1
|
Dabhade AH, Paramasivan B, Kumawat AS, Saha B. Miniature lab-made electrochemical biosensor: A promising sensing kit for rapid detection of E. coli in water, urine and milk. Talanta 2025; 285:127306. [PMID: 39622135 DOI: 10.1016/j.talanta.2024.127306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025]
Abstract
A novel, rapid production methodology for laboratory-made carbon electrodes (LCE) employing cost-effective and readily available materials has developed in the present work. The LCE presents superior electrochemical characteristics compared to commercially available screen-printed carbon electrodes (SPCE). Furthermore, this research has demonstrated the performance of readily accessible, highly sensitive, and portable biosensors for on-site detection of E. coli in aqueous samples. Silver nanoparticles (AgNPs) were successfully electrodeposited onto the LCE (Ag-LCE) using the electrochemical method at optimised parameters. The E. coli-specific aptamer was conjugated with AgNPs, and uncoated Ag-LCE surfaces were blocked with a BSA (BSA-Apt-Ag-LCE). The developed BSA-Apt-Ag-LCE biosensor was characterised and validated for the successful detection of E. coli in aqueous samples using cyclic voltammetry (CV). A linear correlation was obtained for sensor response in the 3.4 × 101 to 3.4 × 106 CFU/ml bacterial concentration as ΔIpa = 5.71 log C + 2.91 with R2 = 0.987. BSA-Apt-Ag-LCE biosensors have a limit of detection of 34 CFU/ml and a response time of 15 min, indicating their prompt and practical on-site identification capabilities. The proficient detection of E. coli in diverse aqueous samples, substantiated by its consistent reproducibility as indicated by the relative standard deviation (RSD) value of a maximum of 1.71 %, is a compelling validation of the biosensor's efficacy and reliability. The proposed biosensor exhibited selectivity towards E. coli and was found stable even after being stored at 4 °C for four weeks.
Collapse
Affiliation(s)
- Ajinkya Hariram Dabhade
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Balasubramanian Paramasivan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Adhidesh S Kumawat
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Biswajit Saha
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
2
|
Soysaldı F, Dincyurek Ekici D, Soylu MÇ, Mutlugun E. Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor. BIOSENSORS 2024; 14:603. [PMID: 39727868 DOI: 10.3390/bios14120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Escherichia coli (E. coli) detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell Fe2O3@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity. Using electrochemical impedance spectroscopy (EIS) as the detection technique, the biosensor achieved a limit of detection of 2.7 × 102 CFU/mL for E. coli bacteria across a concentration range of 102-108 CFU/mL, with a relative standard deviation (RSD) of 3.5781%. From an optical perspective, as E. coli concentration increased steadily from 104 to 107 CFU/mL, quantum dot fluorescence showed over 60% lifetime quenching. This hybrid biosensor thus provides rapid, highly sensitive E. coli detection with a fast analysis time of 30 min. This study, which combines the detection advantages of electrochemical and optical biosensor systems in a graphite-based paper sensor for the first time, has the potential to meet the needs of point-of-care applications. It is thought that future studies that will aim to examine the performance of the production-optimized, portable, graphite-based sensor system on real food samples, environmental samples, and especially medical clinical samples will be promising.
Collapse
Affiliation(s)
- Furkan Soysaldı
- Biological and Medical Diagnostic Sensors Laboratory (BioMeD Sensors Lab), Department of Biomedical Engineering, Erciyes University, Kayseri 38030, Türkiye
- Department of Electronic and Automation, Vocational School, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Türkiye
| | - Derya Dincyurek Ekici
- Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri 38039, Türkiye
| | - Mehmet Çağrı Soylu
- Biological and Medical Diagnostic Sensors Laboratory (BioMeD Sensors Lab), Department of Biomedical Engineering, Erciyes University, Kayseri 38030, Türkiye
| | - Evren Mutlugun
- Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| |
Collapse
|
3
|
Zhang D, Zhang X, Li X, Wang N, Zhao X. Sensitive colorimetric detection of Escherichia coli in milk using Au@Ag core-shell nanoparticles. Talanta 2024; 280:126783. [PMID: 39208679 DOI: 10.1016/j.talanta.2024.126783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Escherichia coli (E. coli) is a prevalent pathogen that is frequently associated with the foodborne illness. It causes various infections and poses a significant threat to human health. A rapid and sensitive assay for detecting E. coli is essential for timely diagnosis. Herein, a simple and sensitive colorimetric analysis method for detecting E. coli was developed based on the formation of Au@Ag core-shell nanoparticles facilitated by p-benzoquinone (BQ). E. coli reduced p-benzoquinone to generate hydroquinone (HQ), which could reduce the added Tollens' reagent to silver elemental and grow on the surface of gold nanoparticles (AuNPs). As the E. coli concentration increased, the silver layer thickess on the AuNPs surface growed, resulting in a stronger silver absorption peak observed at 390 nm. The color of the solution changed from red to orange, which could be used to detect E. coli by the naked eye. As a result, E. coli was detected with a linear range from 1.0 × 101 to 1.0 × 107 CFU/mL based on the absorbance intensity. In addition, this method accurately detected E. coli in real milk sample, demonstrating promising applications in foodborne pathogen detection. With satisfactory accuracy, the proposed colorimetric method holds excellent prospects in detecting pathogens in actual food samples.
Collapse
Affiliation(s)
- Duoduo Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Xinyu Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Xiuxiu Li
- School of Investigation, China People's Police University, Langfang, 065000, China
| | - Nan Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Zheng J, Sun Q, Zhang M, Liu C, Su Q, Zhang L, Xu Z, Lu W, Ching J, Tang W, Cheung CP, Hamilton AL, Wilson O'Brien AL, Wei SC, Bernstein CN, Rubin DT, Chang EB, Morrison M, Kamm MA, Chan FKL, Zhang J, Ng SC. Noninvasive, microbiome-based diagnosis of inflammatory bowel disease. Nat Med 2024; 30:3555-3567. [PMID: 39367251 PMCID: PMC11645270 DOI: 10.1038/s41591-024-03280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Despite recent progress in our understanding of the association between the gut microbiome and inflammatory bowel disease (IBD), the role of microbiome biomarkers in IBD diagnosis remains underexplored. Here we developed a microbiome-based diagnostic test for IBD. By utilization of metagenomic data from 5,979 fecal samples with and without IBD from different geographies and ethnicities, we identified microbiota alterations in IBD and selected ten and nine bacterial species for construction of diagnostic models for ulcerative colitis and Crohn's disease, respectively. These diagnostic models achieved areas under the curve >0.90 for distinguishing IBD from controls in the discovery cohort, and maintained satisfactory performance in transethnic validation cohorts from eight populations. We further developed a multiplex droplet digital polymerase chain reaction test targeting selected IBD-associated bacterial species, and models based on this test showed numerically higher performance than fecal calprotectin in discriminating ulcerative colitis and Crohn's disease from controls. Here we discovered universal IBD-associated bacteria and show the potential applicability of a multibacteria biomarker panel as a noninvasive tool for IBD diagnosis.
Collapse
Affiliation(s)
- Jiaying Zheng
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianru Sun
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Chengyu Liu
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessica Ching
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Amy L Hamilton
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amy L Wilson O'Brien
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shu Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Charles N Bernstein
- Department of Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David T Rubin
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingwan Zhang
- Microbiota I-Center (MagIC), Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
C S S, Kini V, Singh M, Mukhopadhyay C, Nag P, Sadani K. Disposable electrochemical biosensors for the detection of bacteria in the light of antimicrobial resistance. Biotechnol Bioeng 2024; 121:2549-2584. [PMID: 38822742 DOI: 10.1002/bit.28735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Persistent and inappropriate use of antibiotics is causing rife antimicrobial resistance (AMR) worldwide. Common bacterial infections are thus becoming increasingly difficult to treat without the use of last resort antibiotics. This has necessitated a situation where it is imperative to confirm the infection to be bacterial, before treating it with antimicrobial speculatively. Conventional methods of bacteria detection are either culture based which take anywhere between 24 and 96 hor require sophisticated molecular analysis equipment with libraries and trained operators. These are difficult propositions for resource limited community healthcare setups of developing or less developed countries. Customized, inexpensive, point-of-care (PoC) biosensors are thus being researched and developed for rapid detection of bacterial pathogens. The development and optimization of disposable sensor substrates is the first and crucial step in development of such PoC systems. The substrates should facilitate easy charge transfer, a high surface to volume ratio, be tailorable by the various bio-conjugation chemistries, preserve the integrity of the biorecognition element, yet be inexpensive. Such sensor substrates thus need to be thoroughly investigated. Further, if such systems were made disposable, they would attain immunity to biofouling. This article discusses a few potential disposable electrochemical sensor substrates deployed for detection of bacteria for environmental and healthcare applications. The technologies have significant potential in helping reduce bacterial infections and checking AMR. This could help save lives of people succumbing to bacterial infections, as well as improve the overall quality of lives of people in low- and middle-income countries.
Collapse
Affiliation(s)
- Sreelakshmi C S
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vrinda Kini
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maargavi Singh
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapil Sadani
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Ding S, Chen X, Yu B, Liu Z. Electrochemical biosensors for clinical detection of bacterial pathogens: advances, applications, and challenges. Chem Commun (Camb) 2024; 60:9513-9525. [PMID: 39120607 DOI: 10.1039/d4cc02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bacterial pathogens are responsible for a variety of human diseases, necessitating their prompt detection for effective diagnosis and treatment of infectious diseases. Over recent years, electrochemical methods have gained significant attention owing to their exceptional sensitivity and rapidity. This review outlines the current landscape of electrochemical biosensors employed in clinical diagnostics for the detection of bacterial pathogens. We categorize these biosensors into four types: amperometry, potentiometry, electrochemical impedance spectroscopy, and conductometry, targeting various bacterial components, including toxins, virulence factors, metabolic activity, and events related to bacterial adhesion and invasion. We discuss the merits and challenges associated with electrochemical methods, underscoring their rapid response, high sensitivity, and specificity, while acknowledging the necessity for skilled operators and potential interference from biological and environmental factors. Furthermore, we examine future prospects and potential applications of electrochemical biosensors in clinical diagnostics. While electrochemical biosensors offer a promising avenue for detecting bacterial pathogens, further research in optimizing the robustness and surmounting the challenges hindering their seamless integration into clinical practice is imperative.
Collapse
Affiliation(s)
- Shengyong Ding
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Xiaodi Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Yu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Liu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| |
Collapse
|
7
|
Wang S, Liu Y, Liu R, Xie L, Yang H, Ge S, Yu J. Strand displacement amplification triggered 3D DNA roller assisted CRISPR/Cas12a electrochemiluminescence cascaded signal amplification for sensitive detection of Ec-16S rDNA. Anal Chim Acta 2024; 1291:342213. [PMID: 38280789 DOI: 10.1016/j.aca.2024.342213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Escherichia coli can cause gastrointestinal infection, urinary tract infection and other infectious diseases. Accurate detection of Escherichia coli 16S rDNA (Ec-16S rDNA) in clinical practice is of great significance for the identification and treatment of related diseases. At present, there are various types of sensors that can achieve accurate detection of Ec-16S rDNA. Electrochemiluminescence (ECL) has attracted considerable attention from researchers, which causes excellent performance in bioanalysis. Based on the previous research, it is significance to develop a novel, sensitive and efficient ECL biosensor. RESULTS In this work, an ECL biosensor for the detection of Ec-16S rDNA was constructed by integrating CRISPR/Cas12a technology with the cascade signal amplification strategy consisting of strand displacement amplification (SDA) and dual-particle three-dimensional (3D) DNA rollers. The amplification products of SDA triggered the operation of the DNA rollers, and the products generated by the DNA rollers activated CRISPR/Cas12a to cleave the signal probe, thereby realizing the change of the ECL signal. The cascade amplification strategy realized the exponential amplification of the target signal and greatly improved the sensitivity. Manganese dioxide nanoflowers (MnO2 NFs) as a co-reaction promoter effectively enhanced the ECL intensity of tin disulfide quantum dots (SnS2 QDs). A new ternary ECL system (SnS2 QDs/S2O82-/MnO2 NFs) was prepared, which made the change of ECL intensity of biosensor more significant. The proposed biosensor had a response range of 100 aM-10 nM and a detection limit of 27.29 aM (S/N = 3). SIGNIFICANCE AND NOVELTY Herein, the cascade signal amplification strategy formed by SDA and dual-particle 3D DNA rollers enabled the ECL biosensor to have high sensitivity and low detection limit. At the same time, the cascade signal amplification strategy was integrated with CRISPR/Cas12a to enable the biosensor to efficiently detect the target. It can provide a new idea for the detection of Ec-16S rDNA in disease diagnosis and clinical analysis.
Collapse
Affiliation(s)
- Shujing Wang
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Yaqi Liu
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Ruifang Liu
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China.
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
8
|
Cui J, Luo Q, Wei C, Deng X, Liang H, Wei J, Gong Y, Tang Q, Zhang K, Liao X. Electrochemical biosensing for E.coli detection based on triple helix DNA inhibition of CRISPR/Cas12a cleavage activity. Anal Chim Acta 2024; 1285:342028. [PMID: 38057050 DOI: 10.1016/j.aca.2023.342028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Escherichia coli (E.coli) is both a commensal and a foodborne pathogenic bacterium in the human gastrointestinal tract, posing significant potential risks to human health and food safety. However, one of the major challenges in E.coli detection lies in the preparation and storage of antibodies. In traditional detection methods, antibodies are indispensable, but their instability often leads to experimental complexity and increased false positives. This underscores the need for new technologies and novel sensors. Therefore, the development of a simple and sensitive method for analyzing E.coli would make significant contributions to human health and food safety. RESULTS We constructed an electrochemical biosensor based on triple-helical DNA and entropy-driven amplification reaction (EDC) to inhibit the cleavage activity of Cas12a, enabling high-specificity detection of E.coli. Replacing antibodies with nucleic acid aptamers (Apt) as recognition elements, we utilized the triple-helical DNA generated by the binding of DNA2 and DNA5/DNA6 double-helical DNA through the entropy-driven amplification reaction to inhibit the collateral cleavage activity of clustered regularly interspaced short palindromic repeats gene editing system (CRISPR) and its associated proteins (Cas). By converting E.coli into electrical signals and recording signal changes in the form of square wave voltammetry (SWV), rapid detection of E.coli was achieved. Optimization of experimental conditions and data detection under the optimal conditions provided high sensitivity, low detection limits, and high specificity. SIGNIFICANCE With a minimal detection limit of 5.02 CFU/mL and a linear range of 1 × 102 - 1 × 107 CFU/mL, the suggested approach was successfully verified to analyze E.coli at various concentrations. Additionally, after examining E.coli samples from pure water and pure milk, the recoveries ranged between 95.76 and 101.20%, demonstrating the method's applicability. Additionally, it provides a feasible research direction for the detection of pathogenic bacteria causing other diseases using the CRISPR/Cas gene editing system.
Collapse
Affiliation(s)
- Jiuying Cui
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qisheng Luo
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Cheng Wei
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xiandong Deng
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Hongqu Liang
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jihua Wei
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yuanxun Gong
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qianli Tang
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, P. R. China.
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
9
|
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023; 12:2795. [PMID: 37509887 PMCID: PMC10379338 DOI: 10.3390/foods12142795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne pathogens cause many diseases and significantly impact human health and the economy. Foodborne pathogens mainly include Salmonella spp., Escherichia coli, Staphylococcus aureus, Shigella spp., Campylobacter spp. and Listeria monocytogenes, which are present in agricultural products, dairy products, animal-derived foods and the environment. Various pathogens in many different types of food and water can cause potentially life-threatening diseases and develop resistance to various types of antibiotics. The harm of foodborne pathogens is increasing, necessitating effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and culture plate, are time-consuming, labour-intensive and expensive and cannot satisfy the demands of rapid food testing. Therefore, new fast detection methods are urgently needed. Electrochemical biosensors provide consumer-friendly methods to quickly detect foodborne pathogens in food and the environment and achieve extensive accuracy and reproducible results. In this paper, by focusing on various mechanisms of electrochemical transducers, we present a comprehensive overview of electrochemical biosensors for the detection of foodborne pathogens. Furthermore, the review introduces the hazards of foodborne pathogens, risk analysis methods and measures of control. Finally, the review also emphasizes the recent research progress and solutions regarding the use of electrochemical biosensors to detect foodborne pathogens in food and the environment, evaluates limitations and challenges experienced during the development of biosensors to detect foodborne pathogens and discusses future possibilities.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Hargol Zadeh S, Kashanian S, Nazari M. A Label-Free Carbohydrate-Based Electrochemical Sensor to Detect Escherichia coli Pathogenic Bacteria Using D-mannose on a Glassy Carbon Electrode. BIOSENSORS 2023; 13:619. [PMID: 37366984 DOI: 10.3390/bios13060619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Controlling water and food contamination by pathogenic organisms requires quick, simple, and low-cost methods. Using the affinity between mannose and type I fimbriae in the cell wall of Escherichia coli (E. coli) bacteria as evaluation elements compared to the conventional plate counting technique enables a reliable sensing platform for the detection of bacteria. In this study, a simple new sensor was developed based on electrochemical impedance spectroscopy (EIS) for rapid and sensitive detection of E. coli. The biorecogniton layer of the sensor was formed by covalent attachment of p-carboxyphenylamino mannose (PCAM) to gold nanoparticles (AuNPs) electrodeposited on the surface of a glassy carbon electrode (GCE). The resultant structure of PCAM was characterized and confirmed using a Fourier Transform Infrared Spectrometer (FTIR). The developed biosensor demonstrated a linear response with a logarithm of bacterial concentration (R2 = 0.998) in the range of 1.3 × 10 1~1.3 × 106 CFU·mL-1 with the limit of detection of 2 CFU·mL-1 within 60 min. The sensor did not generate any significant signals with two non-target strains, demonstrating the high selectivity of the developed biorecognition chemistry. The selectivity of the sensor and its applicability to analysis of the real samples were investigated in tap water and low-fat milk samples. Overall, the developed sensor showed to be promising for the detection of E. coli pathogens in water and low-fat milk due to its high sensitivity, short detection time, low cost, high specificity, and user-friendliness.
Collapse
Affiliation(s)
- Sakineh Hargol Zadeh
- Faculty of Chemistry, Applied Chemistry Department, Razi University, Kermanshah 6714414971, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Applied Chemistry Department, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| | - Maryam Nazari
- Faculty of Chemistry, Applied Chemistry Department, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
11
|
Zhou Q, Natarajan B, Kannan P. Nanostructured biosensing platforms for the detection of food- and water-borne pathogenic Escherichia coli. Anal Bioanal Chem 2023:10.1007/s00216-023-04731-6. [PMID: 37169938 DOI: 10.1007/s00216-023-04731-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Pathogenic bacterial infection is one of the principal causes affecting human health and ecosystems. The accurate identification of bacteria in food and water samples is of significant interests to maintain safety and health for humans. Culture-based tests are practically tedious and may produce false-positive results, while viable but non-culturable microorganisms (NCMs) cannot be retrieved. Thus, it requires fast, reliable, and low-cost detection strategies for on-field analysis and point-of-care (POC) monitoring. The standard detection methods such as nucleic acid analysis (RT-PCR) and enzyme-linked immunosorbent assays (ELISA) are still challenging in POC practice due to their time-consuming (several hours to days) and expensive laboratory operations. The optical (surface plasmon resonance (SPR), fluorescence, and surface-enhanced Raman scattering (SERS)) and electrochemical-based detection of microbes (early stage of infective diseases) have been considered as alternative routes in the emerging world of nanostructured biosensing since they can attain a faster and concurrent screening of several pathogens in real samples. Moreover, optical and electrochemical detection strategies are opening a new route for the ability of detecting pathogens through the integration of cellphones, which is well fitted for POC analysis. This review article covers the current state of sensitive mechanistic approaches for the screening and detection of Escherichia coli O157:H7 (E. coli) pathogens in food and water samples, which can be potentially applied in clinical and environmental monitoring.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Bharathi Natarajan
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| | - Palanisamy Kannan
- Department of Endocrinology, First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), 1882 Zhonghuan South Road, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| |
Collapse
|
12
|
Bifunctional nanomaterial with antibody-like and electrocatalytic activity to facilitate electrochemical biosensor of Escherichia coli. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
13
|
Tackling the issue of healthcare associated infections through point-of-care devices. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
14
|
Zhang J, Liu W, Li J, Lu K, Wen H, Ren J. Rapid bacteria electrochemical sensor based on cascade amplification of 3D DNA walking machine and toehold-mediated strand displacement. Talanta 2022; 249:123646. [DOI: 10.1016/j.talanta.2022.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
|
15
|
Cao Z, Li C, Yang X, Wang S, Zhang X, Zhao C, Xue B, Gao C, Zhou H, Yang Y, Shen Z, Sun F, Wang J, Qiu Z. Rapid Quantitative Detection of Live Escherichia coli Based on Chronoamperometry. BIOSENSORS 2022; 12:bios12100845. [PMID: 36290982 PMCID: PMC9599875 DOI: 10.3390/bios12100845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 05/31/2023]
Abstract
The rapid quantitative detection of Escherichia coli (E. coli) is of great significance for evaluating water and food safety. At present, the conventional bacteria detection methods cannot meet the requirements of rapid detection in water environments. Herein, we report a method based on chronoamperometry to rapidly and quantitatively detect live E. coli. In this study, the current indicator i0 and the electricity indicator A were used to record the cumulative effect of bacteria on an unmodified glassy carbon electrode (GCE) surface during chronoamperometric detection. Through the analysis of influencing factors and morphological characterization, it was proved that the changes of the two set electrochemical indicator signals had a good correlation with the concentration of E. coli; detection time was less than 5 min, the detection range of E. coli was 104−108 CFU/mL, and the error range was <30%. The results of parallel experiments and spiking experiments showed that this method had good repeatability, stability, and sensitivity. Humic acid and dead cells did not affect the detection results. This study not only developed a rapid quantitative detection method for E. coli in the laboratory, but also realized a bacterial detection scheme based on the theory of bacterial dissolution and adsorption for the first time, providing a new direction and theoretical basis for the development of electrochemical biosensors in the future.
Collapse
Affiliation(s)
- Zhuosong Cao
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710600, China
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Shang Wang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Bin Xue
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Chao Gao
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hongrui Zhou
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Yutong Yang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710600, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
16
|
Wasiewska LA, Diaz FG, Shao H, Burgess CM, Duffy G, O'Riordan A. Highly sensitive electrochemical sensor for the detection of Shiga toxin-producing E. coli (STEC) using interdigitated micro-electrodes selectively modified with a chitosan-gold nanocomposite. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Bai Z, Xu X, Wang C, Wang T, Sun C, Liu S, Li D. A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Xie B, Wang ZP, Zhang R, Zhang Z, He Y. A SERS aptasensor based on porous Au-NC nanoballoons for Staphylococcus aureus detection. Anal Chim Acta 2022; 1190:339175. [PMID: 34857128 DOI: 10.1016/j.aca.2021.339175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
In this work, we developed a new approach for fabricating hollow and porous nitrogen doped carbon nanoballoons loading AuNPs (Au-NC-NBs) with a large specific surface area, a high N and Au content. The surface-enhanced Raman scattering (SERS) aptasensor based on the resulting Au-NC-NBs possess a wider linear range (10 to 107 cells/mL), a lower detection limit (3 cells/mL), better selectivity for detecting bacteria than previously reported sensors. Importantly, Au-NC-NBs SERS aptasensor also exhibits excellent performance for detecting bacteria in the real food and biological samples. This work provides a facile and versatile designing strategy for controlled construction of SERS biosensor by combination of Au nanoparticles and carbon materials, which has a great applied potential in food safety monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Beibei Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331, Shapingba, Chongqing, PR China
| | - Zhi-Peng Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331, Shapingba, Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Ruixue Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331, Shapingba, Chongqing, PR China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331, Shapingba, Chongqing, PR China.
| |
Collapse
|
19
|
Zhang J, Yang H, Liu W, Wen H, He F. Rapid 16S rDNA electrochemical sensor for detection of bacteria based on the integration of target-triggered hairpin self-assembly and tripedal DNA walker amplification. Anal Chim Acta 2022; 1190:339266. [PMID: 34857142 DOI: 10.1016/j.aca.2021.339266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Diseases caused by bacteria pose great challenges to human health. The key to reduce disease transmission and mortality is to develop accurate and rapid methods for the detection and identification of bacteria. Herein, a rapid bacteria 16S rDNA electrochemical sensor based on target-triggered hairpin self-assembly and tripedal DNA walker (TD walker) amplification strategy was constructed. Specific variable region of 16S rDNA fragment of bacteria was used as biomarker. The target-triggered hairpin self-assembly strategy was used to prepare a TD walker. The hairpin DNA probes labeled with ferrocene (Fc) were designed and modified on surface of electrode. The "legs" of TD walker hybridized with three hairpin probes and opened their hairpin structures. Exo III enzyme recognised hybrid duplexes and selectively digest hairpin probes. The "legs" of TD walker was released and hybridized with the other three hairpin probes. In this way, the enzyme drived the walkers to walk along electrode interface, until hairpin DNA probes were all removed from the electrode, the Fc was far away from electrode interface. A significantly current reduction signal was obtained and bacteria were detected by recording this response. This strategy was low-cost and scalable, it could continuously recycle low-concentration targets, thus enhanced the detection sensitivity. As the proof-of-concept work, the electrochemical sensor was utilized as detector. The limit of detection (LOD) of detecting Staphylococcus aureus (S. aureus) was 20 CFU mL-1 and detection time was less than 3 h. It was expected to be widely used in clinical early diagnosis.
Collapse
Affiliation(s)
- Jialin Zhang
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hongli Yang
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Wenjing Liu
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
20
|
Huang Y, Su Z, Li W, Ren J. Recent Progresses on Biosensors for Escherichia coli Detection. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02129-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
22
|
The direct electrochemistry of viable Escherichia coli. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Xu M, Liu Z, Song Y, Zhao R, Yang Z, Zhao H, Sun X, Gu Y, Yang H. Analysis of drug sensitivity of Escherichia Coli O157H7. Biomed Microdevices 2021; 23:29. [PMID: 33974162 DOI: 10.1007/s10544-021-00565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Sensitive and rapid tests of Escherichia coli drug sensitivity is very important for health of human and animals. An E. coli immunosensor was built based on electrochemical detection and immune detection technologies, through pretreating screen-printed electrodes, and analyzing the optimal reaction concentration of antigen antibody binding with the AC impedance method. Based on the detection system combining the immunosensor and electrochemical workstation, tests were carried out to measure the accuracy of E. coli concentration and drug sensitivity, and error of the detection system was calibrated in accordance with data from the electrochemical workstation. E. coli O157:H7 can be detected in the range of 103 cfu/ml ~ 1012 cfu/ml, and the detection error controlled within 5%. Results from the electrochemical workstation and those from the detection device were consistent, and both demonstrated a greater inhibitory effect of antibiotics on E. coli than on Bacillus subtilis. The electrochemical detection system is highly efficient and accurate, and could be widely applied to E. coli drug sensitivity tests in clinical medicine.
Collapse
Affiliation(s)
- Minzi Xu
- College of engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China
| | - Zhenyu Liu
- College of information science and engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China.
| | - Yanbo Song
- College of life sciences, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China
| | - Runan Zhao
- College of information science and engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China
| | - Zheng Yang
- College of engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China
| | - Huijin Zhao
- College of information science and engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China
| | - Xiaobing Sun
- College of engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China
| | - Yaning Gu
- College of information science and engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China
| | - Huifei Yang
- College of information science and engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China
| |
Collapse
|
24
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Lindquist HDA. Microbial biosensors for recreational and source waters. J Microbiol Methods 2020; 177:106059. [PMID: 32946871 DOI: 10.1016/j.mimet.2020.106059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/13/2020] [Accepted: 09/13/2020] [Indexed: 12/21/2022]
Abstract
Biosensors are finding new places in science, and the growth of this technology will lead to dramatic improvements in the ability to detect microorganisms in recreational and source waters for the protection of public health. Much of the improvement in biosensors has followed developments in molecular biology processes and coupling these with advances in engineering. Progress in the fields of nano-engineering and materials science have opened many new avenues for biosensors. The adaptation of these diverse technological fields into sensors has been driven by the need to develop more rapid sensors that are highly accurate, sensitive and specific, and have other desirable properties, such as robust deployment capability, unattended operations, and remote data transfer. The primary challenges to the adoption of biosensors in recreational and source water applications are cost of ownership, particularly operations and maintenance costs, problems caused by false positive rates, and to a lesser extent false negative rates, legacy technologies, policies and practices which will change as biosensors improve to the point of replacing more traditional methods for detecting organisms in environmental samples.
Collapse
Affiliation(s)
- H D Alan Lindquist
- USEPA, 26 W. M.L. King DR., Cincinnati, OH 45268, United States of America.
| |
Collapse
|
27
|
Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2020; 109:548-571. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
The present review (containing 242 references) illustrates the importance and application of optical and electrochemical methods as well as their performance improvement using various methods for the detection of pathogenic bacteria. The application of advanced nanomaterials including hyper branched nanopolymers, carbon-based materials and silver, gold and so on. nanoparticles for biosensing of pathogenic bacteria was also investigated. In addition, a summary of the applications of nanoparticle-based electrochemical biosensors for the identification of pathogenic bacteria has been provided and their advantages, detriments and future development capabilities was argued. Therefore, the main focus in the present review is to investigate the role of nanomaterials in the development of biosensors for the detection of pathogenic bacteria. In addition, type of nanoparticles, analytes, methods of detection and injection, sensitivity, matrix and method of tagging are also argued in detail. As a result, we have collected electrochemical and optical biosensors designed to detect pathogenic bacteria, and argued outstanding features, research opportunities, potential and prospects for their development, according to recently published research articles.
Collapse
Affiliation(s)
- Parinaz Babaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Xiong X, Yuan W, Li Y, Lu Y, Xiong X, Li Y, Liu Y, Lu L. Sensitive electrochemical detection of aflatoxin B1 using DNA tetrahedron-nanostructure as substrate of antibody ordered assembly and template of aniline polymerization. Food Chem 2020; 331:127368. [PMID: 32569962 DOI: 10.1016/j.foodchem.2020.127368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/15/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
A novel strategy for AFB1 detection in grains was proposed based on DNA tetrahedron-structured probe (DTP) and horseradish peroxidase (HRP) triggered polyaniline (PANI) deposition. Briefly, the DNA tetrahedron nanostructures were assembled on the gold electrode, with carboxylic group designed on top vertex of them. The carboxylic group was conjugated with the AFB1 monoclonal antibody (mAb) to form DTP. The test sample and a known fixed concentration of HRP-labeled AFB1 were mixed and they compete for binding to DTP. The HRP assembled on the gold electrode catalyzed the polymerization of aniline on DTP. AFB1 in grains could be determined by using PANI as electrochemical signal molecules. Interestingly, DNA tetrahedron-structure, which has mechanical rigidity and structural stability, can improve antigen-antibody specific recognition and binding efficiency through the use of mAb ordered assembly. Meanwhile, nucleic acid backbone with a large amount of negative charge is good template for aniline polymerization under mild conditions.
Collapse
Affiliation(s)
- Xiaohui Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Wei Yuan
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Yafei Li
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Yichen Lu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Xiong Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Yi Li
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Yuanjian Liu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China.
| | - Lixia Lu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
29
|
Jiang X, Liu S, Yang M, Rasooly A. Amperometric genosensor for culture independent bacterial count. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 299:10.1016/j.snb.2019.126944. [PMID: 32009738 PMCID: PMC6993526 DOI: 10.1016/j.snb.2019.126944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bacterial plate count for general assessment of water quality requires lengthy bacterial culturing. We report here a new DNA induced current genosensor for culture independent total bacteria determination. Since the amount of bacterial DNA is correlated to the number of bacteria, the genosensor measures the amount of bacterial DNA to determine bacterial count. The approach relies on bacteria lysis to release DNA which can react with molybdate to form redox molybdophosphate and measured electrochemically. Analysis of E. coli and S. aureus demonstrated that the DNA generated current is highly correlated with the level of bacteria lysis which was confirmed by spectrometric measurement. Culture independent measurement of S. aureus bacterial load suggests limit of detection is 21.9 CFU/mL, with linear range from 3×102 to 3×107 CFU/mL and correlation coefficient of 0.992. For E. coli analysis, the detection limit is 25.1 CFU/mL with the same linear range. The use of electrochemical microbial DNA quantitation for culture independent bacterial count is a new approach, the genosensor measurement is rapid (within 1 h) and has potential use for analysis of broad-spectrum bacteria for various applications.
Collapse
Affiliation(s)
- Xingxing Jiang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Shuping Liu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Minghui Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
- Corresponding Authors: (M. Yang) (A. Rasooly)
| | - Avraham Rasooly
- National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
- Corresponding Authors: (M. Yang) (A. Rasooly)
| |
Collapse
|
30
|
CdS quantum dots/Au nanoparticles/ZnO nanowire array for self-powered photoelectrochemical detection of Escherichia coli O157:H7. Biosens Bioelectron 2019; 149:111843. [PMID: 31726272 DOI: 10.1016/j.bios.2019.111843] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
In this paper, the hydrothermally grown ZnO nanowire array (NWs) was modified by Au nanoparticles (NPs) and CdS quantum dots (QDs) to construct a high-performance photoelectrochemical (PEC) electrode. The aligned ZnO NWs, which decorated Au NPs and CdS QDs have the effective light absorption range from UV to visible region. This hybrid structure provided a self-powered PEC electrode with a favorable energy-band configuration for fast charge separation and transportation. Meanwhile, the Au NPs and CdS QDs also made increase of the surface area to improve the immobilization of the analytes. After assembling aptamer as recognition element, this composite nanoarray was further developed as a self-powered PEC biosensor by synergizing above multiple enhancement factors. The PEC aptasensor exhibited a rapid response in a wide linear range of 10-107 CFU/mL with the detection limit as low as 1.125 CFU/mL to Escherichia coli O157:H7 (E. coli O157:H7). This approach would offer an alternative PEC transduction for fast environment monitoring and clinical diagnosis related to pathogenic bacteria.
Collapse
|
31
|
Fu Z, Lu YC, Lai JJ. Recent Advances in Biosensors for Nucleic Acid and Exosome Detection. Chonnam Med J 2019; 55:86-98. [PMID: 31161120 PMCID: PMC6536430 DOI: 10.4068/cmj.2019.55.2.86] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Biosensors are analytical devices for biomolecule detection that compromise three essential components: recognition moiety, transducer, and signal processor. The sensor converts biomolecule recognition to detectable signals, which has been applied in diverse fields such as clinical monitoring, in vitro diagnostics, food industry etc. Based on signal transduction mechanisms, biosensors can be categorized into three major types: optical biosensors, electrochemical biosensors, and mass-based biosensors. Recently, the need for faster, more sensitive detection of biomolecules has compeled researchers to develop various sensing techniques. In this review, the basic structure and sensing principles of biosensors are introduced. Additionally, the review discusses multiple recent works about nucleic acid and exosome sensing.
Collapse
Affiliation(s)
- Zirui Fu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yi-Cheng Lu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|