1
|
Seo Y, Zhou A, Nguyen TH, Wei N. Yeast Surface-Displayed Quenchbody as a Novel Whole-Cell Biosensor for One-Step Detection of Influenza A (H1N1) Virus. ACS Synth Biol 2024; 13:2926-2937. [PMID: 39256183 DOI: 10.1021/acssynbio.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Timely surveillance of airborne pathogens is essential to preventing the spread of infectious diseases and safeguard human health. Methods for sensitive, efficient, and cost-effective detection of airborne viruses are needed. With advances in synthetic biology, whole-cell biosensors have emerged as promising platforms for environmental monitoring and medical diagnostics. However, the current design paradigm of whole-cell biosensors is mostly based on intracellular detection of analytes that can transport across the cell membrane, which presents a critical challenge for viral pathogens and large biomolecules. To address this challenge, we developed a new type of whole-cell biosensor by expressing and displaying VHH-based quenchbody (Q-body) on the surface of the yeast Saccharomyces cerevisiae for simple one-step detection of influenza A (H1N1) virus. Seventeen VHH antibody fragments targeting the hemagglutinin protein H1N1-HA were displayed on the yeast cells and screened for the H1N1-HA binding affinity. The functionally displayed VHHs were selected to create surface-displayed Q-body biosensors. The surface-displayed Q-body exhibiting the highest quenching and dequenching efficiency was identified. The biosensor quantitatively detected H1N1-HA in a range from 0.5 to 16 μg/mL, with a half-maximal concentration of 2.60 μg/mL. The biosensor exhibited high specificity for H1N1-HA over other hemagglutinin proteins from various influenza A virus subtypes. Moreover, the biosensor succeeded in detecting the H1N1 virus at concentrations from 2.4 × 104 to 1.5 × 107 PFU/mL. The results from this study demonstrated a new whole-cell biosensor design that circumvents the need for transport of analytes into biosensor cells, enabling efficient detection of the target virus particles.
Collapse
Affiliation(s)
- Yoonjoo Seo
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Baber AS, Suganthan B, Ramasamy RP. Current advances in Hepatitis C diagnostics. J Biol Eng 2024; 18:48. [PMID: 39252065 PMCID: PMC11385151 DOI: 10.1186/s13036-024-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Nearly 60 million people worldwide are infected with Hepatitis C Virus (HCV), a bloodborne pathogen which leads to liver cirrhosis and increases the risk of hepatocellular carcinoma. Those with limited access to healthcare resources, such as injection drug users and people in low- and middle-income countries, carry the highest burden. The current diagnostic algorithm for HCV is slow and costly, leading to a significant barrier in diagnosis and treatment for those most at risk from HCV. There remains no available vaccine for HCV, and infection is often asymptomatic until significant cirrhosis has occurred, which makes screening incredibly important to prevent liver damage and transmission. Recent investigation has sought to address these issues through improvements in various aspects of the diagnostic procedure, using methods such as isothermal amplification techniques for viral RNA amplification, the use of viral protein as an analyte, and the incorporation of streamlined, self-contained testing systems to reduce administrative skill requirements. This review provides a comprehensive overview of current commercial standards and novel improvements in HCV diagnostics, as well as a framework for future integration of these improvements to develop a one-step diagnostic that meets the needs of those most affected.
Collapse
Affiliation(s)
- Anna S Baber
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Ho HY, Kao WS, Deval P, Dai CY, Chen YH, Yu ML, Lin CH, Yu LS. Rapid and sensitive LAMP/CRISPR-powered diagnostics to detect different hepatitis C virus genotypes using an ITO-based EG-FET biosensing platform. SENSORS AND ACTUATORS B: CHEMICAL 2023; 394:134278. [DOI: 10.1016/j.snb.2023.134278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
|
4
|
Binder P, Oberhaus FV. Straightforward fabrication of electrochemical aptasensors with outstanding antifouling performance. Anal Chim Acta 2023; 1274:341575. [PMID: 37455085 DOI: 10.1016/j.aca.2023.341575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Self-assembled monolayers (SAMs) are popular tools for many different applications - SAMs of commercially available chemicals that convincingly inhibit unspecific binding for electrochemical sensors, however, have yet to be developed. While adsorption of foulants prohibits the reliable analysis of biological samples, unspecific binding of the analyte similarly impedes the investigation of binding characteristics from buffer solutions. In this communication, diglycolamine is introduced for the modification of electrodes with outstanding antifouling performance. The presented sensor design, solely consisting of diglycolamine and an aptamer of choice, convinces with its ease of preparation, low cost, and, most importantly, an exceptional specificity. The latter was found to rely on a gentle but potent cleaning of the electrodes, as only our optimized cleaning procedure granted the diglycolamine layer its excellent fouling minimization performance, while literature standard protocols failed to do so. Each step of the sensor fabrication protocol was optimized by electrochemical impedance spectroscopy, while square-wave voltammetry, surface-enhanced Raman spectroscopy, and zeta potential measurement were performed for further characterization. The presented approach of surface modification with diglycolamine is a versatile method applicable not just to electrochemical measurements, but to a variety of other detection techniques, too, and has the potential to change the way we investigate binding characteristics and fabricate sensors for the analysis of complex biological samples.
Collapse
Affiliation(s)
- Pia Binder
- Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, 37308, Heilbad, Heiligenstadt, Germany
| | - Franziska V Oberhaus
- Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, 37308, Heilbad, Heiligenstadt, Germany.
| |
Collapse
|
5
|
He Y, Xu Z, Kasputis T, Zhao X, Ibañez I, Pavan F, Bok M, Malito JP, Parreno V, Yuan L, Wright RC, Chen J. Development of Nanobody-Displayed Whole-Cell Biosensors for the Colorimetric Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37184-37192. [PMID: 37489943 PMCID: PMC11216949 DOI: 10.1021/acsami.3c05900] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The accurate and effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to preventing the spread of infectious diseases and ensuring human health. Herein, a nanobody-displayed whole-cell biosensor was developed for colorimetric detection of SARS-CoV-2 spike proteins. Serving as bioreceptors, yeast surfaces were genetically engineered to display SARS-CoV-2 binding of llama-derived single-domain antibodies (nanobodies) with high capture efficiency, facilitating the concentration and purification of SARS-CoV-2. Gold nanoparticles (AuNPs) employed as signal transductions were functionalized with horseradish peroxidase (HRP) and anti-SARS monoclonal antibodies to enhance the detection sensitivity. In the presence of SARS-CoV-2 spike proteins, the sandwiched binding will be formed by linking engineered yeast, SARS-CoV-2 spike proteins, and reporter AuNPs. The colorimetric signal was generated by the enzymatic reaction of HRP and its corresponding colorimetric substrate/chromogen system. At the optimal conditions, the developed whole-cell biosensor enables the sensitive detection of SARS-CoV-2 spike proteins in a linear range from 0.01 to 1 μg/mL with a limit of detection (LOD) of 0.037 μg/mL (about 4 × 108 virion particles/mL). Furthermore, the whole-cell biosensor was demonstrated to detect the spike protein of different SARS-CoV-2 variants in human serum, providing new possibilities for the detection of future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhiyuan Xu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tom Kasputis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Itati Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
| | - Viviana Parreno
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Tian Y, Zhang Y, Lu X, Xiao D, Zhou C. Multifunctionalized flower-like gold nanoparticles with high chemiluminescence for label-free sensing of the hepatitis C virus core protein. J Mater Chem B 2023; 11:2200-2206. [PMID: 36785906 DOI: 10.1039/d2tb02168d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Developing functionalized nanomaterials with strong chemiluminescence (CL) properties is highly significant for ultrasensitive bioanalysis. Here, we report chitosan (CS), luminol, and Co2+-functionalized flower-like gold nanoparticles (Co2+/CS/Lum/AuNFs) with strong CL for the label-free sensing of the HCV core protein (HCVcp). The Co2+/CS/Lum/AuNFs exhibited a greatly enhanced CL emission at around 425 nm, which is 50 times stronger than that of CS/Lum/AuNFs, and is superior to other commonly reported CL nanomaterials. The HCVcp aptamer (HCVcp-apt) further functionalized the surface of the Co2+/CS/Lum/AuNFs through electrostatic interactions blocked the Co2+ catalytic site, depressing the CL. Owing to the high affinity of HCVcp for the HCVcp-apt, the presence of HCVcp predominated its binding and effectively separated the HCVcp-apt from the surface of the Co2+/CS/Lum/AuNFs, so that the CL intensity was significantly enhanced. As the results showed, the HCVcp-apt/Co2+/CS/Lum/AuNFs were successfully used to detect the HCVcp in human serum samples with a linear range from 0.50 ng mL-1 to 1.00 μg mL-1, a detection limit of 0.16 ng mL-1 and an excellent selectivity over other analogs. The strategy is universal for the development of the ultrasensitive detection of other proteins in the field of early disease diagnostics.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
7
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
8
|
Trusso Sfrazzetto G, Santonocito R. Nanomaterials for Cortisol Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3790. [PMID: 36364563 PMCID: PMC9658644 DOI: 10.3390/nano12213790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Space represents one of the most dangerous environments for humans, which can be affected by high stress levels. This can lead to severe physiological problems, such as headaches, gastrointestinal disorders, anxiety, hypertension, depression, and coronary heart diseases. During a stress condition, the human body produces specific hormones, such as dopamine, adrenaline, noradrenaline, and cortisol. In particular, the control of cortisol levels can be related to the stress level of an astronaut, particularly during a long-term space mission. The common analytical methods (HPLC, GC-MS) cannot be used in an extreme environment, such as a space station, due to the steric hindrance of the instruments and the absence of gravity. For these reasons, the development of smart sensing devices with a facile and fast analytical protocol can be extremely useful for space applications. This review summarizes the recent (from 2011) miniaturized sensoristic devices based on nanomaterials (gold and carbon nanoparticles, nanotubes, nanowires, nano-electrodes), which allow rapid and real-time analyses of cortisol levels in biological samples (such as saliva, urine, sweat, and plasma), to monitor the health conditions of humans under extreme stress conditions.
Collapse
Affiliation(s)
- Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Sciences and Technology (I.N.S.T.M.), Research Unit of Catania, 95100 Catania, Italy
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| |
Collapse
|
9
|
Antipchik M, Reut J, Ayankojo AG, Öpik A, Syritski V. MIP-based electrochemical sensor for direct detection of hepatitis C virus via E2 envelope protein. Talanta 2022; 250:123737. [PMID: 35850055 DOI: 10.1016/j.talanta.2022.123737] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Hepatitis C is the most common liver disease caused by Hepatitis C virus (HCV), and can evolve into serious health problems e.g. cirrhosis and hepatocellular carcinoma. Nowadays, the initial stage of the disease cannot be practically diagnosed, representing thus an extremely important problem of modern public health care. This study is aimed at the development of a sensor for direct detection of HCV. The sensor utilizes a synthetic recognition element prepared by the technology of molecular imprinting and representing a molecularly imprinted polymer (MIP) having molecular recognition sites of HCV envelope protein E2 (E2-MIP). E2-MIP integrated into an electrochemical sensor platform allows quantitative evaluation of binding of free E2 protein as well as HCV-mimetic particles (HCV-MPs) in human plasma with LOD value of 4.6 × 10-4 ng/mL (for HCV-MPs). The developed electrochemical HCV sensor represents a simple, fast and inexpensive alternative for the existing methods of HCV detection and paves the way for the point-of care diagnostics of Hepatitis C.
Collapse
Affiliation(s)
- Mariia Antipchik
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jekaterina Reut
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Akinrinade George Ayankojo
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andres Öpik
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Vitali Syritski
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
| |
Collapse
|
10
|
Singh N, Chung S, Sveiven M, Hall DA. Cortisol Detection in Undiluted Human Serum Using a Sensitive Electrochemical Structure-Switching Aptamer over an Antifouling Nanocomposite Layer. ACS OMEGA 2021; 6:27888-27897. [PMID: 34722988 PMCID: PMC8552316 DOI: 10.1021/acsomega.1c03552] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/16/2021] [Indexed: 05/16/2023]
Abstract
There is a strong and growing need to monitor stress biomarkers in vivo for real-time emotional and wellness assessment. Toward this, we report a reagent-free electrochemical aptasensor with a nanocomposite antifouling layer for sensitive and continuous detection of cortisol in human serum. A thiolated, methylene blue (MB)-tagged conformation-switching aptamer was immobilized over a gold nanowire (AuNW) nanocomposite to capture cortisol and generate a signal proportional to the cortisol concentration. The signal is recorded through differential pulse voltammetry (DPV) and chronoamperometry. The aptasensor exhibited a sensitive response with 0.51 and 0.68 nM detection limits in spiked buffer and undiluted serum samples, respectively. Interference from other structurally similar analogs, namely, epinephrine and cholic acid, was negligible (<10%). The developed nanocomposite-based aptasensor showed excellent stability in undiluted human serum, outperforming several other nanocomposite materials even after prolonged exposure. This work lays the foundation for new biosensor formats such as implantable and wearable sensors.
Collapse
Affiliation(s)
- Naveen
K. Singh
- Department
of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093, United States
| | - Saeromi Chung
- Department
of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093, United States
| | - Michael Sveiven
- Department
of Bioengineering, University of California—San
Diego, La Jolla, California 92093, United States
| | - Drew A. Hall
- Department
of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093, United States
- Department
of Bioengineering, University of California—San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Sher M, Faheem A, Asghar W, Cinti S. Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. Trends Analyt Chem 2021; 143:116374. [PMID: 34177011 PMCID: PMC8215883 DOI: 10.1016/j.trac.2021.116374] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is a growing interest in the development of portable, cost-effective, and easy-to-use biosensors for the rapid detection of diseases caused by infectious viruses: COVID-19 pandemic has highlighted the central role of diagnostics in response to global outbreaks. Among all the existing technologies, screen-printed electrodes (SPEs) represent a valuable technology for the detection of various viral pathogens. During the last five years, various nanomaterials have been utilized to modify SPEs to achieve convincing effects on the analytical performances of portable SPE-based diagnostics. Herein we would like to provide the readers a comprehensive investigation about the recent combination of SPEs and various nanomaterials for detecting viral pathogens. Manufacturing methods and features advances are critically discussed in the context of early-stage detection of diseases caused by HIV-1, HBV, HCV, Zika, Dengue, and Sars-CoV-2. A detailed table is reported to easily guide readers toward the "right" choice depending on the virus of interest.
Collapse
Affiliation(s)
- Mazhar Sher
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055 Naples, Italy
| |
Collapse
|
12
|
Monteil S, Casson AJ, Jones ST. Electronic and electrochemical viral detection for point-of-care use: A systematic review. PLoS One 2021; 16:e0258002. [PMID: 34591907 PMCID: PMC8483417 DOI: 10.1371/journal.pone.0258002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Detecting viruses, which have significant impact on health and the economy, is essential for controlling and combating viral infections. In recent years there has been a focus towards simpler and faster detection methods, specifically through the use of electronic-based detection at the point-of-care. Point-of-care sensors play a particularly important role in the detection of viruses. Tests can be performed in the field or in resource limited regions in a simple manner and short time frame, allowing for rapid treatment. Electronic based detection allows for speed and quantitative detection not otherwise possible at the point-of-care. Such approaches are largely based upon voltammetry, electrochemical impedance spectroscopy, field effect transistors, and similar electrical techniques. Here, we systematically review electronic and electrochemical point-of-care sensors for the detection of human viral pathogens. Using the reported limits of detection and assay times we compare approaches both by detection method and by the target analyte of interest. Compared to recent scoping and narrative reviews, this systematic review which follows established best practice for evidence synthesis adds substantial new evidence on 1) performance and 2) limitations, needed for sensor uptake in the clinical arena. 104 relevant studies were identified by conducting a search of current literature using 7 databases, only including original research articles detecting human viruses and reporting a limit of detection. Detection units were converted to nanomolars where possible in order to compare performance across devices. This approach allows us to identify field effect transistors as having the fastest median response time, and as being the most sensitive, some achieving single-molecule detection. In general, we found that antigens are the quickest targets to detect. We also observe however, that reports are highly variable in their chosen metrics of interest. We suggest that this lack of systematisation across studies may be a major bottleneck in sensor development and translation. Where appropriate, we use the findings of the systematic review to give recommendations for best reporting practice.
Collapse
Affiliation(s)
- Solen Monteil
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| | - Alexander J. Casson
- The Henry Royce Institute, Manchester, United Kingdom
- Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, United Kingdom
| | - Samuel T. Jones
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| |
Collapse
|
13
|
An electrochemical biosensor for direct detection of hepatitis C virus. Anal Biochem 2021; 624:114196. [PMID: 33848501 DOI: 10.1016/j.ab.2021.114196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
This paper is aimed at the development of a biosensor for direct detection of Hepatitis C virus (HCV) surface antigen: envelope protein (E2). A recombinant LEL fragment of biological cell receptor CD81 and two short synthetic peptides imitating the fragment of LEL sequence of CD81 (linear and loop-like peptides) capable of specific binding to E2 were tested as molecular recognition elements of the biosensor. For this purpose the selected ligands were immobilized to the surface of a screen-printed electrode utilized as an electrochemical sensor platform. The immobilization parameters such as the ligand concentration and the immobilization time were carefully optimized for each ligand. Differential pulse voltammetry used to evaluate quantitatively binding of E2 to the ligands revealed their similar binding affinity towards E2. Thus, the linear peptide was selected as a less expensive and easily prepared ligand for the HCV biosensor preparation. The resulting HCV biosensor demonstrated selectivity towards E2 in the presence of interfering protein, conalbumin. Moreover, it was found that the prepared biosensor effectively detected E2 bound to hepatitis C virus-mimetic particles (HC VMPs) at LOD value of 2.1∙10-5 mg/mL both in 0.01 M PBS solution (pH 7.4) and in simulated blood plasma.
Collapse
|
14
|
Sheta SM, El-Sheikh SM, Osman DI, Salem AM, Ali OI, Harraz FA, Shousha WG, Shoeib MA, Shawky SM, Dionysiou DD. A novel HCV electrochemical biosensor based on a polyaniline@Ni-MOF nanocomposite. Dalton Trans 2020; 49:8918-8926. [DOI: 10.1039/d0dt01408g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel label-free electrochemical biosensor constructed using a polyaniline@nickel metal–organic framework (Ni-MOF) nanocomposite for direct detection of HCV-RNA.
Collapse
|
15
|
Plasmonic nanoplatform for point-of-care testing trace HCV core protein. Biosens Bioelectron 2019; 147:111488. [PMID: 31350137 DOI: 10.1016/j.bios.2019.111488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 12/29/2022]
Abstract
Early diagnosis of hepatitis C virus (HCV) infection is still urgently desired as there is a global healthy burden and no vaccine available. In this work, a plasmonic nanoplatform was engineered with catalytic hairpin assembly (CHA) amplification reaction specifically of HCV core protein (HCVcp), G-quadruplex/hemin DNAzyme and nanofibrous membrane together. HCVcp was detected in whole serum at the ultralow concentration of 1.0 × 10-4 pg/mL with naked eye. By testing serum samples from 30 donors with different viral loads, detection sensitivity of the plasmonic nanoplatform turned out to be much better than that of the commercial ELISA kit. In addition, the plasmonic nanoplatform exhibited high specificity, excellent reusability and long-term stability. Naked-eye detection based on the plasmonic nanoplatform is expected to have potential applications in point-of-care testing (POCT) and early diagnosis of hepatitis C and other infectious diseases.
Collapse
|