the thermal insulation effect was quite attractive with a thermal conductivity of 0.0385-0.0420 W/mK. The present work provided an environmentally friendly method for the fabrication of multifunctional sustainable fire-resistant aerogels, which showed promising prospects in the future.
Collapse
Affiliation(s)
- Zijian Ye
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zihan Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yang Zeng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Pengpeng Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Bo Peng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
2
|
Zhang J, Yu Q, Chen W. Advancements in Small Molecule Fluorescent Probes for Superoxide Anion Detection: A Review. J Fluoresc 2024:10.1007/s10895-024-03727-4. [PMID: 38656646 DOI: 10.1007/s10895-024-03727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Superoxide anion (O2•-), a significant reactive oxygen species (ROS) within biological systems, plays a widespread role in cellular function regulation and is closely linked to the onset and progression of numerous diseases. To unveil the pathological implications of O2•- in these diseases, the development of effective monitoring techniques within biological systems is imperative. Small molecule fluorescent probes have garnered considerable attention due to their advantages: simplicity in operation, heightened sensitivity, exceptional selectivity, and direct applicability in monitoring living cells, tissues, and animals. In the past few years, few reports have focused on small molecule fluorescence probes for the detection of O2•-. In this small review, we systematically summarize the design and application of O2•- responsive small molecule fluorescent probes. In addition, we present the limitations of the current detection of O2•- and suggest the construction of new fluorescent imaging probes to indicate O2•- in living cells and in vivo.
Collapse
Affiliation(s)
- Jiao Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing, 400054, China
| | - Qinghua Yu
- Department of Pharmacy, Chongqing University Cancer Hospital, NO.181 Hanyu Road, Shapingba District, Chongqing, 400030, P. R. China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, NO.181 Hanyu Road, Shapingba District, Chongqing, 400030, P. R. China.
| |
Collapse
|
3
|
Abstract
Nanozymes, nanomaterials exhibiting enzyme-like activities, have emerged as a prominent interdisciplinary field over the past decade. To date, over 1200 different nanomaterials have been identified as nanozymes, covering four catalytic categories: oxidoreductases, hydrolases, isomerases, and lyases. Catalytic activity and specificity are two pivotal benchmarks for evaluating enzymatic performance. Despite substantial progress being made in quantifying and optimizing the catalytic activity of nanozymes, there is still a lack of in-depth research on the catalytic specificity of nanozymes, preventing the formation of consensual knowledge and impeding a more refined and systematic classification of nanozymes. Recently, debates have emerged regarding whether nanozymes could possess catalytic specificity similar to that of enzymes. This Perspective discusses the specificity of nanozymes by referring to the catalytic specificity of enzymes, highlights the specificity gap between nanozymes and enzymes, and concludes by offering our perspective on future research on the specificity of nanozymes.
Collapse
Affiliation(s)
- Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan 451163, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan 451163, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan 451163, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Pérez E, Vázquez L, Quintana C, Petit-Domínguez MD, Casero E, Blanco E. Synergistic effect of manganese (II) phosphate & diamond nanoparticles in electrochemical sensors for reactive oxygen species determination in seminal plasma. Anal Chim Acta 2023; 1264:341301. [PMID: 37230730 DOI: 10.1016/j.aca.2023.341301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
In this work, we explore the ability of manganese (II) phosphate (MnP) as a catalytic element for the determination of reactive oxygen species (ROS) in seminal plasma, when MnP is employed as modifier of a glassy carbon electrode. The electrochemical response of the manganese (II) phosphate-modified electrode shows a wave at around +0.65 V due to the oxidation of Mn2+ to MnO2+, which is clearly enhanced after addition of superoxide, the molecule considered as the mother of ROS. Once proved the suitability of manganese (II) phosphate as catalyst, we evaluate the effect of including a 0D (diamond nanoparticles) or a 2D (ReS2) nanomaterial in the sensor design. The system consisting of manganese (II) phosphate and diamond nanoparticles yielded the largest improvement of the response. The morphological characterization of the sensor surface was performed by scanning electron microscopy and atomic force microscopy, while cyclic and differential pulse voltammetry were employed for the electrochemical characterization of the sensor. After optimizing the sensor construction, calibration procedures by chronoamperometry were performed, leading to a linear relation between peak intensity and the superoxide concentration in the range of 1.1 10-4 M - 1.0 10-3 M with a limit of detection of 3.2 10-5 M. Seminal plasma samples were analysed by the standard addition method. Moreover, the analysis of samples fortified with superoxide at the μM level leads to recoveries of 95%.
Collapse
Affiliation(s)
- Eva Pérez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/ Sor Juana Inés de la Cruz Nº3, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elías Blanco
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Thao NTM, Do HDK, Nam NN, Tran NKS, Dan TT, Trinh KTL. Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. MICROMACHINES 2023; 14:1017. [PMID: 37241640 PMCID: PMC10220853 DOI: 10.3390/mi14051017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase play important roles in the inhibition of oxidative-damage-related pathological diseases. However, natural antioxidant enzymes face some limitations, including low stability, high cost, and less flexibility. Recently, antioxidant nanozymes have emerged as promising materials to replace natural antioxidant enzymes for their stability, cost savings, and flexible design. The present review firstly discusses the mechanisms of antioxidant nanozymes, focusing on catalase-, superoxide dismutase-, and glutathione peroxidase-like activities. Then, we summarize the main strategies for the manipulation of antioxidant nanozymes based on their size, morphology, composition, surface modification, and modification with a metal-organic framework. Furthermore, the applications of antioxidant nanozymes in medicine and healthcare are also discussed as potential biological applications. In brief, this review provides useful information for the further development of antioxidant nanozymes, offering opportunities to improve current limitations and expand the application of antioxidant nanozymes.
Collapse
Affiliation(s)
- Nguyen Thi My Thao
- School of Medicine and Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | | | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
Flexible electrochemical sensor with Fe/Co bimetallic oxides for sensitive analysis of glucose in human tears. Anal Chim Acta 2023; 1243:340781. [PMID: 36697172 DOI: 10.1016/j.aca.2023.340781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
The construction of uniformly dispersed structure with abundant active sites is crucial for fast electron transport and advancing electrocatalytic reactions. Herein, FexCoyO4-rGO was prepared by depositing Fe and Co bimetallic oxides in-situ on reduced graphene oxide through a simple process combined hydrothermal reaction and calcination. Fe was elaborately introduced into the synthesis of metal oxides to alleviate the aggregation of cobalt oxides and obtain nanocomposites with homogeneously structured and abundant redox sites, and the bimetallic oxides nanomaterials had enhanced electrocatalysis under the synergistic effect. The flexible electrode prepared from FexCoyO4-rGO exhibited excellent detection performance for glucose with a detection limit down low to 0.07 μM and a sensitivity of 1510 μM cm-2 mA-1. The adoption of flexible substrates improved the wearability of the electrode and broadened its practicality for detecting biomarkers on the skin surface. The constructed sensor was successfully used in the dynamic analysis of glucose content in tears, and the results were highly consistent with the test outcome of a commercial test kit, demonstrating its application prospects in non-invasive epidermal diabetes mellitus diagnosis.
Collapse
|
7
|
Liu Q, Wei H, Du Y. Microfluidic bioanalysis based on nanozymes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Zhang Y, Guo CX, Du H, Wang X, Liu L, Li CM. Solvent-engineered morphologies of Mn-MOF toward ultrasensitive sensing cell superoxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Kumar R, Chandra P. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
11
|
Niu L, Cai Y, Dong T, Zhang Y, Liu X, Zhang X, Zeng L, Liu A. Vanadium nitride@carbon nanofiber composite: Synthesis, cascade enzyme mimics and its sensitive and selective colorimetric sensing of superoxide anion. Biosens Bioelectron 2022; 210:114285. [PMID: 35489274 DOI: 10.1016/j.bios.2022.114285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023]
Abstract
Nanozymes featuring with favorable activity, good stability and easy scale-up production, are promising to replace natural enzymes for various applications. However, it remains a challenge to explore the cascade reactions of multi-enzyme mimics, aiming at synergistic catalysis for various applications. Herein, vanadium nitride nanoparticles deposited on carbon nanofibers (VN@CNFs) composite was facilely prepared by typical electrospinning route with subsequently ammonia reduction process. The nanocomposite showed excellent peroxidase (POD)-like and superoxide dismutase (SOD)-like activities. Additionally, their catalytic mechanisms were systematically researched. Coupling of SOD-like with POD-like as cascade enzyme, a selective and sensitive colorimetric detection of superoxide anion (O2•-) was explored, which has two linear parts, 0.05-30 μM and 30-250 μM O2•- with the LOD of 0.0167 μM (S/N = 3). The as-proposed method was applicable to practical samples detection with satisfactory accuracy and recovery. Therefore, the VN@CNFs composite shows great prospect in biosensing, superoxide anion removal and biocatalysis.
Collapse
Affiliation(s)
- Lingxi Niu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuanyuan Cai
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China; School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yujiao Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xuxin Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xin Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Lingxing Zeng
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
12
|
Wang Z, Zhao H, Chen K, Zhou F, Magdassi S, Lan M. Two-dimensional mesoporous nitrogen-rich carbon nanosheets loaded with CeO 2 nanoclusters as nanozymes for the electrochemical detection of superoxide anions in HepG2 cells. Biosens Bioelectron 2022; 209:114229. [PMID: 35390557 DOI: 10.1016/j.bios.2022.114229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023]
Abstract
Two-dimensional (2D) porous carbon-based composite nanosheets loaded with metal oxide nanoclusters are expected to be promising electrocatalysts for high-performance electrochemical sensors. However, for this complicated composite material, strict reaction conditions and complex synthesis steps limit its general application in electrochemical detection. Here we present a facile method to fabricate 2D mesoporous nitrogen-rich carbon nanosheets loaded with CeO2 nanoclusters (2D-mNC@CeO2), for fabricating superoxide anions (O2•-) electrochemical sensor. The method is based on block copolymers self-assembly and the affinity of polydopamine to metal ions to obtain organic-inorganic hybrid, which can be directly converted into 2D-mNC@CeO2 through carbonization strategy without structural deterioration. Characterizations demonstrate that the 2D-mNC@CeO2 owned the 2D N-doped carbon structure with an interlinked hierarchical mesoporous and the uniformly dispersed CeO2 nanoclusters on the surface. Benefitted from the unique structure, the 2D-mNC@CeO2 shortens electron transfer distance, enhances mass transfer efficiency, exposes numerous active sites, and obtain a high Ce3+/Ce4+ ratio for improving electrocatalytic performance. The 2D-mNC@CeO2/SPCEs sensors for O2•- detection has a detection limit of 0.179 μM (S/N = 3) and sensitivity of 401.4 μA cm-2 mM-1. The sensors can be applied to capture electrochemical signals of O2•- released from HepG2 cells, demonstrating the application potential of the sensors to monitor O2•- in biological fields.
Collapse
Affiliation(s)
- Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Fangfang Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shlomo Magdassi
- Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
13
|
Liu F, Yu R, Wei H, Wu J, He N, Liu X. Construction of a novel electrochemical sensing platform to investigate the effect of temperature on superoxide anions from cells and superoxide dismutase enzyme activity. Anal Chim Acta 2022; 1198:339561. [DOI: 10.1016/j.aca.2022.339561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/05/2023]
|
14
|
Rojas D, Hernández-Rodríguez JF, Della Pelle F, Escarpa A, Compagnone D. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis. Mikrochim Acta 2022; 189:102. [DOI: 10.1007/s00604-022-05185-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
|
15
|
Detection strategies for superoxide anion: A review. Talanta 2022; 236:122892. [PMID: 34635271 DOI: 10.1016/j.talanta.2021.122892] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. Superoxide anion (O2-.), one kind of ROS, is the single-electron reduction product of oxygen molecules, which mainly exists in plants and animals, and is closely related to many inflammatory diseases. In the field of biomedicine, with the deepening understanding of superoxide anion, more and more detection methods have been developed. This review mainly introduces the detection techniques for superoxide anion in recent years.
Collapse
|
16
|
|
17
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
18
|
Zhao H, Zhang R, Yan X, Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B 2021; 9:6939-6957. [PMID: 34161407 DOI: 10.1039/d1tb00720c] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Superoxide dismutases (SODs) are a group of metalloenzymes that catalyze the dismutation of superoxide radicals (O2˙-) into hydrogen peroxide (H2O2) and oxygen (O2). As the first line of defense against reactive oxygen species (ROS)-mediated damage, SODs are expected to play an important role in the treatment of oxidative stress-related diseases. However, the clinical applications of SODs have been severely limited by their structural instability and high cost. Compared with natural enzymes, nanozymes, nanomaterials with enzyme-like activity, are more stable, and economical, can be easily modified and their activities can be adjusted. Due to their excellent characteristics, nanozymes have attracted widespread attention in recent years and are expected to become effective substitutes for natural enzymes in many application fields. Importantly, some nanozymes with SOD-like activity have been developed and proved to have a mitigating effect on diseases caused by oxidative stress. These studies on SOD-like nanozymes provide a feasible strategy for breaking through the dilemma of SOD clinical applications. However, at present, the specific catalytic mechanism of SOD-like nanozymes is still unclear, and many important issues need to be resolved. Although there are many comprehensive reviews to introduce the overall situation of the nanozyme field, the research on SOD-like nanozymes still lacks a systematic review. From the structure and mechanism of natural SOD enzymes to the structure and regulation of SOD-like nanozymes, and then to the measurement and application of nanozymes, this review systematically summarizes the recent progress in SOD-like nanozymes. The existing shortcomings and possible future research hotspots in the development of SOD-like nanozymes are summarized and prospected. We hope that this review would provide ideas and inspirations for further research on the catalytic mechanism and rational design of SOD-like nanozymes.
Collapse
Affiliation(s)
- Hanqing Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China and Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. and University of Chinese Academy of Sciences, Beijing 101408, China and Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
19
|
Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS. Biosens Bioelectron 2021; 179:113052. [DOI: 10.1016/j.bios.2021.113052] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
|
20
|
Wang Z, Zhao H, Gao Q, Chen K, Lan M. Facile synthesis of ultrathin two-dimensional graphene-like CeO 2-TiO 2 mesoporous nanosheet loaded with Ag nanoparticles for non-enzymatic electrochemical detection of superoxide anions in HepG2 cells. Biosens Bioelectron 2021; 184:113236. [PMID: 33872979 DOI: 10.1016/j.bios.2021.113236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
Here we presented a new facile strategy to fabricate ultrathin two-dimensional (2D) metal oxide nanosheets, by using polydopamine-coated graphene (rGO@PDA) as a template under simply wet-chemical conditions. Based on the strategy, graphene-like CeO2-TiO2 mesoporous nanosheet (MNS-CeO2-TiO2) was prepared and was loaded with dispersive Ag nanoparticles (AgNPs) to obtain effective electrocatalysts (denoted as Ag/MNS-CeO2-TiO2) for electrochemical detection of superoxide anion (O2•-). Characterizations demonstrated that MNS-CeO2-TiO2 exhibited ultrathin thickness, larger specific surface area, and pore volume in comparison with its bulk counterpart. The above properties of MNS-CeO2-TiO2 shorten electron transmission distance, promotes mass transfer, and is conducive to the dispersion of post-modified AgNPs. Therefore, the recommended Ag/MNS-CeO2-TiO2 sensors (denoted as Ag/MNS-CeO2-TiO2/SPCE) exhibited satisfactory properties, including the sensitivity of 737.1 μA cm-2 mM-1, the detection limit of 0.0879 μM (S/N = 3), and good selectivity. Meanwhile, the sensors also successfully realized in the online monitoring of O2•- released from HepG2 cells, meaning the prepared sensors had practical application potential towards the analysis of O2•- in biological samples.
Collapse
Affiliation(s)
- Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Qianmei Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
21
|
Wang Y, Wang D, Sun LH, Zhang LC, Lu ZS, Xue P, Wang F, Xia QY, Bao SJ. BC@DNA-Mn3(PO4)2 Nanozyme for Real-Time Detection of Superoxide from Living Cells. Anal Chem 2020; 92:15927-15935. [DOI: 10.1021/acs.analchem.0c03322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ying Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Deng Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Li-Hong Sun
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Long-Cheng Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Zhi-Song Lu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, P. R. China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, P. R. China
| | - Shu-Juan Bao
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
22
|
Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111751. [PMID: 33545892 DOI: 10.1016/j.msec.2020.111751] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023]
Abstract
Electrochemical sensors have increasingly been linked with terms as modern biomedically effective highly selective and sensitive devices, wearable and wireless technology, portable electronics, smart textiles, energy storage, communication and user-friendly operating systems. The work brings the overview of the current advanced materials and their application strategies for improving performance, miniaturization and portability of sensing devices. It provides the extensive information on recently developed (bio)sensing platforms based on voltammetric, amperometric, potentiometric and impedimetric detection modes including portable, non-invasive, wireless, and self-driven miniaturized devices for monitoring human and animal health. Diagnostics of selected free radical precursors, low molecular biomarkers, nucleic acids and protein-based biomarkers, bacteria and viruses of today's interest is demonstrated.
Collapse
Affiliation(s)
- Katarína Nemčeková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia.
| | - Ján Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia.
| |
Collapse
|
23
|
Wang T, Shah I, Yang Z, Yin W, Zhang S, Yang Y, Yin P, Ma H. Incorporating Thiourea into Fluorescent Probes: A Reliable Strategy for Mitochondrion-Targeted Imaging and Superoxide Anion Tracking in Living Cells. Anal Chem 2020; 92:2824-2829. [PMID: 31957439 DOI: 10.1021/acs.analchem.9b05320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three aggregation-induced emission active fluorescent compounds, TPA-Pyr-Octane, TPA-Pyr-Br, and TPA-Pyr-Thiourea (TPA = triphenylamine pyridinium), are synthesized; their tiny differences in chemical structures result in a huge difference in cell-imaging applications. Especially, incorporating thiourea into fluorescent probes is found as a reliable strategy for mitochondrion-targeted imaging and superoxide anion tracking in living cells, which is possibly due to the presence of hydrogen bonding between thiourea and mitochondrion proteins. This finding is very useful for the design of biosensors and delivery carriers in disease treatment.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Imran Shah
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Zengming Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Weidong Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Shaoxiong Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Yuan Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Pei Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Hengchang Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| |
Collapse
|
24
|
Enzyme-free electrochemical sensor based on ZIF-67 for the detection of superoxide anion radical released from SK-BR-3 cells. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Smartphone‐coupled Electrochemical Analysis of Cellular Superoxide Anions Based on Mn
x
(PO
4
)
y
Monolayer Modified Porous Carbon. ELECTROANAL 2019. [DOI: 10.1002/elan.201900623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Peng Q, Yan X, Shi X, Ou S, Gu H, Yin X, Shi G, Yu Y. In vivo monitoring of superoxide anion from Alzheimer's rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens Bioelectron 2019; 144:111665. [DOI: 10.1016/j.bios.2019.111665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
|
27
|
Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J Colloid Interface Sci 2019; 553:364-371. [DOI: 10.1016/j.jcis.2019.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023]
|
28
|
Toxicity assessment of magnesium oxide nano and microparticles on cancer and non-cancer cell lines. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00298-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
29
|
Chen YH, Chien WC, Lee DC, Tan KT. Signal Amplification and Detection of Small Molecules via the Activation of Streptavidin and Biotin Recognition. Anal Chem 2019; 91:12461-12467. [DOI: 10.1021/acs.analchem.9b03144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | - Kui-Thong Tan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (ROC)
| |
Collapse
|
30
|
Electrochemical detection of superoxide anions in HeLa cells by using two enzyme-free sensors prepared from ZIF-8-derived carbon nanomaterials. Mikrochim Acta 2019; 186:370. [PMID: 31119470 DOI: 10.1007/s00604-019-3473-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
Abstract
Two kinds of carbon-based nanozymes were constructed from the same precursor of zeolitic imidazolate framework-8 (ZIF-8) for O2•- determination. Hollow carbon cubic nanomaterial (labelled as HCC) was obtained by chemically etching ZIF-8 with tannic acid and a subsequent calcination. A porous carbon cubic nanomaterial (labelled as PCC) was prepared by directly pyrolysis. Then HCC and PCC were immobilized on the surface of screen printed carbon electrodes (SPCE), fabricating HCC and PCC modified electrodes (denoted as HCC/SPCE and PCC/SPCE). HCC/SPCE, best operated at -0.5 V (vs. Ag/AgCl), has a sensitivity of 6.55 × 102 nA μM-1 cm-2 with a detection limit of 207 nM (at S/N = 3) for O2•- sensing. And PCC/SPCE, best operated at -0.4 V (vs. Ag/AgCl), exhibited a superior performance for O2•- detection with a sensitivity of 1.14 × 103 nA μM-1 cm-2 and a low detection limit of 140 nM (at S/N = 3). The two sensors possess excellent reproducibility and stability. They were used to sense O2•- released from HeLa cells. Graphical abstract Illustration of the synthesis of the hollow carbon cubic nanomaterial (HCC) and of the porous carbon cubic nanomaterial (PCC), and the scheme for detection of superoxide anions in HeLa cell.
Collapse
|
31
|
Chen Y, Sheng Q, Hong Y, Lan M. Hydrophilic Nanocomposite Functionalized by Carrageenan for the Specific Enrichment of Glycopeptides. Anal Chem 2019; 91:4047-4054. [DOI: 10.1021/acs.analchem.8b05578] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
An ultrasensitive electrochemical sensor based on cotton carbon fiber composites for the determination of superoxide anion release from cells. Mikrochim Acta 2019; 186:198. [PMID: 30796529 DOI: 10.1007/s00604-019-3304-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/03/2019] [Indexed: 01/06/2023]
Abstract
A sensor is described for determination of superoxide anion (O2˙-). The electrode consists of nitrogen-doped cotton carbon fiber (NCFs) modified with silver nanoparticles (AgNPs) which have excellent catalytic capability. The resulting sensor, best operated at working potentials around -0.5 V (vs. SCE), can detect O2˙- over an extraordinarily wide range that covers 10 orders of magnitude, and the detection limit is 2.32 ± 0.07 fM. The electrode enables the release of O2˙- from living cells under normal or under oxidative stress conditions to be determined. The ability to scavenge the superoxide anions of antioxidants was also investigated. In the authors' perception, the method represents a viable tool for studying diseases related to oxidative stress. Graphical abstract Schematic presentation of the construction of an electrochemical sensor based on Nitrogen-doped cotton carbon fiber and silver nanoparticles. It can be used for the direct detection of superoxide anions released from Glioma cells (U87) under normal or under oxidative stress conditions.
Collapse
|
33
|
Zou Z, Ma XQ, Zou L, Shi ZZ, Sun QQ, Liu Q, Liang TT, Li CM. Tailoring pore structures with optimal mesopores to remarkably promote DNA adsorption guiding the growth of active Mn 3(PO 4) 2 toward sensitive superoxide biomimetic enzyme sensors. NANOSCALE 2019; 11:2624-2630. [PMID: 30693354 DOI: 10.1039/c8nr08829b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The great challenge in preparing a biomimetic enzyme sensor is to have sensitivity and selectivity equal to or better than its corresponding biological sensor. Porous electrodes possess a large surface area and are often used to greatly improve the sensor sensitivity. However, how to tailor the pore structure, especially the pore size distribution to further improve the sensitivity and selectivity of a biomimetic sensor, has not been investigated yet. The superoxide anion (O2˙-) plays essential roles in various biological processes and is of importance in clinical diagnosis and life science research. It is generally detected by the superoxide dismutase enzyme. Herein, we delicately tailor the pore structure of carbon nanofibers (CNFs) by pyrolysis to obtain an optimal mesopore structure for strong adsorption of DNA, followed by guiding the growth of Mn3(PO4)2 as a biomimetic enzyme toward highly sensitive detection of O2˙-. The Mn3(PO4)2-DNA/CNF sensor achieves the best sensitivity among the reported O2˙- sensors while possessing good selectivity. The enhancement mechanism is also investigated, indicating that the mesopore ratio of CNFs plays an essential role in the high sensitivity and selectivity due to their strong adsorption of DNA for guiding the growth of a large amount of uniform sensing components, Mn3(PO4)2, toward high sensitivity and selectivity. The biomimetic sensor was further used to in situ monitor O2˙- released from human keratinocyte cells and human malignant melanoma cells under drug stimulation, showing high sensitivity to real-time quantitative detection of O2˙-. This work provides a highly sensitive in situ real-time biomimetic O2˙- sensor for applications in biological research and diagnosis, while shedding light on the enhancement mechanism of the pore structure, especially the pore size distribution of a porous electrode for high performance sensing processes.
Collapse
Affiliation(s)
- Zhuo Zou
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zheng J, Wang B, Jin Y, Weng B, Chen J. Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells. Mikrochim Acta 2019; 186:95. [DOI: 10.1007/s00604-018-3220-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/28/2018] [Indexed: 11/29/2022]
|
35
|
Cai X, Wang Z, Zhang H, Li Y, Chen K, Zhao H, Lan M. Carbon-mediated synthesis of shape-controllable manganese phosphate as nanozymes for modulation of superoxide anions in HeLa cells. J Mater Chem B 2019; 7:401-407. [DOI: 10.1039/c8tb02573h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we present a facile method to fabricate shape-controllable transition metal phosphates by using hollow carbon structures as substrates for superoxide sensing.
Collapse
Affiliation(s)
- Xuan Cai
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Huanhuan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yufei Li
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
36
|
Construction of non-enzymatic sensor based on porous carbon matrix loaded with Pt and Co nanoparticles for real-time monitoring of cellular superoxide anions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Cai X, Chen H, Wang Z, Sun W, Shi L, Zhao H, Lan M. 3D graphene-based foam induced by phytic acid: An effective enzyme-mimic catalyst for electrochemical detection of cell-released superoxide anion. Biosens Bioelectron 2019; 123:101-107. [DOI: 10.1016/j.bios.2018.06.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/07/2018] [Accepted: 06/23/2018] [Indexed: 01/07/2023]
|
38
|
Cai X, Chen K, Wang Z, Sun W, Zhao H, Zhang H, Chen H, Lan M. Fabricating carbon-nanotubes-based porous foam for superoxide electrochemical sensing through one-step hydrothermal process induced by phytic acid. Anal Chim Acta 2018; 1038:132-139. [DOI: 10.1016/j.aca.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|
39
|
Ultrasonic-assisted dispersive micro solid-phase extraction based on melamine-phytate supermolecular aggregate as a novel bio-inspired magnetic sorbent for preconcentration of anticancer drugs in biological samples prior to HPLC-UV analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:226-234. [DOI: 10.1016/j.jchromb.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022]
|
40
|
Ding A, Wang B, Ma X, Diao J, Zheng J, Chen J, Li C. DNA-induced synthesis of biomimetic enzyme for sensitive detection of superoxide anions released from live cell. RSC Adv 2018; 8:12354-12359. [PMID: 35539377 PMCID: PMC9079267 DOI: 10.1039/c7ra12962a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
In this work, we successfully fabricate a rapid, sensitive sensor for the detection of superoxide anions O2˙- based on graphene/DNA/Mn3(PO4)2 biomimetic enzyme. In the design, graphene is served as excellent carrier to improve the catalysis of Mn3(PO4)2 nanoparticles; and DNA adsorbed on graphene acts as medium to assist the growth of Mn3(PO4)2 on graphene. The fabricated graphene/DNA/Mn3(PO4)2 composites exhibit excellently electrochemical activity, significantly decrease the response time and increase the sensitivity of the sensor towards O2˙-. The successful detection of O2˙- released from cancer cell demonstrated its potential applications in biology and medicine.
Collapse
Affiliation(s)
- Ailing Ding
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| | - Bin Wang
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| | - Xiaoqing Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| | - Jianglin Diao
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| | - Jiushang Zheng
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| | - Jiucun Chen
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| | - Changming Li
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| |
Collapse
|