1
|
Strohmaier-Nguyen D, Horn C, Baeumner AJ. Innovations in one-step point-of-care testing within microfluidics and lateral flow assays for shaping the future of healthcare. Biosens Bioelectron 2025; 267:116795. [PMID: 39332251 DOI: 10.1016/j.bios.2024.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Point-of-care testing (POCT) technology, using lateral flow assays and microfluidic systems, facilitates cost-effective diagnosis, timely treatment, ongoing monitoring, and prevention of life-threatening outcomes. Aside from significant advancements demonstrated in academic research, implementation in real-world applications remains frustratingly limited. The divergence between academic developments and practical utility is often due to factors such as operational complexity, low sensitivity and the need for trained personnel. Taking this into consideration, our objective is to present a critical and objective overview of the latest advancements in fully integrated one-step POCT assays for home-testing which would be commercially viable. In particular, aspects of signal amplification, assay design modification, and sample preparation are critically evaluated and their features and medical applications along with future perspective and challenges with respect to minimal user intervention are summarized. Associated with and very important for the one-step POCT realization are also readout devices and fabrication processes. Critical analysis of available and useful technologies are presented in the SI section.
Collapse
Affiliation(s)
- Dan Strohmaier-Nguyen
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Carina Horn
- Roche Diagnostics GmbH, 68305, Mannheim, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Xia N, Li Y, He C, Deng D. Nanolabels Prepared by the Entrapment or Self-Assembly of Signaling Molecules for Colorimetric and Fluorescent Immunoassays. BIOSENSORS 2024; 14:597. [PMID: 39727862 PMCID: PMC11674709 DOI: 10.3390/bios14120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Nanomaterials have attracted significant attention as signal reporters for immunoassays. They can directly generate detectable signals or release a large number of signaling elements for readout. Among various nanolabels, nanomaterials composed of multiple signaling molecules have shown great potential in immunoassays. Generally, signaling molecules can be entrapped in nanocontainers or self-assemble into nanostructures for signal amplification. In this review, we summarize the advances of signaling molecules-entrapped or assembled nanomaterials for colorimetric and fluorescence immunoassays. The nanocontainers cover liposomes, polymers, mesoporous silica, metal-organic frameworks (MOFs), various nanosheets, nanoflowers or nanocages, etc. Signaling molecules mainly refer to visible and/or fluorescent organic dyes. The design and application of immunoassays are emphasized from the perspective of nanocontainers, analytes, and analytical performances. In addition, the future challenges and research trends for the preparation of signaling molecules-entrapped or assembled nanolabels are briefly discussed.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (C.H.); (D.D.)
| | | | | | | |
Collapse
|
3
|
Wei J, Bu S, Zhou H, Sun H, Hao Z, Qu G, Wan J. Hybrid nanoflower-based electrochemical lateral flow immunoassay for Escherichia coli O157 detection. Mikrochim Acta 2024; 191:453. [PMID: 38970675 DOI: 10.1007/s00604-024-06513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Jiaqi Wei
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shengjun Bu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Hongyu Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - He Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Zhuo Hao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Guijuan Qu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Jiayu Wan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
4
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
5
|
Dey P, Raza MJ, Khera A, Sharma A, Khajuria A, Pandey A, Pandey CM, Sharma RK, Singh G, Barnwal RP. Recent progress of functionalized nanomaterials-based biosensing for monitoring of food- and water-borne pathogens. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 21:100914. [DOI: 10.1016/j.enmm.2024.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Gul AR, Bal J, Xu P, Ghosh S, Yun T, Kailasa SK, Kim YH, Park TJ. Serodiagnosis of multiple cancers using an extracellular protein kinase A autoantibody-based lateral flow platform. Biosens Bioelectron 2024; 246:115902. [PMID: 38056339 DOI: 10.1016/j.bios.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Extracellular protein kinase A autoantibody (ECPKA-AutoAb) has been suggested as a universal cancer biomarker due to its higher amounts in serum of several types of cancer patients than that of normal individuals. Herein, we first developed a lateral flow immunoassay (LFIA) tool, using a sandwich format, toward ECPKA-AutoAb in human serum. For this format, 3G2 as a capture antibody was identified using hybridoma technique and a series of screenings where it showed superior capacity to recognize Enzo PKA catalytic subunit alpha (Cα), compared to other PKA antibodies and antigens. Using these components, we performed sandwich ELISA toward a mimic and real sample of ECPKA-AutoAb. As per the results, limit of detection (LOD) was found to be 135 ng/mL and ECPKA-AutoAb levels were higher in various cancer patients than in normal individuals like previous studies. Based on these results, we applied this sandwich format into LFIA tool and found that the LOD of the fabricated LFIA tool showed about 3.8 ng/mL using spiked PKA-Ab, which is significantly improved compared to the LOD of sandwich ELISA. Also, the developed LFIA tool demonstrated a remarkable ability to detect significant differences in ECPKA-AutoAb levels between normal and cancer patients within 15 min, showing a potential for point-of-care (PoC) detection. One interesting point is that our LFIA strip contains an additional conjugation pad II, named because of its position behind the conjugation pad, in which PKA Cα is dried, enabling a sandwich format.
Collapse
Affiliation(s)
- Anam Rana Gul
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jyotiranjan Bal
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ping Xu
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Subhadeep Ghosh
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Taehyun Yun
- KNAX Ltd., D-1414, (Hanam Techno Valley U1 Center) 947, Hanam-daero, Hanam-si, Gyeonggi-do, 12982, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, Gujrat, India
| | - Yeong Hyeock Kim
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Renzi E, Piper A, Nastri F, Merkoçi A, Lombardi A. An Artificial Miniaturized Peroxidase for Signal Amplification in Lateral Flow Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207949. [PMID: 36942720 DOI: 10.1002/smll.202207949] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte. Recognition of the analyte by the capture and detection antibodies is first evidenced by the appearance of a red color in the test line (TL), due to the accumulation of AuNPs. Subsequent addition of 3,3',5,5'-tetramethylbenzidine (TMB) induces an increase of the test line color, due to the TMB being converted into an insoluble colored product, catalyzed by FeMC6*a. This work shows that FeMC6*a acts as an efficient catalyst in paper, increasing the sensitivity of an LFiA up to four times with respect to a conventional LFiA. Furthermore, FeMC6*a achieves lower limits of detection that are found in control experiments where it is replaced with horseradish peroxidase (HRP), its natural counterpart. This study represents a significant proof-of-concept for the development of more sensitive LFiAs, for different analytes, based on properly designed artificial metalloenzymes.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| |
Collapse
|
8
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Bruce-Tagoe TA, Danquah MK. Bioaffinity Nanoprobes for Foodborne Pathogen Sensing. MICROMACHINES 2023; 14:1122. [PMID: 37374709 DOI: 10.3390/mi14061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Bioaffinity nanoprobes are a type of biosensor that utilize the specific binding properties of biological molecules, such as antibodies, enzymes, and nucleic acids, for the detection of foodborne pathogens. These probes serve as nanosensors and can provide highly specific and sensitive detection of pathogens in food samples, making them an attractive option for food safety testing. The advantages of bioaffinity nanoprobes include their ability to detect low levels of pathogens, rapid analysis time, and cost-effectiveness. However, limitations include the need for specialized equipment and the potential for cross-reactivity with other biological molecules. Current research efforts focus on optimizing the performance of bioaffinity probes and expanding their application in the food industry. This article discusses relevant analytical methods, such as surface plasmon resonance (SPR) analysis, Fluorescence Resonance Energy Transfer (FRET) measurements, circular dichroism, and flow cytometry, that are used to evaluate the efficacy of bioaffinity nanoprobes. Additionally, it discusses advances in the development and application of biosensors in monitoring foodborne pathogens.
Collapse
Affiliation(s)
- Tracy Ann Bruce-Tagoe
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
10
|
Ren W, Irudayaraj J. Magnetic Control-Enhanced Lateral Flow Technique for Ultrasensitive Nucleic Acid Target Detection. ACS OMEGA 2022; 7:29204-29210. [PMID: 36033722 PMCID: PMC9404192 DOI: 10.1021/acsomega.2c03276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this work, a lateral flow (LF)-based detection strategy termed magnetic control-enhanced LFA (MCLF) was proposed to detect nucleic acid sequences at attomolar sensitivity. In the proposed MCLF method, magnetic controllers which are magnetic nanoparticles modified with antibodies against the labels on capture sequences were used to interact with the unreacted labeled capture sequence (CS-label) to improve the detection limit. By regulating the movement of magnetic probes (magnetic controllers) with a simple magnet under the lateral flow strip, the movement of magnetic probes bounded with unreacted CS-label in the sample flow could be reduced. Therefore, the target sequence-containing sandwich structures will arrive at the test zone prior, to interact with the recognition ligands, whereby the capture efficiency of the sandwich structures could be increased because the unreacted capture sequences at the test zone will be reduced. With the colorimetric signal from gold nanoparticle-based probes, the proposed MCLF technique could recognize as low as 100 aM of DNA target sequences by naked eyes, and the responding range of MCLF is from 100 aM to 10 pM.
Collapse
Affiliation(s)
- Wen Ren
- Department
of Bioengineering, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Holonyak
Micro and Nanotechnology Laboratory; Beckman Institute; Carl Woese
Institute for Genomic Biology, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois (CCIL), University of
Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Santos M, Mariz M, Tiago I, Martins J, Alarico S, Ferreira P. A review on urinary tract infections diagnostic methods: Laboratory-based and point-of-care approaches. J Pharm Biomed Anal 2022; 219:114889. [PMID: 35724611 DOI: 10.1016/j.jpba.2022.114889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide. This type of infections can be healthcare-associated or community-acquired and affects millions of people every year. Different diagnostic procedures are available to detect pathogens in urine and they can be divided into two main categories: laboratory-based and point-of-care (POC) detection techniques. Traditional methodologies are often time-consuming, thus, achieving a rapid and accurate identification of pathogens is a challenging feature that has been pursued by many research groups and companies operating in this area. The purpose of this review is to compare and highlight advantages and disadvantages of the traditional and currently most used detection methods, as well as the emerging POC approaches and the relevant advances in on-site detection of pathogens´ mechanisms, suitable to be adapted to UTI diagnosis. Lately, the commercially available UTI self-testing kits and devices are helping in the diagnosis of urinary infections as patients or care givers are able to perform the test, easily and comfortably at home and, upon the result, decide when to attend an appointment/Urgent Health Care Unit.
Collapse
Affiliation(s)
- Marta Santos
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Marcos Mariz
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Igor Tiago
- CFE, Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jimmy Martins
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Susana Alarico
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC, Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paula Ferreira
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal; Department of Chemical and Biological Engineering, Coimbra Institute of Engineering, 3030-199 Coimbra, Portugal.
| |
Collapse
|
12
|
Ren W, Irudayaraj J. Paper-Based Test for Rapid On-Site Screening of SARS-CoV-2 in Clinical Samples. BIOSENSORS 2021; 11:bios11120488. [PMID: 34940245 PMCID: PMC8699507 DOI: 10.3390/bios11120488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 05/17/2023]
Abstract
Detection methods for monitoring infectious pathogens has never been more important given the need to contain the spread of the COVID-19 pandemic. Herein we propose a highly sensitive magnetic-focus-enhanced lateral flow assay (mLFA) for the detection of SARS-CoV-2. The proposed mLFA is simple and requires only lateral flow strips and a reusable magnet to detect very low concentrations of the virus particles. The magnetic focus enhancement is achieved by focusing the SARS-CoV-2 conjugated magnetic probes in the sample placed in the lateral flow (LF) strips for improved capture efficiency, while horseradish peroxidase (HRP) was used to catalyze the colorimetric reaction for the amplification of the colorimetric signal. With the magnetic focus enhancement and HRP-based amplification, the mLFA could yield a highly sensitive technology for the recognition of SARS-CoV-2. The developed methods could detect as low as 400 PFU/mL of SARS-CoV-2 in PBS buffer based on the visible blue dots on the LF strips. The mLFA could recognize 1200 PFU/mL of SARS-CoV-2 in saliva samples. With clinical nasal swab samples, the proposed mLFA could achieve 66.7% sensitivity and 100% specificity.
Collapse
Affiliation(s)
- Wen Ren
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
13
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
14
|
Ren W, Ahmad S, Irudayaraj J. 16S rRNA Monitoring Point-of-Care Magnetic Focus Lateral Flow Sensor. ACS OMEGA 2021; 6:11095-11102. [PMID: 34056264 PMCID: PMC8153928 DOI: 10.1021/acsomega.1c01307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 05/28/2023]
Abstract
The detection and profiling of pathogenic bacteria is critical for human health, environmental, and food safety monitoring. Herein, we propose a highly sensitive colorimetric strategy for naked eye screening of 16S ribosomal RNA (16S rRNA) from pathogenic agents relevant to infections, human health, and food safety monitoring with a magnetic focus lateral flow sensor (mLFS) platform. The method developed was demonstrated in model 16S rRNA sequences of the pathogen Escherichia coli O157:H7 to detect as low as 1 fM of targets, exhibiting a sensitivity improved by ∼5 × 105 times compared to the conventional GNP-based colorimetric lateral flow assay used for oligonucleotide testing. Based on the grayscale values, semi-quantitation of up to 1 pM of target sequences was possible in ∼45 min. The methodology could detect the target 16S rRNA from as low as 32 pg/mL of total RNA extracted from pathogens. Specificity was demonstrated with total RNA extracted from E. coli K-12 MG1655, Bacillus subtilis (B. subtilis), and Pseudomonas aeruginosa (P. aeruginosa). No signal was observed from as high as 320 pg/mL of total RNA from the nontarget bacteria. The recognition of target 16S rRNA from 32 pg/mL of total RNA in complex matrices was also demonstrated. The proposed mLFS method was then extended to monitoring B. subtilis and P. aeruginosa. Our approach highlights the possibility of extending this concept to screen specific nucleic acid sequences for the monitoring of infectious pathogens or microbiome implicated in a range of diseases including cancer.
Collapse
Affiliation(s)
- Wen Ren
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
| | - Saeed Ahmad
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
- Micro
and Nanotechnology Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois (CCIL), University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Abstract
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
Collapse
Affiliation(s)
- Hazal Turasan
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jozef Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| |
Collapse
|
16
|
Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS NANO 2021; 15:3593-3611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lateral flow assays (LFAs) are paper-based point-of-care (POC) diagnostic tools that are widely used because of their low cost, ease of use, and rapid format. Unfortunately, traditional commercial LFAs have significantly poorer sensitivities (μM) and specificities than standard laboratory tests (enzyme-linked immunosorbent assay, ELISA: pM-fM; polymerase chain reaction, PCR: aM), thus limiting their impact in disease control. In this Perspective, we review the evolving efforts to increase the sensitivity and specificity of LFAs. Recent work to improve the sensitivity through assay improvement includes optimization of the assay kinetics and signal amplification by either reader systems or additional reagents. Together, these efforts have produced LFAs with ELISA-level sensitivities (pM-fM). In addition, sample preamplification can be applied to both nucleic acids (direct amplification) and other analytes (indirect amplification) prior to LFA testing, which can lead to PCR-level (aM) sensitivity. However, these amplification strategies also increase the detection time and assay complexity, which inhibits the large-scale POC use of LFAs. Perspectives to achieve future rapid (<30 min), ultrasensitive (PCR-level), and "sample-to-answer" POC diagnostics are also provided. In the case of LFA specificity, recent research efforts have focused on high-affinity molecules and assay optimization to reduce nonspecific binding. Furthermore, novel highly specific molecules, such as CRISPR/Cas systems, can be integrated into diagnosis with LFAs to produce not only ultrasensitive but also highly specific POC diagnostics. In summary, with continuing improvements, LFAs may soon offer performance at the POC that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Li Zhan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080 United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - James Sackrison
- 3984 Hunters Hill Way, Minnetonka, Minnesota 55345, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Director, Institute of Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Shirshahi V, Liu G. Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Tominaga T. Rapid detection of total bacteria in foods using a poly- l-lysine-based lateral-flow assay. J Microbiol Methods 2021; 183:106175. [PMID: 33640403 DOI: 10.1016/j.mimet.2021.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
Food safety and freshness are evaluated according to microbiological load. To analyze this load rapidly, a poly-l-lysine-based lateral-flow assay (PLFA) was developed. A total of 90 strains of bacteria that are often detected in spoiled foods, including Enterobacteriaceae, lactic acid bacteria, Pseudomonas, and Bacillus were detected using the PLFA. A positive signal was obtained when the bacterial concentration was ≥6 log10 (cfu/test). A total of 36 fresh foods (meats, pastries, lettuces, cabbages, radishes, and sprouts) and corresponding spoiled foods were cultured for 0, 3, 6, and 9 h to investigate how many hours were required for microbial detection using PLFA. The higher the number of bacteria in a food, the shorter was the culture time required for PLFA-positive results to be obtained, so the distinction between fresh and spoiled food could be made based on the time taken for the culture to become PLFA-positive. The coefficient of determination of the least squares regression between the time to become PLFA-positive and the initial log10 (cfu/g) bacterial count for the food was 0.9888. The test time for the PLFA, including pretreatment, was approximately 15-30 min. This novel method will enable the detection of total bacteria on the food processing site.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Saitama Industrial Technology Center North Institute, 2-133, Suehiro, Kumagayashi, Saitama 360-0031, Japan.
| |
Collapse
|
19
|
Zha Y, Lu S, Hu P, Ren H, Liu Z, Gao W, Zhao C, Li Y, Zhou Y. Dual-Modal Immunosensor with Functionalized Gold Nanoparticles for Ultrasensitive Detection of Chloroacetamide Herbicides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6091-6098. [PMID: 33512133 DOI: 10.1021/acsami.0c21760] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Convenient and ultrasensitive detection of pesticides is demanded for healthcare and environmental monitoring, which can be realized with a dual-modal strategy. In this paper, based on a biotin-labeled IgG-modified gold nanoparticle (AuNP@IgG-bio) probe, a dual-modal immunosensor was proposed for detecting chloroacetamide herbicides. This platform is relied on the dephosphorylation of ascorbic acid 2-phosphate (AA2P) by alkaline phosphatase (ALP). In addition to this process, ascorbic acid (AA)-triggered deposition of silver on gold nanostars (AuNSs) and the fluorogenic reaction of dehydrogenated AA and o-phenylenediamine (OPD) occur sequentially. Thus, the dual readout of the color change of red-green-blue (RGB) and fluorescence generation in situ induced by crystal growth can be used. The limits of detection (LODs) were as low as 1.20 ng/mL of acetochlor (ATC), 0.89 ng/mL of metolachlor, 1.22 ng/mL of propisochlor, and 0.99 ng/mL of their mixture by a smartphone and 0.44 ng/mL of ATC, 1.59 ng/mL of metolachlor, 2.80 ng/mL of propisochlor, and 0.72 ng/mL of their mixture by a spectrofluorometer. The recoveries from corn were 91.4-105.1% of the colorimetric mode and 92.4-106.2% of the fluorescent mode. Due to its simple observation mode and good performance, this dual-modal immunosensor possesses considerable application prospects.
Collapse
Affiliation(s)
- Yonghong Zha
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Shiying Lu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Pan Hu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Honglin Ren
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Zengshan Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Weihua Gao
- College of Animal Science, Yangtze University, Jingzhou 434023, P. R. China
| | - Chengmin Zhao
- Jingzhou Zhongqiao Biotechnoogy Co., Ltd., Jingzhou 434023, P. R. China
| | - Yansong Li
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Yu Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
- College of Animal Science, Yangtze University, Jingzhou 434023, P. R. China
| |
Collapse
|
20
|
Abstract
As one kind of noble metal nanostructures, the plasmonic gold nanostructures possess unique optical properties as well as good biocompatibility, satisfactory stability, and multiplex functionality. These distinctive advantages make the plasmonic gold nanostructures an ideal medium in developing methods for biosensing and bioimaging. In this review, the optical properties of the plasmonic gold nanostructures were firstly introduced, and then biosensing in vitro based on localized surface plasmon resonance, Rayleigh scattering, surface-enhanced fluorescence, and Raman scattering were summarized. Subsequently, application of the plasmonic gold nanostructures for in vivo bioimaging based on scattering, photothermal, and photoacoustic techniques has been also briefly covered. At last, conclusions of the selected examples are presented and an outlook of this research topic is given.
Collapse
|
21
|
Sun Y, Kuo C, Lu C, Lin C. Review of recent advances in improved lateral flow immunoassay for the detection of pathogenic
Escherichia
coli
O157
:
H7
in foods. J Food Saf 2020. [DOI: 10.1111/jfs.12867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yu‐Ling Sun
- Aquatic Technology Laboratories Agricultural Technology Research Institute Hsinchu Taiwan
| | - Chiu‐Mei Kuo
- Bioresource Collection and Research Center Food Industry Research and Development Institute Hsinchu Taiwan
| | - Chung‐Lun Lu
- Aquatic Technology Laboratories Agricultural Technology Research Institute Hsinchu Taiwan
| | - Chih‐Sheng Lin
- Department of Biological Science and Technology National Chiao Tung University Hsinchu Taiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B) National Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
22
|
Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020; 15:3788-3816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.
Collapse
|
23
|
Ren W, Cabush A, Irudayaraj J. Checkpoint enrichment for sensitive detection of target bacteria from large volume of food matrices. Anal Chim Acta 2020; 1127:114-121. [PMID: 32800114 DOI: 10.1016/j.aca.2020.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/18/2023]
Abstract
A gap in biosensor development is the ability to enrich and detect targets in large sample volumes in a complex matrix. To bridge this gap, our goal in this work is to propose a practical strategy, termed as checkpoint-style enrichment, for rapid enrichment of the target bacteria from large volume of food samples with particulates and evaluate its enrichment and improvement in detection. The checkpoint-style enrichment was conducted with antibody modified polyethylene terephthalate (PET) pads as capture substrates. In our approach, blended lettuce sample cocktail was circulated through antibody modified PET pads such as a checkpoint in the sample solution pathway, where target pathogens were selectively captured with immobilized antibodies. The obtained PET pads with the captured target pathogens were then used for enhanced detection by colorimetry. To render the checkpoint-style enrichment approach practical and applicable for on-site rapid screening tests, only a simple syringe-based setup with antibody modified PET pad was required. The developed method could process up to 50 ml of lettuce cocktail blended from 5g samples and purposefully inoculated with E. coli O157:H7. Overall, the enrichment method developed required only 40 min of sample processing time. After enrichment, as low as 100 CFU/ml of E. coli O157:H7 could be detected by a simple colorimetric procedure due to the enhancement from the proposed checkpoint-style enrichment in the presence of ∼3000 CFU/ml of non-target bacteria. A linear response was obtained from blank to 100000 CFU/ml of E. coli O157:H7 in blended lettuce samples. The conceptualized approach demonstrates a promising means to improve the detection of target bacteria with a high degree of sensitivity and specificity and could be used in low resourse settings.
Collapse
Affiliation(s)
- Wen Ren
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Abigail Cabush
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Rodriguez-Quijada C, Lyons C, Santamaria C, Quinn S, Tlusty MF, Shiaris M, Hamad-Schifferli K. Optimization of paper-based nanoparticle immunoassays for direct detection of the bacterial pathogen V. parahaemolyticus in oyster hemolymph. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3056-3063. [PMID: 32930166 DOI: 10.1039/d0ay00725k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detection of foodborne pathogens is critical for disease control and infection prevention, especially in seafood consumed raw or undercooked. Paper-based diagnostic tools are promising for rapid fieldable detection and provide a readout by eye due to the use of gold nanoparticle immunoprobes. Here we study different strategies to overcome these challenges in a real biological matrix, oyster hemolymph, for the detection of the pathogenic bacteria Vibrio parahaemolyticus (Vp). Nanoparticle surface chemistry, nitrocellulose speed and blocking, running steps, and antibody concentrations on the NP and nitrocellulose were all studied. Their effect on paper immunoassay signal intensity was quantified to determine optimal conditions, which enabled the detection of Vp directly from hemolymph below pathogenic concentrations.
Collapse
Affiliation(s)
| | - Casandra Lyons
- Dept. of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Charles Santamaria
- Dept. of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Sara Quinn
- Dept. of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Michael F Tlusty
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Michael Shiaris
- Dept. of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Kimberly Hamad-Schifferli
- Dept. of Engineering, University of Masschusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
25
|
Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Nanomaterial‐based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr Rev Food Sci Food Saf 2020; 19:1465-1487. [DOI: 10.1111/1541-4337.12576] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ruyuan Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
- Ningbo Research Institute, Zhejiang University Ningbo People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
- Ningbo Research Institute, Zhejiang University Ningbo People's Republic of China
- Fuli Institute of Food Science Hangzhou People's Republic of China
| |
Collapse
|
26
|
Chen F, Di T, Yang CT, Zhang T, Thierry B, Zhou X. Naked-Eye Enumeration of Single Chlamydia pneumoniae Based on Light Scattering of Gold Nanoparticle Probe. ACS Sens 2020; 5:1140-1148. [PMID: 32207302 DOI: 10.1021/acssensors.0c00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlamydia pneumoniae is a spherical zoonotic pathogen with a diameter of ∼200 nm, which can lead to a wide range of acute and chronic diseases in human body. Early and reliable on-site detection of C. pneumoniae is the key step to control the spread of the pathogen. However, the lack of a current technology with advantages of rapidity, ultrasensitivity, and convenience limits the implementation of traditional techniques for on-site detection of C. pneumoniae. Herein, we developed a naked-eye counting of C. pneumoniae based on the light scattering properties of gold nanoparticle (GNP) under dark-field microscopy (termed "GNP-labeled dark-field counting strategy"). The recognition of single C. pneumoniae by anti-C. pneumoniae antibodies-functionalized GNP probes with size of 15 nm leads to the formation of wreath-like structure due to the strong scattered light resulted from hundreds of GNP probes binding on one C. pneumoniae under dark-field microscopy. Hundreds of GNP probes can bind to the surface of C. pneumoniae due to the high stability and specificity of the nucleic acid immuno-GNP probes, which generates by the hybridization of DNA-modified GNP with DNA-functionalized antibodies. The limit of detection (LOD) of the GNP-labeled dark-field counting strategy for C. pneumoniae detection in spiked samples or real samples is down to four C. pneumoniae per microliter, which is about 4 times more sensitive than that of quantitative polymerase chain reaction (qPCR). Together with the advantages of the strong light scattering characteristic of aggregated GNPs under dark-field microscopy and the specific identification of functionalized GNP probes, we can detect C. pneumoniae in less than 30 min using a cheap and portable microscope even if the sample contains only a few targets of interest and other species at high concentration. The GNP-labeled dark-field counting strategy meets the demands of rapid detection, low cost, easy to operate, and on-site detection, which paves the way for early and on-site detection of infectious pathogens.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tao Di
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chih-Tsung Yang
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Tianyu Zhang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Xin Zhou
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Key significance of DNA-target size in lateral flow assay coupled with recombinase polymerase amplification. Anal Chim Acta 2020; 1102:109-118. [DOI: 10.1016/j.aca.2019.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
|
28
|
Wang C, Shen W, Rong Z, Liu X, Gu B, Xiao R, Wang S. Layer-by-layer assembly of magnetic-core dual quantum dot-shell nanocomposites for fluorescence lateral flow detection of bacteria. NANOSCALE 2020; 12:795-807. [PMID: 31830180 DOI: 10.1039/c9nr08509b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lateral flow immunoassay (LFA) strips are extensively used for rapid tests of various biochemical molecules, but these strips still have some limitations in bacterial detection due to their low sensitivity and poor stability in complex samples. In this study, we reported a highly sensitive and quantitative fluorescent LFA strip for bacterial detection by using novel magnetic-core@dual quantum dot (QD)-shell nanoparticles (Fe3O4@DQDs) as multifunctional fluorescent labels. The Fe3O4@DQDs were prepared through a polyethyleneimine (PEI)-mediated layer-by-layer (LBL) assembly method, and they possess monodispersity, high magnetic responsiveness, good stability, and superior fluorescence properties. Based on these merits, the Fe3O4@DQDs were used to capture and enrich bacteria from complex samples and then used as advanced fluorescent labels of LFA strips for the quantitative detection of bacteria. Under optimal conditions, the assay ultra-sensitively detected Streptococcus pneumoniae with a low limit of detection of 8 cells per mL and a wide dynamic linear range of 10 cells per mL to 107 cells per mL. Systematic comparison revealed that the fluorescence detection limit of the Fe3O4@DQD-based strip was 55 and 1000 times higher than those of Fe3O4-core@QD-shell nanocomposite (Fe3O4-QD)-based and conventional QD microsphere-based strips, respectively. The proposed method also exhibited high specificity and selectivity for biological samples (human whole blood and sputum) and is thus a promising tool for real bacterial sample testing.
Collapse
Affiliation(s)
- Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang B, Yang X, Liu X, Li J, Wang C, Wang S. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay. RSC Adv 2020; 10:2483-2489. [PMID: 35496136 PMCID: PMC9048750 DOI: 10.1039/c9ra09252h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Herein, we synthesized high-performance SiO2–core quantum dot (QD)–shell nanocomposites (SiO2@PEI-QDs) using the polyethyleneimine (PEI)-mediated adsorption method. Cationic PEI was used to form a positively charged interlayer on the SiO2 core, which achieved a dense adsorption of carboxylated QDs to form a shell of QDs and maintained a good dispersibility of the nanocomposite. The SiO2@PEI-QDs showed excellent stability and high luminescence, and served as high-performance fluorescent labels for the detection of bacteria when used with the lateral flow immunoassay (LFA) technique. An SiO2@PEI-QD-based LFA strip was successfully applied to rapidly detect Salmonella typhimurium in milk samples with a low limit of 5 × 102 cells per mL. A novel type of SiO2-core QDs-shell nanomaterial was fabricated and utilized to prepare bright fluorescent nanotags for fluorescent lateral flow strip.![]()
Collapse
Affiliation(s)
- Bo Zhang
- School of Public Health
- Jilin University
- Changchun 130021
- PR China
- Department of Pharmacy
| | - Xingsheng Yang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Xiaoxian Liu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Juan Li
- School of Public Health
- Jilin University
- Changchun 130021
- PR China
| | - Chongwen Wang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Shengqi Wang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| |
Collapse
|
30
|
Cheng N, Yang Z, Wang W, Wang X, Xu W, Luo Y. A Variety of Bio-nanogold in the Fabrication of Lateral Flow Biosensors for the Detection of Pathogenic Bacteria. Curr Top Med Chem 2019; 19:2476-2493. [DOI: 10.2174/1568026619666191023125020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/15/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Pathogenic bacteria constitute one of the most serious threats to human health. This has led
to the development of technologies for the rapid detection of bacteria. Bio-nanogold-based lateral flow
biosensors (LFBs) are a promising assay due to their low limit of detection, high sensitivity, good selectivity,
robustness, low cost, and quick assay performance ability. The aim of this review is to provide
a critical overview of the current variety of bio-nanogold LFBs and their targets, with a special focus on
whole-cell and DNA detection of pathogenic bacteria. The challenges of bio-nanogold-based LFBs in
improving their performance and accessibility are also comprehensively discussed.
Collapse
Affiliation(s)
- Nan Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhansen Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weiran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinxian Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
31
|
A laser-induced breakdown spectroscopy-integrated lateral flow strip (LIBS-LFS) sensor for rapid detection of pathogen. Biosens Bioelectron 2019; 142:111508. [DOI: 10.1016/j.bios.2019.111508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 01/21/2023]
|
32
|
Zhou Y, Fang W, Lai K, Zhu Y, Bian X, Shen J, Li Q, Wang L, Zhang W, Yan J. Terminal deoxynucleotidyl transferase (TdT)-catalyzed homo-nucleotides-constituted ssDNA: Inducing tunable-size nanogap for core-shell plasmonic metal nanostructure and acting as Raman reporters for detection of Escherichia coli O157:H7. Biosens Bioelectron 2019; 141:111419. [PMID: 31203177 DOI: 10.1016/j.bios.2019.111419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/17/2023]
Abstract
Core-shell plasmonic metal nanoparticles with interior nanogaps are superior nanostructures owing to their large signal enhancement for Surface enhanced Raman spectroscopy (SERS). Herein, we incorporated Terminal deoxynucleotidyl transferase (TdT)-catalyzed DNA in the preparation of core-shell nanostructures for the detection of Escherichia coli O157:H7 (E. coli O157:H7) cells. The elongated products-homo-nucleotides-composed of long single DNA strands (hn-D) are used not only to induce tunable-size nanogaps but also as Raman reporters with consistent and uniform signal enhancement. Using this synthetic process of hn-D-embedded core-shell nanoparticles (hn-DENPs), we found that the length of hn-D strands affects the size of the nanogap. In addition, performances of the specific Raman imaging of E. coli O157:H7, high detection sensitivity of 2 CFU/mL, and the recovery of 98.1%-105.2% measured in the real food samples, make hn-DENP a biosensor that will be widely used in biological detection.
Collapse
Affiliation(s)
- Yangyang Zhou
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weina Fang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Keqiang Lai
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongheng Zhu
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaojun Bian
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Weijia Zhang
- Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, and State Key Laboratory of Molecular Engineering, Fudan University, Shanghai, 200032, China.
| | - Juan Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
33
|
Huang Z, Hu S, Xiong Y, Wei H, Xu H, Duan H, Lai W. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
He D, Wu Z, Cui B, Xu E, Jin Z. Establishment of a dual mode immunochromatographic assay for Campylobacter jejuni detection. Food Chem 2019; 289:708-713. [PMID: 30955670 DOI: 10.1016/j.foodchem.2019.03.106] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
Campylobacter jejuni (C. jejuni) is considered one of the most common cause of human gastroenteritis. Aiming to detect C. jejuni in food products rapidly and sensitively, a dual mode lateral flow assay, based on the peroxidase mimicking and surface enhanced Raman scattering (SERS) enhancement properties of platinum coated gold nanorods (AuNR@Pt), was developed in this study. Under color mode and SERS mode, the proposed assay showed good linear response in the range of 102-106 cfu/mL and 102-5 × 106 cfu/mL with limits of detection of 75 cfu/mL and 50 cfu/mL, respectively (S/N = 3). Furthermore, the reliability of the dual-readout lateral flow assay (LFA) was successfully demonstrated by the application on milk samples, in which the recoveries ranged from 89.33% to 107.62%. Overall, the immunochromatographic assay developed in this work is promising and has good chance to be employed for sensitive detection of C. jejuni in food products.
Collapse
Affiliation(s)
- Deyun He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China.
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Enbo Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|