1
|
Guo L, Zhang X, Zhao DM, Chen S, Zhang WX, Yu YL, Wang JH. Portable Photoacoustic Analytical System Combined with Wearable Hydrogel Patch for pH Monitoring in Chronic Wounds. Anal Chem 2024; 96:11595-11602. [PMID: 38950152 DOI: 10.1021/acs.analchem.4c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Timely diagnosis, monitoring, and management of chronic wounds play crucial roles in improving patients' quality of life, but clinical evaluation of chronic wounds is still ambiguous and relies heavily on the experience of clinician, resulting in increased social and financial burden and delay of optimal treatment. During the different stages of the healing process, specific and dynamic changes of pH values in the wound exudate can be used as biomarkers to reflect the wound status. Herein, a pH-responsive agent with well-behaved photoacoustic (PA) properties, nitrazine yellow (NY), was incorporated in poly(vinyl alcohol)/sucrose (PVA/Suc) hydrogel to construct a wearable pH-sensing patch (PVA/Suc/NY hydrogel) for monitoring of pH values during chronic wound healing. According to Rosencwaig-Gersho theory and the combination of 3D printing technology, the PA chamber volume and chopping frequency were systematically optimized to improve the sensitivity of the PA analytical system. The prepared PVA/Suc/NY hydrogel patch had excellent mechanical properties and flexibility and could maintain conformal contact with skin. Moreover, combined with the miniaturized PA analytical device, it had the potential to detect pH values (5.0-9.0) free from the color interference of blood and therapeutic drugs, which provides a valuable strategy for wound pH value monitoring by PA quantitation. This strategy of combining the wearable hydrogel patch with portable PA analysis offers broad new prospects for the treatment and management of chronic wounds due to its features of simple operation, time savings, and anti-interference.
Collapse
Affiliation(s)
- Lan Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Dong-Mei Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wen-Xin Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
2
|
Tsai WY, Breimann S, Shen TW, Frishman D. Photoacoustic and absorption spectroscopy imaging analysis of human blood. PLoS One 2023; 18:e0289704. [PMID: 37540721 PMCID: PMC10403132 DOI: 10.1371/journal.pone.0289704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Photoacoustic and absorption spectroscopy imaging are safe and non-invasive molecular quantification techniques, which do not utilize ionizing radiation and allow for repeated probing of samples without them being contaminated or damaged. Here we assessed the potential of these techniques for measuring biochemical parameters. We investigated the statistical association between 31 time and frequency domain features derived from photoacoustic and absorption spectroscopy signals and 19 biochemical blood parameters. We found that photoacoustic and absorption spectroscopy imaging features are significantly correlated with 14 and 17 individual biochemical parameters, respectively. Moreover, some of the biochemical blood parameters can be accurately predicted based on photoacoustic and absorption spectroscopy imaging features by polynomial regression. In particular, the levels of uric acid and albumin can be accurately explained by a combination of photoacoustic and absorption spectroscopy imaging features (adjusted R-squared > 0.75), while creatinine levels can be accurately explained by the features of the photoacoustic system (adjusted R-squared > 0.80). We identified a number of imaging features that inform on the biochemical blood parameters and can be potentially useful in clinical diagnosis. We also demonstrated that linear and non-linear combinations of photoacoustic and absorption spectroscopy imaging features can accurately predict some of the biochemical blood parameters. These results demonstrate that photoacoustic and absorption spectroscopy imaging systems show promise for future applications in clinical practice.
Collapse
Affiliation(s)
- Wei-Yun Tsai
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Stephan Breimann
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Tsu-Wang Shen
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
- Master's Program Biomedical Informatics and Biomedical Engineering, Feng Chia University, Taichung, Taiwan
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
3
|
Veverka M, Menozzi L, Yao J. The sound of blood: photoacoustic imaging in blood analysis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 18:100219. [PMID: 37538444 PMCID: PMC10399298 DOI: 10.1016/j.medntd.2023.100219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Blood analysis is a ubiquitous and critical aspect of modern medicine. Analyzing blood samples requires invasive techniques, various testing systems, and samples are limited to relatively small volumes. Photoacoustic imaging (PAI) is a novel imaging modality that utilizes non-ionizing energy that shows promise as an alternative to current methods. This paper seeks to review current applications of PAI in blood analysis for clinical use. Furthermore, we discuss obstacles to implementation and future directions to overcome these challenges. Firstly, we discuss three applications to cellular analysis of blood: sickle cell, bacteria, and circulating tumor cell detection. We then discuss applications to the analysis of blood plasma, including glucose detection and anticoagulation quantification. As such, we hope this article will serve as inspiration for PAI's potential application in blood analysis and prompt further studies to ultimately implement PAI into clinical practice.
Collapse
|
4
|
Photoacoustic detection of SARS-CoV-2 spike N501Y single-nucleotide polymorphism based on branched rolling circle amplification. Talanta 2022. [PMCID: PMC9630300 DOI: 10.1016/j.talanta.2022.124047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rapid and accurate diagnosis of SARS-CoV-2 single-nucleotide variations is an urgent need for the initial detection of local circulation and monitoring the alternation of dominant variant. In this proof-of-concept study, a homogeneous and isothermal photoacoustic biosensor is demonstrated for rapid molecular amplification and detection of a synthetic DNA corresponding to SARS-CoV-2 spike N501Y. Branched rolling circle amplification produces single-stranded amplicons that can aggregate detection probe-modified AuNPs, which induces a strong photoacoustic signal at 640 nm due to both the surface plasmon resonance shift and the size-dependent effect of laser-induced nanobubbles, achieving a sub-femtomolar detection limit within a total assay time of 80 min. The limit of detection can be kept when measuring 5% serum samples. Moreover, the proposed biosensor is highly specific for single-nucleotide polymorphism discrimination and robust against background DNA.
Collapse
|
5
|
Gonzalez EA, Lediju Bell MA. Dual-wavelength photoacoustic atlas method to estimate fractional methylene blue and hemoglobin contents. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220093GR. [PMID: 36050818 PMCID: PMC9433893 DOI: 10.1117/1.jbo.27.9.096002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Methylene blue (MB) is an exogenous contrast agent that has the potential to assist with visualization and penetration challenges in photoacoustic imaging. However, monitoring the local concentration between MB and endogenous chromophores is critical for avoiding unnecessary MB accumulations that could lead to adverse effects such as hemolysis when exposed to increased dose and photodamage when exposed to high laser energies. AIM We developed a modified version of a previously proposed acoustic-based atlas method to estimate concentration levels from a mixture of two photoacoustic-sensitive materials after two laser wavelength emissions. APPROACH Photoacoustic data were acquired from mixtures of 100-μM MB and either human or porcine blood (Hb) injected in a plastisol phantom, using laser wavelengths of 710 and 870 nm. An algorithm to perform linear regression of the acoustic frequency response from an atlas composed of pure concentrations was designed to assess the concentration levels from photoacoustic samples obtained from 11 known MB/Hb volume mixtures. The mean absolute error (MAE), coefficient of determination (i.e., R2), and Spearman's correlation coefficient (i.e., ρ) between the estimated results and ground-truth labels were calculated to assess the algorithm performance, linearity, and monotonicity, respectively. RESULTS The overall MAE, R2, and ρ were 12.68%, 0.80, and 0.89, respectively, for the human Hb dataset and 9.92%, 0.86, and 0.93, respectively, for the porcine Hb dataset. In addition, a similarly linear relationship was observed between the acoustic frequency response at 2.3 MHz and 870-nm laser wavelength and the ground-truth concentrations, with R2 and | ρ | values of 0.76 and 0.88, respectively. CONCLUSIONS Contrast agent concentration monitoring is feasible with the proposed approach. The potential for minimal data acquisition times with only two wavelength emissions is advantageous toward real-time implementation in the operating room.
Collapse
Affiliation(s)
- Eduardo A. Gonzalez
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Muyinatu A. Lediju Bell
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Whiting School of Engineering, Department of Computer Science, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Zheng A, Zhang W, Li C, Guo Z, Li C, Zhang C, Yao J, Zhang Z, Li J, Zhao S, Zhou L. The heparinase-linked differential time method allows detection of heparin potency in whole blood with high sensitivity and dynamic range. Biosens Bioelectron 2022; 198:113856. [PMID: 34871836 DOI: 10.1016/j.bios.2021.113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022]
Abstract
Anticoagulation therapy with heparin is an effective treatment against thrombosis. Heparin tends to cause spontaneous bleeding and requires regular monitoring during therapy. Most high-sensitivity heparin sensors have focused on the concentration detection in clarified buffer solution. However, the pharmacodynamics of heparin vary depending on individual patient or disease, while potency detection with high sensitivity and dynamic range outperforms concentration detection in clinical diagnosis. In this study, a novel heparinase-linked differential time (HLDT) method was established with a two-zone of Graphene modified Carbon (GR-C) sensor, which was utilized to evaluate heparin potency in whole blood. It was based on electrochemical measurement of clotting time shifting associated with presence or absence of heparinase. Heparinase inhibits the anticoagulant ability of heparin by forming a heparin-antithrombin-thrombin complex during coagulation. And the intensity and peak time of electrochemical current were associated with thrombin activity and clotting on the electrode. The results demonstrated that the sensor had high selectivity for heparin potency in 10 μL of whole blood with a detection limit of 0.1 U/mL, and the linear detection range was 0.1-5 U/mL. The coefficient of variation (CV) of the peak time was less than 5%, and linear correlation between the GR-C sensor and the TEG-5000 instrument was 0.987. Thus, the HLDT method has better clinical application due to its good repeatability, high sensitivity and wide range in heparin potency evaluation.
Collapse
Affiliation(s)
- Anran Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Ji Hua Laboratory, Foshan, 528000, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China; Ji Hua Laboratory, Foshan, 528000, China
| | - Chuanyu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Changsong Zhang
- Department of Laboratory Medicine, The Affiliated Suzhou Science and Technology Town Hospital, Nanjing Medical University, Suzhou 215153, Jiangsu Province, China
| | - Jia Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jinze Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Shasha Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Ji Hua Laboratory, Foshan, 528000, China.
| |
Collapse
|
7
|
Yim W, Takemura K, Zhou J, Zhou J, Jin Z, Borum RM, Xu M, Cheng Y, He T, Penny W, Miller BR, Jokerst JV. Enhanced Photoacoustic Detection of Heparin in Whole Blood via Melanin Nanocapsules Carrying Molecular Agents. ACS NANO 2022; 16:683-693. [PMID: 34962765 PMCID: PMC9237182 DOI: 10.1021/acsnano.1c08178] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Photoacoustic (PA) imaging has proved versatile for many biomedical applications from drug delivery tracking to disease diagnostics and postoperative surveillance. It recently emerged as a tool for accurate and real-time heparin monitoring to avoid bleeding complications associated with anticoagulant therapy. However, molecular-dye-based application is limited by high concentration requirements, photostability, and a strong background hemoglobin signal. We developed polydopamine nanocapsules (PNCs) via supramolecular templates and loaded them with molecular dyes for enhanced PA-mediated heparin detection. Depending on surface charge, the dye-loaded PNCs undergo disassembly or aggregation upon heparin recognition: both experiments and simulation have revealed that the increased PA signal mainly results from dye-loaded PNC-heparin aggregation. Importantly, Nile blue (NB)-loaded PNCs generated a 10-fold higher PA signal than free NB dye, and such PNC enabled the direct detection of heparin in a clinically relevant therapeutic window (0-4 U/mL) in whole human blood (R2 = 0.91). Furthermore, the PA signal of PNC@NB obtained from 17 patients linearly correlated with ACT values (R2 = 0.73) and cumulative heparin (R2 = 0.83). This PNC-based strategy for functional nanocapsules offers a versatile engineering platform for robust biomedical contrast agents and nanocarriers.
Collapse
Affiliation(s)
| | - Kathryn Takemura
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940, United States
| | | | | | | | | | | | | | | | - William Penny
- Division of Cardiology, VA San Diego Healthcare System, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University, 100 East Normal Avenue, Kirkville, Missouri 63501, United States
| | | |
Collapse
|
8
|
Zhou J, Yim W, Zhou J, Jin Z, Xu M, Mantri Y, He T, Cheng Y, Fu L, Wu Z, Hancock T, Penny W, Jokerst JV. A fiber optic photoacoustic sensor for real-time heparin monitoring. Biosens Bioelectron 2022; 196:113692. [PMID: 34653712 PMCID: PMC9119340 DOI: 10.1016/j.bios.2021.113692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023]
Abstract
Heparin is a common anticoagulant, but heparin overdose is a common intensive care unit (ICU) medication error due to the narrow therapeutic window of heparin. Conventional methods to monitoring heparin suffer from long turnaround time, the need for skilled personnel, and low frequency of sampling. To overcome these issues, we describe here a fiber optic photoacoustic (PA) sensor for real-time heparin monitoring. The proposed sensor was validated with in vitro testing and in a simulated in vivo model using the following samples: (1) phosphate-buffered saline (PBS), (2) spiked human plasma, (3) spiked whole human blood, and (4) clinical samples from patients treated with heparin. Samples were validated by comparing the PA signal to the activated partial thromboplastin time (aPTT) as well as the activated clotting time (ACT). Importantly, the proposed sensor has a short turnaround time (3 min) and a limit of detection of 0.18 U/ml in whole human blood. The PA signal is linear with heparin dose and correlates with the aPTT value (Pearson's r = 0.99). The PA signal from 32 clinical samples collected from eight patients linearly correlated with ACT values (Pearson's r = 0.89, in vitro; Pearson's r = 0.93, simulated in vivo). The PA signal was also validated against the cumulative heparin dose (Pearson's r = 0.94, in vitro; Pearson's r = 0.96, simulated in vivo). This approach could have applications in both in vitro and real-time in vivo heparin monitoring.
Collapse
Affiliation(s)
- Jingcheng Zhou
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Lei Fu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tiffany Hancock
- Division of Cardiology, VA Healthcare System, San Diego, CA, 92161, USA
| | - William Penny
- Division of Cardiology, VA Healthcare System, San Diego, CA, 92161, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Corresponding author. Department of Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. (J.V. Jokerst)
| |
Collapse
|
9
|
Qi X, Wu R, Lok BK, Kerk WT, Lai SFK, Fan W, Pu K. Biomolecule-Interactive Flexible Light Emitting Capacitor Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103541. [PMID: 34841654 DOI: 10.1002/smll.202103541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Ultrathin, lightweight, flexible, and conformable interactive displays that transduce external stimuli into human-readable signals are essential for emerging applications, such as wearable electronics, human-machine interfaces, and soft robots. Herein, a biomolecule-interactive flexible light emitting capacitor (LEC) display (BIO-LEC) capable of dynamic and quantitative visualization of biomolecules through naked-eye detectable electroluminescence (EL) emission is reported. BIO-LEC comprises a coplanar LEC light source at the bottom, and a designed microfluidic chip as sampling compartment at the top. The quantitative measurement feature of BIO-LEC is achieved by introducing the top liquid electrode, which possesses a unique long dielectric realization time, in the microfluidic chip. BIO-LEC is novel for the following reasons, 1) simple stimuli response principle based on correlating EL intensity to dielectric properties of the top liquid electrode; 2) simple test conditions whereby no labeling is required in the analyte solution to optically detect biomolecules; 3) effective sampling method through the design of an integrated microfluidic chip for hosting the top liquid electrode, ensuring good reproducibility and preventing contamination; 4) sensitive detection limit for heparin concentrations at clinically relevant levels, and 5) high compliance with industrial manufacturing standards.
Collapse
Affiliation(s)
- Xiaoying Qi
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, Singapore, 637662, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, Singapore, 637662, Singapore
| | - Boon Keng Lok
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, Singapore, 637662, Singapore
| | - Wai Tat Kerk
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, Singapore, 637662, Singapore
| | - Steve Foo Khuen Lai
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, Singapore, 637662, Singapore
| | - Wei Fan
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, Singapore, 637662, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
10
|
Pan T, Lu D, Xin H, Li B. Biophotonic probes for bio-detection and imaging. LIGHT, SCIENCE & APPLICATIONS 2021; 10:124. [PMID: 34108445 PMCID: PMC8190087 DOI: 10.1038/s41377-021-00561-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
The rapid development of biophotonics and biomedical sciences makes a high demand on photonic structures to be interfaced with biological systems that are capable of manipulating light at small scales for sensitive detection of biological signals and precise imaging of cellular structures. However, conventional photonic structures based on artificial materials (either inorganic or toxic organic) inevitably show incompatibility and invasiveness when interfacing with biological systems. The design of biophotonic probes from the abundant natural materials, particularly biological entities such as virus, cells and tissues, with the capability of multifunctional light manipulation at target sites greatly increases the biocompatibility and minimizes the invasiveness to biological microenvironment. In this review, advances in biophotonic probes for bio-detection and imaging are reviewed. We emphatically and systematically describe biological entities-based photonic probes that offer appropriate optical properties, biocompatibility, and biodegradability with different optical functions from light generation, to light transportation and light modulation. Three representative biophotonic probes, i.e., biological lasers, cell-based biophotonic waveguides and bio-microlenses, are reviewed with applications for bio-detection and imaging. Finally, perspectives on future opportunities and potential improvements of biophotonic probes are also provided.
Collapse
Affiliation(s)
- Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Dengyun Lu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
11
|
Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050540. [PMID: 34066112 PMCID: PMC8150371 DOI: 10.3390/biomedicines9050540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Paper-based analytical devices (PADs) have emerged as a promising approach to point-of-care (POC) detection applications in biomedical and clinical diagnosis owing to their advantages, including cost-effectiveness, ease of use, and rapid responses as well as for being equipment-free, disposable, and user-friendly. However, the overall sensitivity of PADs still remains weak, posing a challenge for biosensing scientists exploiting them in clinical applications. This review comprehensively summarizes the current applicable potential of PADs, focusing on total signal-amplification strategies that have been applied widely in PADs involving colorimetry, luminescence, surface-enhanced Raman scattering, photoacoustic, photothermal, and photoelectrochemical methods as well as nucleic acid-mediated PAD modifications. The advances in signal-amplification strategies in terms of signal-enhancing principles, sensitivity, and time reactions are discussed in detail to provide an overview of these approaches to using PADs in biosensing applications. Furthermore, a comparison of these methods summarizes the potential for scientists to develop superior PADs. This review serves as a useful inside look at the current progress and prospective directions in using PADs for clinical diagnostics and provides a better source of reference for further investigations, as well as innovations, in the POC diagnostics field.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
- Correspondence: (L.M.T.P.); (S.C.)
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: (L.M.T.P.); (S.C.)
| |
Collapse
|
12
|
Götschi T, Schulz N, Snedeker JG, Hanimann J, Franchi MV, Spörri J. Three-Dimensional Mapping of Shear Wave Velocity in Human Tendon: A Proof of Concept Study. SENSORS 2021; 21:s21051655. [PMID: 33673664 PMCID: PMC7957754 DOI: 10.3390/s21051655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Ultrasound-based shear wave elastography (SWE) provides the means to quantify tissue mechanical properties in vivo and has proven valuable in detecting degenerative processes in tendons. Its current mode of use is for two-dimensional rendering measurements, which are highly position-dependent. We therefore propose an approach to create a volumetric reconstruction of the mechano-acoustic properties of a structure of interest based on optically tracking the ultrasound probe during free-hand measurement sweeps. In the current work, we aimed (1) to assess the technical feasibility of the three-dimensional mapping of unidirectional shear wave velocity (SWV), (2) to evaluate the possible artefacts associated with hand-held image acquisition, (3) to investigate the reproducibility of the proposed technique, and (4) to study the potential of this method in detecting local adaptations in a longitudinal study setting. Operative and technical feasibility as well as potential artefacts associated with hand-held image acquisition were studied on a synthetic phantom containing discrete targets of known mechanical properties. Measurement reproducibility was assessed based on inter-day and inter-reader scans of the patellar, Achilles, and supraspinatus tendon of ten healthy volunteers and was compared to traditional two-dimensional image acquisition. The potential of this method in detecting local adaptations was studied by testing the effect of short-term voluntary isometric loading history on SWV along the tendon long axis. The suggested approach was technically feasible and reproducible, with a moderate to very good reliability and a standard error of measurement in the range of 0.300-0.591 m/s for the three assessed tendons at the two test-retest modalities. We found a consistent variation in SWV along the longitudinal axis of each tendon, and isometric loading resulted in regional increases in SWV in the patellar and Achilles tendons. The proposed method outperforms traditional two-dimensional measurement with regards to reproducibility and may prove valuable in the objective assessment of pathological tendon changes.
Collapse
Affiliation(s)
- Tobias Götschi
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland;
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland;
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.H.); (M.V.F.); (J.S.)
- Correspondence: ; Tel.: +41-44-386-11-11
| | - Nicole Schulz
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland;
| | - Jess G. Snedeker
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland;
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland;
| | - Jonas Hanimann
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.H.); (M.V.F.); (J.S.)
| | - Martino V. Franchi
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.H.); (M.V.F.); (J.S.)
- Institute of Physiology, Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Jörg Spörri
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.H.); (M.V.F.); (J.S.)
- University Centre for Prevention and Sports Medicine, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
13
|
Jalali M, Moakhar RS, Abdelfattah T, Filine E, Mahshid SS, Mahshid S. Nanopattern-Assisted Direct Growth of Peony-like 3D MoS 2/Au Composite for Nonenzymatic Photoelectrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7411-7422. [PMID: 31922713 DOI: 10.1021/acsami.9b17449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The chalcogenide material MoS2 has been recognized as a promising candidate for photoelectrochemical (PEC) applications due to its enhanced photocatalytic and electrocatalytic activities. However, few reports have been focused on the designated catalytic MoS2 for the nonenzymatic PEC sensing of small molecules. Here, we report on a novel in situ and fab-free method for the direct growth of three-dimensional (3D) porous Peony-like MoS2 nanosheets supported by nanohole-patterned TiO2 and composited with gold deposits. The direct growth resulted in enhanced electrical conductivity between the substrate and 3D-standing MoS2 nanosheets and thus the uniform distribution of gold electrodeposits from the MoS2 lattice. The hybrid 3D MoS2/gold nanocomposite demonstrated enhanced abundance of exposed catalytic edge sites and improved optic and electrical coupling, which ultimately led to excellent photoelectrochemical activities. We performed full characterization of the morphology, crystallinity, lattice configuration, and optical properties of hybrid MoS2 nanosheets via field emission scanning microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray, Raman, and UV-vis spectroscopies. The 3D COMSOL simulation also confirmed enhanced electric field distribution at the interface of the proposed 3D MoS2/gold nanocomposite electrode in comparison with other morphologies. We acquired the Peony-like 3D MoS2/Au composite for photoelectrochemical sensing of glucose in buffer and diluted plasma solutions with a very low limit of detection of 1.3 nM and superb sensitivity in plasma. Overall, we have successfully synergized both electrical and optical merits from individual components to form a novel composite, which offered an effective scaffold for the development of PEC sensors.
Collapse
Affiliation(s)
- Mahsa Jalali
- Department of Bioengineering , McGill University , Montreal , QC H3A 0E9 , Canada
| | | | - Tamer Abdelfattah
- Department of Bioengineering , McGill University , Montreal , QC H3A 0E9 , Canada
| | - Elizabeth Filine
- Department of Bioengineering , McGill University , Montreal , QC H3A 0E9 , Canada
| | - Sahar Sadat Mahshid
- Biological Sciences, Sunnybrook Research Institute , Sunnybrook Health Sciences Centre , Toronto , ON M4N 3M5 , Canada
| | - Sara Mahshid
- Department of Bioengineering , McGill University , Montreal , QC H3A 0E9 , Canada
| |
Collapse
|
14
|
Abstract
Photoacoustic imaging has demonstrated its potential for diagnosis over the last few decades. In recent years, its unique imaging capabilities, such as detecting structural, functional and molecular information in deep regions with optical contrast and ultrasound resolution, have opened up many opportunities for photoacoustic imaging to be used during image-guided interventions. Numerous studies have investigated the capability of photoacoustic imaging to guide various interventions such as drug delivery, therapies, surgeries, and biopsies. These studies have demonstrated that photoacoustic imaging can guide these interventions effectively and non-invasively in real-time. In this minireview, we will elucidate the potential of photoacoustic imaging in guiding active and passive drug deliveries, photothermal therapy, and other surgeries and therapies using endogenous and exogenous contrast agents including organic, inorganic, and hybrid nanoparticles, as well as needle-based biopsy procedures. The advantages of photoacoustic imaging in guided interventions will be discussed. It will, therefore, show that photoacoustic imaging has great potential in real-time interventions due to its advantages over current imaging modalities like computed tomography, magnetic resonance imaging, and ultrasound imaging.
Collapse
Affiliation(s)
- Madhumithra S Karthikesh
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Xinmai Yang
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
15
|
Wang M, Wang X, Guo C, Zhao T, Li W. A Feasible Method Applied to One-Bath Process of Wool/Acrylic Blended Fabrics with Novel Heterocyclic Reactive Dyes and Application Properties of Dyed Textiles. Polymers (Basel) 2020; 12:polym12020285. [PMID: 32024144 PMCID: PMC7077430 DOI: 10.3390/polym12020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022] Open
Abstract
Reactive dyes containing cationic groups have great potentiality as novel dyes, which can be applicable to one-bath dyeing of wool/acrylic blended fabrics. In this work, four novel heterocyclic reactive dyes containing cationic groups were designed by using m-aminophenyltrimethylammonium salt or N-(2-aminoethyl) pyridinium chloride salt as cationic groups, N, N-diethyl-1,3-benzenediamine as a coupling component, 2-amino-6-methoxybenzothiazole, 2-aminobenzothiazole or 3-amino-5-nitrobenzoisothiazole as diazo components. These dyes based on benzothiazole derivative chromophores not only showed beautiful color, including blue-green and fuchsia, but also had larger tinctorial strength with a high molar extinction coefficient, further reducing the dosage of dyes to achieve same color depth. Factors affecting the dyeability on fabrics, such as pH value, dyeing temperature and dye concentration were discussed. Excellent dyeing behavior, levelling properties and good fastness on wool/acrylic blended fabric were obtained. What’ more, excellent anti-ultraviolet and antibacterial properties were obtained for textiles with these dyes. The application of these dyes with large molar extinction coefficients presents a wide range of possibilities for the further development of cleaner production and eco-friendly dyeing, even functional textiles.
Collapse
Affiliation(s)
- Meihui Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.W.); (X.W.); (C.G.)
| | - Xianfeng Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.W.); (X.W.); (C.G.)
| | - Chong Guo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.W.); (X.W.); (C.G.)
| | - Tao Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.W.); (X.W.); (C.G.)
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
- Correspondence: (T.Z.); (W.L.); Tel.: +86-021-6779-2811 (T.Z.)
| | - Wenyao Li
- College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence: (T.Z.); (W.L.); Tel.: +86-021-6779-2811 (T.Z.)
| |
Collapse
|
16
|
Mohammadi Aria M, Erten A, Yalcin O. Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Front Bioeng Biotechnol 2019; 7:395. [PMID: 31921804 PMCID: PMC6917661 DOI: 10.3389/fbioe.2019.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, blood coagulation monitoring has become crucial to diagnosing causes of hemorrhages, developing anticoagulant drugs, assessing bleeding risk in extensive surgery procedures and dialysis, and investigating the efficacy of hemostatic therapies. In this regard, advanced technologies such as microfluidics, fluorescent microscopy, electrochemical sensing, photoacoustic detection, and micro/nano electromechanical systems (MEMS/NEMS) have been employed to develop highly accurate, robust, and cost-effective point of care (POC) devices. These devices measure electrochemical, optical, and mechanical parameters of clotting blood. Which can be correlated to light transmission/scattering, electrical impedance, and viscoelastic properties. In this regard, this paper discusses the working principles of blood coagulation monitoring, physical and sensing parameters in different technologies. In addition, we discussed the recent progress in developing nanomaterials for blood coagulation detection and treatments which opens up new area of controlling and monitoring of coagulation at the same time in the future. Moreover, commercial products, future trends/challenges in blood coagulation monitoring including novel anticoagulant therapies, multiplexed sensing platforms, and the application of artificial intelligence in diagnosis and monitoring have been included.
Collapse
Affiliation(s)
| | - Ahmet Erten
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozlem Yalcin
- Graduate School of Biomedical Sciences and Engineering, Koc University, Sariyer, Turkey
- Department of Physiology, Koc University School of Medicine, Koc University, Sariyer, Turkey
| |
Collapse
|
17
|
Özsoy Ç, Floryan M, Deán-Ben XL, Razansky D. Endocardial irrigated catheter for volumetric optoacoustic mapping of radio-frequency ablation lesion progression. OPTICS LETTERS 2019; 44:5808-5811. [PMID: 31774785 DOI: 10.1364/ol.44.005808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Radiofrequency (RF) catheter ablation is widely employed for various minimally invasive procedures, including treatment of tumors, cardiac arrhythmias and varicose veins. Accurate real-time monitoring of the ablation treatments remains challenging with the existing clinical imaging modalities due to the lack of spatial or temporal resolution or insufficient tissue contrast for differentiating thermal lesions. Optoacoustic (OA) imaging has been recently suggested for monitoring temperature field and lesion progression during RF interventions. However, strong light absorption by standard metallic catheters hindered practical implementations of this approach. Herein, we introduce a new RF ablation catheter concept for combined RF ablation and OA lesion monitoring. The catheter tip encapsulates a multimode fiber bundle for OA excitation with near-infrared (NIR) light, whereas the electric current is conducted through the irrigation solution, thus avoiding direct exposure of the metallic parts to the excitation light. We optimized the catheter diameter and the saline flow rate in order to attain uniform and deep lesions. The newly introduced hybrid catheter design was successfully tested by real-time monitoring of the ablation process in smooth ventricle and rough atrium walls of a blood-filled ex vivo porcine heart, mimicking in vivo conditions in the clinical setting.
Collapse
|
18
|
Luo Y, Pei L, Zhang H, Zhong Q, Wang J. Improvement of the Rubbing Fastness of Cotton Fiber in Indigo/Silicon Non-Aqueous Dyeing Systems. Polymers (Basel) 2019; 11:polym11111854. [PMID: 31717899 PMCID: PMC6918309 DOI: 10.3390/polym11111854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022] Open
Abstract
In order to solve the poor rubbing fastness of dyed cotton fiber in the indigo/silicon non-aqueous dyeing system, the process parameters of the silicon non-aqueous dyeing system were optimized. Dyed cotton fiber was post-treated to achieve the optimum dyeing conditions for obtaining a better rubbing fastness. Meanwhile, the dyeing performance of cotton fiber in a traditional water bath and silicon non-aqueous dyeing system was compared. The results showed that the rubbing fastness of dyed cotton fiber in the silicon non-aqueous dyeing system (one dyeing) was lower than that of traditional water bath (twelve cycles), although the color depth of dyed cotton fiber was deeper. For obtaining a good rubbing fastness, the optimum temperature was about 70 °C and the optimal dyeing cycle was one. Moreover, fixing agents can significantly improve the rubbing fastness of dyed cotton fiber. Especially, cationic waterborne polyurethane had an optimal fixing effect on the dyed cotton fiber. Soft finishing would weaken the effect of fixing finishing on the dyed cotton fiber, but the softener can significantly improve the handle of dyed cotton fiber.
Collapse
Affiliation(s)
- Yuni Luo
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liujun Pei
- School of Fashion Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongjuan Zhang
- School of Fashion Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qi Zhong
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiping Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Fashion Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
19
|
Alijabbari N, Alshahrani SS, Pattyn A, Mehrmohammadi M. Photoacoustic Tomography with a Ring Ultrasound Transducer: A Comparison of Different Illumination Strategies. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:10.3390/app9153094. [PMID: 32095283 PMCID: PMC7039403 DOI: 10.3390/app9153094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging is a methodology that uses the absorption of short laser pulses by endogenous or exogenous chromophores within human tissue, and the subsequent generation of acoustic waves acquired by an ultrasound (US) transducer, to form an image that can provide functional and molecular information. Amongst the various types of PA imaging, PA tomography (PAT) has been proposed for imaging pathologies such as breast cancer. However, the main challenge for PAT imaging is the deliverance of sufficient light energy horizontally through an imaging cross-section as well as vertically. In this study, three different illumination methods are compared for a full-ring ultrasound (US) PAT system. The three distinct illumination setups are full-ring, diffused-beam, and point source illumination. The full-ring system utilizes a cone mirror and parabolic reflector to create the ringed-shaped beam for PAT, while the diffuse scheme uses a light diffuser to expand the beam, which illuminates tissue-mimicking phantoms. The results indicate that the full-ring illumination is capable of providing a more uniform fluence irrespective of the vertical depth of the imaged cross-section, while the point source and diffused illumination methods provide a higher fluence at regions closer to the point of entry, which diminishes with depth. In addition, a set of experiments was conducted to determine the optimum position of ring-illumination with respect to the position of the acoustic detectors to achieve the highest signal-to-noise ratio.
Collapse
Affiliation(s)
- Naser Alijabbari
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Suhail S. Alshahrani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Alexander Pattyn
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
20
|
Yang Z, Fan X, Cheng W, Ding Y, Zhang W. AIE Nanoassemblies for Discrimination of Glycosaminoglycans and Heparin Quality Control. Anal Chem 2019; 91:10295-10301. [DOI: 10.1021/acs.analchem.9b02516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiyu Yang
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Wenjing Cheng
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
| | - Yubin Ding
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
| |
Collapse
|
21
|
Moore C, Chen F, Wang J, Jokerst JV. Listening for the therapeutic window: Advances in drug delivery utilizing photoacoustic imaging. Adv Drug Deliv Rev 2019; 144:78-89. [PMID: 31295522 PMCID: PMC6745251 DOI: 10.1016/j.addr.2019.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
The preclinical landscape of photoacoustic imaging has experienced tremendous growth in the past decade. This non-invasive imaging modality augments the spatiotemporal capabilities of ultrasound with optical contrast. While it has principally been investigated for diagnostic applications, many recent reports have described theranostic delivery systems and drug monitoring strategies using photoacoustics. Here, we provide an overview of the progress to date while highlighting work in three specific areas: theranostic nanoparticles, real-time drug monitoring, and stem cell ("living drug") tracking. Additionally, we discuss the challenges that remain to be addressed in this burgeoning field.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Fang Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, United States
| | - Junxin Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
22
|
Moore C, Jokerst JV. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics 2019; 9:1550-1571. [PMID: 31037123 PMCID: PMC6485201 DOI: 10.7150/thno.32362] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic imaging is a rapidly maturing imaging modality in biological research and medicine. This modality uses the photoacoustic effect ("light in, sound out") to combine the contrast and specificity of optical imaging with the high temporal resolution of ultrasound. The primary goal of image-guided therapy, and theranostics in general, is to transition from conventional medicine to precision strategies that combine diagnosis with therapy. Photoacoustic imaging is well-suited for noninvasive guidance of many therapies and applications currently being pursued in three broad areas. These include the image-guided resection of diseased tissue, monitoring of disease states, and drug delivery. In this review, we examine the progress and strategies for development of photoacoustics in these three key areas with an emphasis on the value photoacoustics has for image-guided therapy.
Collapse
Affiliation(s)
| | - Jesse V. Jokerst
- Department of NanoEngineering
- Materials Science and Engineering Program
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093. United States
| |
Collapse
|