1
|
Chen SY, Chiang IC, Chen YY, Hsu YH, Yen GC. Recent advances in the potential of Phyllanthus emblica L. and its related foods for combating metabolic diseases through methylglyoxal trapping. Food Res Int 2024; 194:114907. [PMID: 39232532 DOI: 10.1016/j.foodres.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Methylglyoxal (MG) serves as the primary precursor for the nonenzymatic glycation of proteins and DNA, leading to advanced glycation end products (AGEs). Regular intake of dietary MG is strongly correlated with low-grade inflammation, potentially accelerating the pathogenesis of metabolic diseases, including obesity, diabetes, cancers, liver diseases, Alzheimer's disease, cardiovascular diseases, aging, and bone loss. Although pharmaceutical agents (pimagedine and candesartan) have been developed to inhibit MG formation, they often come with serious side effects (nausea, diarrhea, headache, gastrointestinal disturbance, symptomatic hypotension, abnormal renal and liver function tests, development of antinuclear antibody, pernicious-like anemia, and hyperkalemia), highlighting the need for an efficient and safe approach to scavenging MG. Phyllanthus emblica Linn fruit, a nutritious edible fruit, and medicinal plant contains over 300 bioactive compounds. Among twenty-three herbals, 100 μg/mL of the aqueous extract of Phyllanthus emblica fruit (APF) exhibits the highest potency in trapping MG, achieving an 87.3 % reduction under d-fructose induced BSA-AGEs formation. However, there are few reports detailing APF and its related foods' specific impact on disease prevention through MG trapping. This review summarizes the mechanisms through which MG is linked to the development of metabolic diseases and provides several strategies for reducing MG levels using APF and its bioactive compounds. The potential antiglycation properties of APF may offer new applications in the food industry and pharmacological research.
Collapse
Affiliation(s)
- Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - I-Chen Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yi-Hsien Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Vizuete AFK, Fróes F, Seady M, Hansen F, Ligabue-Braun R, Gonçalves CA, Souza DO. A Mechanism of Action of Metformin in the Brain: Prevention of Methylglyoxal-Induced Glutamatergic Impairment in Acute Hippocampal Slices. Mol Neurobiol 2024; 61:3223-3239. [PMID: 37980327 DOI: 10.1007/s12035-023-03774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1β synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre, 90050-130, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo O Souza
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
3
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
4
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
5
|
Kushwaha K, Mandal D, Khurana N, Gupta J. Nephro-protective effects of alpha-lipoic acid in type I diabetes. J Biochem Mol Toxicol 2024; 38:e23712. [PMID: 38602238 DOI: 10.1002/jbt.23712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/02/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Type 1 diabetes (T1D) is an insulin-dependent autoimmune condition. Short chain fatty acids (SCFAs) are volatile fatty acids with 1-6 carbon atoms that influence glucose storage in the body and can reduce appetite, potentially decreasing T1D risk. Alpha-lipoic acid (α-LA), a type of SCFA, has previously been used to treat diabetic neuropathy and inflammation due to its antioxidant properties. This study aims to assess α-LA's protective effects against T1D and associated kidney damage in rats induced with streptozotocin. Diabetic rats were treated with α-LA orally for 15 days, resulting in improved blood glucose (56% decrease) and kidney function markers like blood urea nitrogen, creatinine and uric acid. α-LA also showed significant antioxidant effects by decreasing LPO as well as improving activities of antioxidant enzymes like superoxide dismutase, catalase and glutathione-S transferase and alleviated kidney damage caused by diabetes. Docking experiments suggest that α-LA may regulate diabetes-related changes at the epigenetic level through interactions with the SIRT1 protein, indicating its potential as a target for future antidiabetic drug development.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Debojyoti Mandal
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Álvarez S, Morales J, Tiozzo-Lyon P, Berrios P, Barraza V, Simpson K, Ravasio A, Monforte Vila X, Teuschl-Woller A, Schuh CMAP, Aguayo S. Microfabrication-based engineering of biomimetic dentin-like constructs to simulate dental aging. LAB ON A CHIP 2024; 24:1648-1657. [PMID: 38291999 DOI: 10.1039/d3lc00761h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Human dentin is a highly organized dental tissue displaying a complex microarchitecture consisting of micrometer-sized tubules encased in a mineralized type-I collagen matrix. As such, it serves as an important substrate for the adhesion of microbial colonizers and oral biofilm formation in the context of dental caries disease, including root caries in the elderly. Despite this issue, there remains a current lack of effective biomimetic in vitro dentin models that facilitate the study of oral microbial adhesion by considering the surface architecture at the micro- and nanoscales. Therefore, the aim of this study was to develop a novel in vitro microfabricated biomimetic dentin surface that simulates the complex surface microarchitecture of exposed dentin. For this, a combination of soft lithography microfabrication and biomaterial science approaches were employed to construct a micropitted PDMS substrate functionalized with mineralized type-I collagen. These dentin analogs were subsequently glycated with methylglyoxal (MGO) to simulate dentin matrix aging in vitro and analyzed utilizing an interdisciplinary array of techniques including atomic force microscopy (AFM), elemental analysis, and electron microscopy. AFM force-mapping demonstrated that the nanomechanical properties of the biomimetic constructs were within the expected biological parameters, and that mineralization was mostly predominated by hydroxyapatite deposition. Finally, dual-species biofilms of Streptococcus mutans and Candida albicans were grown and characterized on the biofunctionalized PDMS microchips, demonstrating biofilm-specific morphologic characteristics and confirming the suitability of this model for the study of early biofilm formation under controlled conditions. Overall, we expect that this novel biomimetic dentin model could serve as an in vitro platform to study oral biofilm formation or dentin-biomaterial bonding in the laboratory without the need for animal or human tooth samples in the future.
Collapse
Affiliation(s)
- Simon Álvarez
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose Morales
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paola Tiozzo-Lyon
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Berrios
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Barraza
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Kevin Simpson
- Department of Physics, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Xavier Monforte Vila
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christina M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Kumar P, Nesakumar N, Gopal J, Sivasubramanian S, Vedantham S, Rayappan JBB. Clinical validation of electrochemical biosensor for the detection of methylglyoxal in subjects with type-2 diabetes mellitus. Bioelectrochemistry 2024; 155:108601. [PMID: 37951008 DOI: 10.1016/j.bioelechem.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/08/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Methylglyoxal (MG), a highly reactive by-product of glycolysis, is involved in the formation of advanced glycation end-products (AGEs). Elevated levels of MG have been correlated with micro-and macro-angiopathic complications in diabetes, including neuropathy, kidney disease, retinopathy, and cardiovascular disease. Therefore, point-of-care devices for detecting MG may be of great use in the screening of diabetes complications. This study was designed to determine the utility of the developed electrochemical biosensor to measure the level of MG in human plasma from type-2 diabetes mellitus patients. Electrochemical studies were carried out with optimized experimental parameters using the modified Platinum-electrode. Subsequently, clinical studies using 350 blood plasma samples were conducted and the results were validated against the ELISA kit, Normal Glucose Tolerance (NGT), and glycosylated haemoglobin (HbA1c). The MG sensor exhibited a linear range of 1.0-7.5 μM concentration with a sensitivity of 1.02 mA µM-1, a limit of detection of 0.21 µM, a limit of quantification of 0.70 µM and a response time less than 10 s. The sensor showed 90% correlation with ELISA data. The developed biosensor showed a significant correlation with HbA1c and fasting plasma glucose suggesting that it can be used as a point-of-care device to screen for diabetes.
Collapse
Affiliation(s)
- Priyanga Kumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, India; School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University, Thanjavur 613 401, India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, India
| | | | | | - Srinivasan Vedantham
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, India; DifGen Pharmaceuticals Private Ltd., Hyderabad, India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, India; School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
8
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
9
|
Liu Y, Dong Y, Hui M, Xu L, Ye L, Lv J, Yang L, Cui Y. A biosensing array for multiplex clinical evaluation of glucose, creatinine, and uric acid. Biosens Bioelectron 2023; 241:115699. [PMID: 37788580 DOI: 10.1016/j.bios.2023.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The multiplex and simultaneous determination of blood glucose, creatinine and uric acid is essential for the early screening of chronic diseases or regular disease monitoring. Here, we report for the first time a biosensing array for the multiplex and simultaneous determination of plasma glucose, creatinine and uric acid. The sensing electrodes are fabricated on a PET surface, including three working electrodes, one reference electrode, and one counter electrode. Each specific enzyme is immobilized on its corresponding working electrode. The biosensing array can exhibit high sensitivity and selectivity for the simultaneous determination of blood glucose, creatinine and uric acid in real blood samples, and the measurement results are accurate and consistent with those from the clinical biochemistry analyzer in the hospital. It is expected that this work could provide new avenues for the fundamental study of biosensing device construction, as well as practical applications of the detection of biomarkers in chronic diseases.
Collapse
Affiliation(s)
- Yiqun Liu
- School of Materials Science and Engineering, First Hospital Interdisciplinary Research Center, Peking University, Beijing, 100871, PR China
| | - Yaping Dong
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China
| | - Miao Hui
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China
| | - Lingyi Xu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China
| | - Le Ye
- School of Integrated Circuits, Peking University, Beijing, 100871, PR China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China.
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China.
| | - Yue Cui
- School of Materials Science and Engineering, First Hospital Interdisciplinary Research Center, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
10
|
Coccini T, Schicchi A, Locatelli CA, Caloni F, Negri S, Grignani E, De Simone U. Methylglyoxal-induced neurotoxic effects in primary neuronal-like cells transdifferentiated from human mesenchymal stem cells: Impact of low concentrations. J Appl Toxicol 2023; 43:1819-1839. [PMID: 37431083 DOI: 10.1002/jat.4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
In the last decades, advanced glycation end-products (AGEs) have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes including various neurological disorders and cognitive decline age related. Methylglyoxal (MG) is one of the reactive dicarbonyl precursors of AGEs, mainly generated as a by-product of glycolysis, whose accumulation induces neurotoxicity. In our study, MG cytotoxicity was evaluated employing a human stem cell-derived model, namely, neuron-like cells (hNLCs) transdifferentiated from mesenchymal stem/stromal cells, which served as a source of human based species-specific "healthy" cells. MG increased ROS production and induced the first characteristic apoptotic hallmarks already at low concentrations (≥10 μM), decreased the cell growth (≥5-10 μM) and viability (≥25 μM), altered Glo-1 and Glo-2 enzymes (≥25 μM), and markedly affected the neuronal markers MAP-2 and NSE causing their loss at low MG concentrations (≥10 μM). Morphological alterations started at 100 μM, followed by even more marked effects and cell death after few hours (5 h) from 200 μM MG addition. Substantially, most effects occurred as low as 10 μM, concentration much lower than that reported from previous observations using different in vitro cell-based models (e.g., human neuroblastoma cell lines, primary animal cells, and human iPSCs). Remarkably, this low effective concentration approaches the level range measured in biological samples of pathological subjects. The use of a suitable cellular model, that is, human primary neurons, can provide an additional valuable tool, mimicking better the physiological and biochemical properties of brain cells, in order to evaluate the mechanistic basis of molecular and cellular alterations in CNS.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Azzurra Schicchi
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Sara Negri
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
11
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Remund B, Yilmaz B, Sokollik C. D-Lactate: Implications for Gastrointestinal Diseases. CHILDREN (BASEL, SWITZERLAND) 2023; 10:945. [PMID: 37371177 DOI: 10.3390/children10060945] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
D-lactate is produced in very low amounts in human tissues. However, certain bacteria in the human intestine produce D-lactate. In some gastrointestinal diseases, increased bacterial D-lactate production and uptake from the gut into the bloodstream take place. In its extreme, excessive accumulation of D-lactate in humans can lead to potentially life-threatening D-lactic acidosis. This metabolic phenomenon is well described in pediatric patients with short bowel syndrome. Less is known about a subclinical rise in D-lactate. We discuss in this review the pathophysiology of D-lactate in the human body. We cover D-lactic acidosis in patients with short bowel syndrome as well as subclinical elevations of D-lactate in other diseases affecting the gastrointestinal tract. Furthermore, we argue for the potential of D-lactate as a marker of intestinal barrier integrity in the context of dysbiosis. Subsequently, we conclude that there is a research need to establish D-lactate as a minimally invasive biomarker in gastrointestinal diseases.
Collapse
Affiliation(s)
- Barblin Remund
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Christiane Sokollik
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
13
|
Wang Q, Ai Z, Guo Q, Wang X, Dai C, Wang H, Sun J, Tang Y, Jiang D, Pei X, Chen R, Gou J, Yu L, Ding J, Wee ATS, Liu Y, Wei D. Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of Small Molecules. J Am Chem Soc 2023; 145:10035-10044. [PMID: 37097713 DOI: 10.1021/jacs.2c13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.
Collapse
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhaolin Ai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qianying Guo
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Hancheng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yanan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xinjie Pei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Renzhong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Cai D, Hou B, Xie SL. Amino acid analysis as a method of discovering biomarkers for diagnosis of diabetes and its complications. Amino Acids 2023:10.1007/s00726-023-03255-8. [PMID: 37067568 DOI: 10.1007/s00726-023-03255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/21/2023] [Indexed: 04/18/2023]
Abstract
Diabetes mellitus (DM) is a severe chronic diseases with a global prevalence of 9%, leading to poor health and high health care costs, and is a direct cause of millions of deaths each year. The rising epidemic of diabetes and its complications, such as retinal and peripheral nerve disease, is a huge burden globally. A better understanding of the molecular pathways involved in the development and progression of diabetes and its complications can facilitate individualized prevention and treatment. High diabetes mellitus incidence rate is caused mainly by lack of non-invasive and reliable methods for early diagnosis, such as plasma biomarkers. The incidence of diabetes and its complications in the world still grows so it is crucial to develop a new, faster, high specificity and more sensitive diagnostic technologies. With the advancement of analytical techniques, metabolomics can identify and quantify multiple biomarkers simultaneously in a high-throughput manner, and effective biomarkers can greatly improve the efficiency of diabetes and its complications. By providing information on potential metabolic pathways, metabolomics can further define the mechanisms underlying the progression of diabetes and its complications, help identify potential therapeutic targets, and improve the prevention and management of T2D and its complications. The application of amino acid metabolomics in epidemiological studies has identified new biomarkers of diabetes mellitus (DM) and its complications, such as branched-chain amino acids, phenylalanine and arginine metabolites. This study focused on the analysis of metabolic amino acid profiling as a method for identifying biomarkers for the detection and screening of diabetes and its complications. The results presented are all from recent studies, and in all cases analyzed, there were significant changes in the amino acid profile of patients in the experimental group compared to the control group. This study demonstrates the potential of amino acid profiles as a detection method for diabetes and its complications.
Collapse
Affiliation(s)
- Dan Cai
- The Affiliated Nanhua Hospital, Department of Hand and Foot Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Biao Hou
- The Affiliated Nanhua Hospital, Department of Hand and Foot Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Song Lin Xie
- The Affiliated Nanhua Hospital, Department of Hand and Foot Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
15
|
Jamshidi M, Walcarius A, Thangamuthu M, Mehrgardi M, Ranjbar A. Electrochemical approaches based on micro- and nanomaterials for diagnosing oxidative stress. Mikrochim Acta 2023; 190:117. [PMID: 36879086 DOI: 10.1007/s00604-023-05681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023]
Abstract
This review article comprehensively discusses the various electrochemical approaches for measuring and detecting oxidative stress biomarkers and enzymes, particularly reactive oxygen/nitrogen species, highly reactive chemical molecules, which are the byproducts of normal aerobic metabolism and can oxidize cellular components such as DNA, lipids, and proteins. First, we address the latest research on the electrochemical determination of reactive oxygen species generating enzymes, followed by detection of oxidative stress biomarkers, and final determination of total antioxidant activity (endogenous and exogenous). Most electrochemical sensing platforms exploited the unique properties of micro- and nanomaterials such as carbon nanomaterials, metal or metal oxide nanoparticles (NPs), conductive polymers and metal-nano compounds, which have been mainly used for enhancing the electrocatalytic response of sensors/biosensors. The performance of the electroanalytical devices commonly measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in terms of detection limit, sensitivity, and linear range of detection is also discussed. This article provides a comprehensive review of electrode fabrication, characterization and evaluation of their performances, which are assisting to design and manufacture an appropriate electrochemical (bio)sensor for medical and clinical applications. The key points such as accessibility, affordability, rapidity, low cost, and high sensitivity of the electrochemical sensing devices are also highlighted for the diagnosis of oxidative stress. Overall, this review brings a timely discussion on past and current approaches for developing electrochemical sensors and biosensors mainly based on micro and nanomaterials for the diagnosis of oxidative stress.
Collapse
Affiliation(s)
- Mahdi Jamshidi
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alain Walcarius
- Laboratory of Physical Chemistry and Microbiology for Materials and the Environment, Université de Lorraine, CNRS, LCPME, Nancy, France
| | - Madasamy Thangamuthu
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Masoud Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran. .,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
Rajlic S, Treede H, Münzel T, Daiber A, Duerr GD. Early Detection Is the Best Prevention-Characterization of Oxidative Stress in Diabetes Mellitus and Its Consequences on the Cardiovascular System. Cells 2023; 12:583. [PMID: 36831253 PMCID: PMC9954643 DOI: 10.3390/cells12040583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Previous studies demonstrated an important role of oxidative stress in the pathogenesis of cardiovascular disease (CVD) in diabetic patients due to hyperglycemia. CVD remains the leading cause of premature death in the western world. Therefore, diabetes mellitus-associated oxidative stress and subsequent inflammation should be recognized at the earliest possible stage to start with the appropriate treatment before the onset of the cardiovascular sequelae such as arterial hypertension or coronary artery disease (CAD). The pathophysiology comprises increased reactive oxygen and nitrogen species (RONS) production by enzymatic and non-enzymatic sources, e.g., mitochondria, an uncoupled nitric oxide synthase, xanthine oxidase, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Considering that RONS originate from different cellular mechanisms in separate cellular compartments, adequate, sensitive, and compartment-specific methods for their quantification are crucial for early detection. In this review, we provide an overview of these methods with important information for early, appropriate, and effective treatment of these patients and their cardiovascular sequelae.
Collapse
Affiliation(s)
- Sanela Rajlic
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| | - Hendrik Treede
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| |
Collapse
|
17
|
Shallan AI, Abdel-Hakim A, Hammad MA, Abou El-Alamin MM. Highly sensitive spectrofluorimetric method for the determination of the genotoxic methylglyoxal in glycerol-containing pharmaceuticals and dietary supplements. LUMINESCENCE 2023; 38:39-46. [PMID: 36482153 DOI: 10.1002/bio.4419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MGO) is a genotoxic α-dicarbonyl compound. Recently, it was found to be formed in glycerol preparations during storage through auto-oxidation. A simple fluorimetric determination of the carcinogenic degradation product of glycerol, MGO, was developed and validated. The proposed method is based on the derivatization of MGO with 4-carbomethoxybenzaldehyde (CMBA) and ammonium acetate to yield a fluorescent imidazole derivative that can be measured at 415 nm after excitation at 322 nm. The optimized conditions were determined to be 0.2 M CMBA, 1.0 M ammonium acetate and a reaction time of 40 min at 90°C using ethanol as diluting solvent. The linear range was 10.0-200.0 ng/ml. Detection and quantification limits were 2.22 and 6.72 ng/ml, respectively. The proposed method was validated according to International Council for Harmonisation (ICH) guidelines and compared with the reported method and no significant difference was found. It was successfully applied for the determination of MGO in six different glycerol-containing pharmaceutical preparations and dietary supplements.
Collapse
Affiliation(s)
- Aliaa I Shallan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ali Abdel-Hakim
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mohamed A Hammad
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Maha M Abou El-Alamin
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
18
|
High Glucose and Carbonyl Stress Impair HIF-1-Regulated Responses and the Control of Mycobacterium tuberculosis in Macrophages. mBio 2022; 13:e0108622. [PMID: 36121152 PMCID: PMC9600926 DOI: 10.1128/mbio.01086-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diabetes mellitus (DM) increases the risk of developing tuberculosis (TB), but the mechanisms behind diabetes-TB comorbidity are still undefined. Here, we studied the role of hypoxia-inducible factor-1 (HIF-1), a main regulator of metabolic and inflammatory responses, in the outcome of Mycobacterium tuberculosis infection of bone marrow-derived macrophages (BMM). We observed that M. tuberculosis infection of BMM increased the expression of HIF-1α and HIF-1-regulated genes. Treatment with the hypoxia mimetic deferoxamine (DFO) further increased levels of HIF-1-regulated immune and metabolic molecules and diminished the intracellular bacterial load in BMM and in the lungs of infected mice. The expression of HIF-1-regulated immunometabolic genes was reduced, and the intracellular M. tuberculosis levels were increased in BMM incubated with high-glucose levels or with methylglyoxal (MGO), a reactive carbonyl compound elevated in DM. In line with the in vitro findings, high M. tuberculosis levels and low HIF-1-regulated transcript levels were found in the lungs from hyperglycemic Leprdb/db compared with wild-type mice. The increased intracellular M. tuberculosis growth and the reduced expression of HIF-1-regulated metabolic and inflammatory genes in BMM incubated with MGO or high glucose were reverted by additional treatment with DFO. Hif1a-deficient BMM showed ablated responses of immunometabolic transcripts after mycobacterial infection at normal or high-glucose levels. We propose that HIF-1 may be targeted for the control of M. tuberculosis during DM. IMPORTANCE People living with diabetes who are also infected with M. tuberculosis are more likely to develop tuberculosis disease (TB). Why diabetic patients have an increased risk for developing TB is not well understood. Macrophages, the cell niche for M. tuberculosis, can express microbicidal mechanisms or be permissive to mycobacterial persistence and growth. Here, we showed that high glucose and carbonyl stress, which mediate diabetes pathogenesis, impair the control of intracellular M. tuberculosis in macrophages. Infection with M. tuberculosis stimulated the expression of genes regulated by the transcription factor HIF-1, a major controller of the responses to hypoxia, resulting in macrophage activation. High glucose and carbonyl compounds inhibited HIF-1 responses by macrophages. Mycobacterial control in the presence of glucose or carbonyl stress was restored by DFO, a compound that stabilizes HIF-1. We propose that HIF-1 can be targeted to reduce the risk of developing TB in people with diabetes.
Collapse
|
19
|
Szkudelski T, Cieślewicz A, Szkudelska K. Methylglyoxal impairs β-adrenergic signalling in primary rat adipocytes. Arch Physiol Biochem 2022; 128:394-401. [PMID: 31711314 DOI: 10.1080/13813455.2019.1684953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methylglyoxal (MG) is dicarbonyl aldehyde generated intracellularly from glucose and from some other compounds. Its increased formation is associated with several harmful consequences. In the present study, short-term effects of MG on metabolism of isolated rat adipocytes were determined. Insulin-induced lipogenesis was unchanged by MG. However, epinephrine-stimulated lipolysis was shown to be significantly reduced in adipocytes exposed to 200 µM MG. This inhibitory effect was similar in the presence of low and high concentrations of glucose, and also in the presence of alanine. However, MG failed to affect lipolysis induced by forskolin (activator of adenylate cyclase), dibutyryl-cAMP (activator of PKA) and DPCPX (adenosine A1 receptor antagonist). It was also revealed that lipolysis was unchanged by MG in fat cells pre-incubated with this compound, and then stimulated with epinephrine alone. Our results suggest that MG may impair β-adrenergic signalling in rat adipocytes due to interaction with epinephrine, and thereby disturbs lipolysis.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Aleksandra Cieślewicz
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
20
|
Phytochemicals of six selected herbal plants and their inhibitory activities towards free radicals and glycation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Chen J, Lin Y, Xing W, Zhang X, Xu H, Wang W, Lou K. An anthracenecarboximide-guanidine fluorescent probe for selective detection of glyoxals under weak acidic conditions. RSC Adv 2022; 12:9473-9477. [PMID: 35424850 PMCID: PMC8985128 DOI: 10.1039/d2ra00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022] Open
Abstract
An anthracenecarboximide-guanidine based turn-on fluorescent probe ANC-DCP-1 for selective detection of glyoxals (methylglyoxal and glyoxal, GOS) over formaldehyde under weak acidic conditions around pH 6.0 was reported. The probe showed great potential in studying relative GOS levels in weak acidic biological fluids such as in urine for diabetic diagnosis and prognosis, and also found application in the food industry such as for fast unique manuka factor (UMF) scale determination of Manuka honey. Formation of 5-membered dihydroxyimidazolidines with increased deprotonation at around pH 6.0 and enhanced intramolecular charge transfer for turn-on fluorescence detection of glyoxals.![]()
Collapse
Affiliation(s)
- Junwei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yuna Lin
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Wanjin Xing
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Xingchen Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Huan Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Wei Wang
- A Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona Tucson AZ 85721-0207 USA
| | - Kaiyan Lou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
22
|
Wang C, Lv Y, Hu X, Chen Z, Li J, Zhang M. A “two-step” assay based on electro-activation for rapid determination of methylglyoxal in honey and beer. Anal Chim Acta 2022; 1203:339688. [DOI: 10.1016/j.aca.2022.339688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
|
23
|
Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing. J Mol Med (Berl) 2022; 100:485-498. [PMID: 34997250 DOI: 10.1007/s00109-021-02172-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
Collapse
|
24
|
Liu D, Cheng Y, Tang Z, Chen J, Xia Y, Xu C, Cao X. Potential mechanisms of methylglyoxal-induced human embryonic kidney cells damage: Regulation of oxidative stress, DNA damage, and apoptosis. Chem Biodivers 2021; 19:e202100829. [PMID: 34962083 DOI: 10.1002/cbdv.202100829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022]
Abstract
Methylglyoxal (MGO) is a reactive carbonyl species that can cause cellular damage and is closely related to kidney disease, especially diabetic nephropathy. The toxic effect of MGO (0.5, 1, and 2 mM) on human embryonic kidney (HEK293) cells and its underlying mechanism were explored in this study. Cell viability, apoptosis and the signaling pathways were measured with MTT, fluorescent staining and western blot experiments, the results showed that MGO could induce oxidative stress and cell inflammation, the level of reactive oxygen species (ROS) increased, and p38MAPK, JNK and NF-κB signaling pathways were activated. Meanwhile, MGO also induced DNA damage. The expression of DNA oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) increased, the expression of double-strand break marker γH2AX increased significantly, and ATM/Chk2/p53 DNA damage response signaling pathway was activated. Furthermore, the expression of the receptor for advanced glycation end products (RAGE) also increased. Finally, mitochondrial membrane potential (MMP) decreased, fluorescence intensity of Hoechst33258 increased, and the protein expression ratio of Bax/Bcl-2 increased significantly after the treatment of MGO. These results demonstrated that MGO might induce HEK293 cells damage by regulating oxidative stress, inflammation, DNA damage, and cell apoptosis, which revealed the specific mechanism of MGO-induced damage to HEK293 cells.
Collapse
Affiliation(s)
- Dan Liu
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Ye Cheng
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Zhipeng Tang
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Junliang Chen
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Ying Xia
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Chengbin Xu
- Liaoning University, School of environment science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Xiangyu Cao
- Liaoning University, School of Life Science, 66 Chongshan Road, Huanggu District, 110036, Shenyang, CHINA
| |
Collapse
|
25
|
Ma H, Lin J, Li L, Ding Z, Huang P, Song X, Lou K, Wang W, Xu H. Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. CHEMOSPHERE 2021; 282:131149. [PMID: 34470174 DOI: 10.1016/j.chemosphere.2021.131149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde (FA) is widely used in chemical industry, which is also known as a common indoor air pollutant. Exposure of FA has been associated with multiple detrimental health effects. Our previous study showed that FA could inhibit the development of T lymphocytes in mice, leading to impaired immune functions. Macrophages are important innate immune cells which trigger inflammatory responses in tissues. In the present study, FA exposure at 2.0 mg/m3 was found to enhance the pro-inflammatory responses of macrophages in male BALB/c mice, which was confirmed by elevated pro-inflammatory cytokine release and NO secretion in macrophages isolated from the FA-exposed mice and in vitro macrophage models upon lipopolysaccharide stimulation. Glycolysis is the key metabolic process for the classical activation of macrophages, which was found to be elevated in the in vitro macrophage models treated with FA at 50 and 100 μM concentrations for 18 h. HIF-1α and the associated proteins in its signaling cascade, which are known to mediate glycolytic metabolism and inflammatory responses, were found to be upregulated by 50 and 100 μM FA in THP-1 derived and RAW264.7 macrophage models, and the enhanced pro-inflammatory responses induced by 100 μM FA were reversed by inhibitory compounds interfering with glucose metabolism or suppressing HIF-1α activity. Collectively, the results in this study revealed that FA could enhance the pro-inflammatory responses of macrophages through the induction of glycolysis, which outlined the FA-triggered metabolic and functional alterations in immune cells.
Collapse
Affiliation(s)
- Huijuan Ma
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Jinxuan Lin
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Linyi Li
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Zhaoqian Ding
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Ping Huang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Kaiyan Lou
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| | - Wei Wang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China; Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| | - Huan Xu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| |
Collapse
|
26
|
Darenskaya MA, Chugunova EV, Kolesnikov SI, Grebenkina LA, Semenova NV, Nikitina OA, Kolesnikova LI. Content of Carbonyl Compounds and Parameters of Glutathione Metabolism in Men with Type 1 Diabetes Mellitus at Preclinical Stages of Diabetic Nephropathy. Bull Exp Biol Med 2021; 171:592-595. [PMID: 34617170 PMCID: PMC8494601 DOI: 10.1007/s10517-021-05275-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/22/2022]
Abstract
The content of carbonyl compounds (methylglyoxal and TBA-reactive substances) and components of the glutathione system (activities of glutathione-dependent enzymes, content of oxidized and reduced glutathione) and their interrelationships were studied in men of young reproductive age with type 1 diabetes mellitus at the stages of normo- and microalbuminuria. In patients with normoalbuminuria, the level of methylglyoxal, reduced and oxidized glutathione, and glutathione reductase activity were increased and the content of TBA-reactive substances was decreased. In the group with microalbuminuria, an increase in content of methylglyoxal and activity of glutathione-dependent enzymes relative to the control values were observed; the content of TBA-reactive substances was increased and glutathione reductase activity was decreased relative to the group with normoalbuminuria. In patients with microalbuminuria, a strong correlation between the mean glomerular filtration rate and the blood level of methylglyoxal was revealed.
Collapse
Affiliation(s)
- M A Darenskaya
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia.
| | - E V Chugunova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S I Kolesnikov
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L A Grebenkina
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - N V Semenova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - O A Nikitina
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L I Kolesnikova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
27
|
Ragno VM, Klein CD, Sereda NS, Uehlinger FD, Zello GA, Robinson KA, Montgomery JB. Morphometric, metabolic, and inflammatory markers across a cohort of client-owned horses and ponies on the insulin dysregulation spectrum. J Equine Vet Sci 2021; 105:103715. [PMID: 34607688 DOI: 10.1016/j.jevs.2021.103715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
In human metabolic syndrome and type II diabetes, methylglyoxal (MG), D-lactate, and several cytokines have been recognized as biomarkers of important metabolic and inflammatory processes. Equine metabolic syndrome (EMS) shares many similarities with these human counterparts. The objectives of this cross-sectional study were to compare body condition score (BCS), cresty neck score (CNS), resting insulin, MG, D-lactate, L-lactate, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) between horses with and without insulin dysregulation, as classified via combined glucose and insulin test (CGIT). 32 client-owned horses were included. History and morphometric data such as BCS and CNS were recorded. Subjects with abnormalities on physical examination or CBC, elevated ACTH or incomplete information were excluded. Baseline serum or plasma concentrations of biomarkers were tested via commercial ELISA or colorimetric assays. Characteristics of insulin dysregulated and insulin sensitive horses were compared by univariate analysis and forward logistic regression. 12 (38%) of the 32 horses were classified as insulin dysregulated. No significant difference between the 2 groups was found for age, BCS, baseline glucose, triglycerides, MG, D-lactate, L-lactate, TNF-α, IL-6, and MCP-1. Baseline insulin was significantly associated with insulin dysregulation in univariate analysis (P = 0.02), but not in the final model. Horses with CNS ≥ 3 had 11.3 times higher odds of having insulin dysregulation (OR 11.3, 95% C.I. 2.04 - 63.08, P = 0.006). In this population, horses with mild-moderate signs of EMS presented similar metabolic and inflammatory profiles to non-insulin dysregulated controls.
Collapse
Affiliation(s)
- Valentina M Ragno
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Colby D Klein
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicole S Sereda
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fabienne D Uehlinger
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gordon A Zello
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| | - Katherine A Robinson
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Julia B Montgomery
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
28
|
Szałabska-Rąpała K, Borymska W, Kaczmarczyk-Sedlak I. Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities-A Review. Int J Mol Sci 2021; 22:10050. [PMID: 34576213 PMCID: PMC8467064 DOI: 10.3390/ijms221810050] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by disturbances in carbohydrate, protein, and lipid metabolism, often accompanied by oxidative stress. Diabetes treatment is a complicated process in which, in addition to the standard pharmacological action, it is necessary to append a comprehensive approach. Introducing the aspect of non-pharmacological treatment of diabetes allows one to alleviate its many adverse complications. Therefore, it seems important to look for substances that, when included in the daily diet, can improve diabetic parameters. Magnolol, a polyphenolic compound found in magnolia bark, is known for its health-promoting activities and multidirectional beneficial effects on the body. Accordingly, the goal of this review is to systematize the available scientific literature on its beneficial effects on type 2 diabetes and its complications. Taking the above into consideration, the article collects data on the favorable effects of magnolol on parameters related to glycemia, lipid metabolism, or oxidative stress in the course of diabetes. After careful analysis of many scientific articles, it can be concluded that this lignan is a promising agent supporting the conventional therapies with antidiabetic drugs in order to manage diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (I.K.-S.)
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (I.K.-S.)
| |
Collapse
|
29
|
Wang M, Liu Y, Guo B, Zhang F, Chou F, Ma M, Huang L, Luo Z, Chen B, Chen X. Isotope-Coding Derivatization for Quantitative Profiling of Reactive α-Dicarbonyl Species in Processed Botanicals by Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10379-10393. [PMID: 34436879 DOI: 10.1021/acs.jafc.1c04122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
α-Dicarbonyls (α-DCs) are key reactive Maillard intermediates with structural diversity and are widely found in foods and in vivo, but little is known regarding the complete molecular profiles of these potentially harmful electrophiles. Herein, we reported a novel isotope-coding derivatization (ICD) strategy for the broad-spectrum, quantitative profiling of (non)target α-DC species in natural foodstuffs. It utilized differential isotope labeling (DIOL) with a reagent pair o-phenylenediamine (OPD)/OPD-d4 (deuterated) to form stable quinoxalines for class-specific fragmentation-dependent acquisition using liquid chromatography-hybrid quadrupole linear ion trap mass spectrometry (LC-QqLIT). A combination of facile one-pot quantitative labeling and convenient cleanup protocol afforded satisfactory sensitivity, linearity, accuracy (81-116%), and process recovery (86-109% with RSDs < 10%) by matrix-matched ICD-internal standard calibration, without significant matrix interference (-9 to 5%), isotopic effect (<0.5%), and cocktail effect. A more generic DIOL-based LC-QqLIT algorithm integrated double precursor ion and neutral loss scan to trigger enhanced product ions with the unique isobaric doublet tags (4 Da shift), enabling simultaneous screening and relative quantitation of nontarget α-DC analogues in a single analysis. This study has widened the vision on complex α-DC profiles in traditional botanicals, which revealed a wide occurrence of α-DCs in such processed sugar-rich products, yet their abundance varied greatly among different samples.
Collapse
Affiliation(s)
- Meiling Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- China Certification & Inspection Group Hunan Co., Ltd., Changsha 410021, China
| | - Yaxuan Liu
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Fan Zhang
- Changsha Environmental Protection College, Changsha 410004, China
- Hunan Academy of Science and Technology for Inspection and Quarantine, Changsha 410004, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Ziwei Luo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
30
|
Tang D, Xiao W, Gu WT, Zhang ZT, Xu SH, Chen ZQ, Xu YH, Zhang LY, Wang SM, Nie H. Pterostilbene prevents methylglyoxal-induced cytotoxicity in endothelial cells by regulating glyoxalase, oxidative stress and apoptosis. Food Chem Toxicol 2021; 153:112244. [PMID: 33930484 DOI: 10.1016/j.fct.2021.112244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Methylglyoxal (MGO), a cytotoxic byproduct of glycolysis in biological systems, can induce endothelial cells dysfunction, implicated in diabetic vascular complications. Pterostilbene (PTS), a naturally occurring resveratrol derivative, is involved in various pharmacological activities. This study aimed to explore the effects of PTS on MGO induced cytotoxicity in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms for the first time. In the current study, it has been demonstrated that PTS could enhance the level of glyoxalase 1 (GLO-1) and elevate glutathione (GSH) content to active the glyoxalase system, resulting in elimination of the toxic MGO as well as advanced glycation end products (AGEs) in HUVECs. Meanwhile, PTS could also suppress oxidative stress and thus exert cytoprotective effects by elevating Nrf2 nuclear translocation and the corresponding down-stream antioxidant enzymes in MGO induced HUVECs. In addition, PTS could alleviate MGO induced apoptosis in HUVECs via inhibition of oxidative stress and associated downstream mitochondria-dependent signaling apoptotic cascades, as characterized by preventing caspases family activation. Taken together, these findings suggest that PTS could protect against MGO induced endothelial cell cytotoxicity by regulating glyoxalase, oxidative stress and apoptosis, suggesting that PTS could be beneficial in the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei Xiao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Hong Xu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Quan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu-Yong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
31
|
Ramos LD, Mantovani MC, Sartori A, Dutra F, Stevani CV, Bechara EJH. Aerobic co-oxidation of hemoglobin and aminoacetone, a putative source of methylglyoxal. Free Radic Biol Med 2021; 166:178-186. [PMID: 33636334 DOI: 10.1016/j.freeradbiomed.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Aminoacetone (1-aminopropan-2-one), a putative minor biological source of methylglyoxal, reacts like other α-aminoketones such as 6-aminolevulinic acid (first heme precursor) and 1,4-diaminobutanone (a microbicide) yielding electrophilic α-oxoaldehydes, ammonium ion and reactive oxygen species by metal- and hemeprotein-catalyzed aerobic oxidation. A plethora of recent reports implicates triose phosphate-generated methylglyoxal in protein crosslinking and DNA addition, leading to age-related disorders, including diabetes. Importantly, methylglyoxal-treated hemoglobin adds four water-exposed arginine residues, which may compromise its physiological role and potentially serve as biomarkers for diabetes. This paper reports on the co-oxidation of aminoacetone and oxyhemoglobin in normally aerated phosphate buffer, leading to structural changes in hemoglobin, which can be attributed to the addition of aminoacetone-produced methylglyoxal to the protein. Hydroxyl radical-promoted chemical damage to hemoglobin may also occur in parallel, which is suggested by EPR-spin trapping studies with 5,5-dimethyl-1-pyrroline-N-oxide and ethanol. Concomitantly, oxyhemoglobin is oxidized to methemoglobin, as indicated by characteristic CD spectral changes in the Soret and visible regions. Overall, these findings may contribute to elucidate the molecular mechanisms underlying human diseases associated with hemoglobin dysfunctions and with aminoacetone in metabolic alterations related to excess glycine and threonine.
Collapse
Affiliation(s)
- Luiz D Ramos
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil; Centro Universitário Anhanguera, UniA, Santo André, SP, Brazil
| | - Mariana C Mantovani
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil; Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriano Sartori
- Centro de Ciências Exatas e Tecnologia, Universidade Cruzeiro Do Sul, São Paulo, SP, Brazil
| | - Fernando Dutra
- Centro de Ciências Exatas e Tecnologia, Universidade Cruzeiro Do Sul, São Paulo, SP, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
32
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
33
|
A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem 2020; 90:107402. [PMID: 33338839 DOI: 10.1016/j.compbiolchem.2020.107402] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has been used for more than 2000 years in China. TCM has received wide attention recently due to its unique charm. At the same time, its main obstacles have attracted wide attention, including vagueness of drug composition and treatment mechanism. With the development of virtual screening technology, more and more Chinese medicine compounds have been studied to discover the potential active components and mechanisms of action. Molecular docking is a computer technology based on structural design. Network pharmacology establishes powerful and comprehensive databases to understand the relationship between TCM and disease network. In this review, emergent uses and applications of two techniques and further superiorities of the two techniques when embarked to boil down into a tidy system were illustrated. A combination of the two provides a theoretical basis and technical support for the construction of modern TCM based on the compatibility of components and accelerates the realization of two basic elements as well, including the clearness of the pharmacodynamic substances and explanation of the effect of TCM.
Collapse
|
34
|
Pavin SS, Prestes ADS, Dos Santos MM, de Macedo GT, Ferreira SA, Claro MT, Dalla Corte C, Vargas Barbosa N. Methylglyoxal disturbs DNA repair and glyoxalase I system in Saccharomyces cerevisiae. Toxicol Mech Methods 2020; 31:107-115. [PMID: 33059495 DOI: 10.1080/15376516.2020.1838019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde able to form covalent adducts with proteins and nucleic acids, disrupting cellular functions. In this study, we performed a screening of Saccharomyces cerevisiae (S. cerevisiae) strains to find out which genes of cells are responsive to MG, emphasizing genes against oxidative stress and DNA repair. Yeast strains were grown in the YPD-Galactose medium containing MG (0.5 to 12 mM). The tolerance to MG was evaluated by determining cellular growth and cell viability. The toxicity of MG was more pronounced in the strains with deletion in genes engaged with DNA repair checkpoint proteins, namely Rad23 and Rad50. MG also impaired the growth and viability of S. cerevisiae mutant strains Glo1 and Gsh1, both components of the glyoxalase I system. Differently, the strains with deletion in genes encoding for antioxidant enzymes were apparently resistant to MG. In summary, our data indicate that DNA repair and MG detoxification pathways are keys in the control of MG toxicity in S. cerevisiae.
Collapse
Affiliation(s)
- Sandra Sartoretto Pavin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Matheus Mulling Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel Teixeira de Macedo
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sabrina Antunes Ferreira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mariana Torri Claro
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
35
|
Methylglyoxal Detoxification Revisited: Role of Glutathione Transferase in Model Cyanobacterium Synechocystis sp. Strain PCC 6803. mBio 2020; 11:mBio.00882-20. [PMID: 32753490 PMCID: PMC7407080 DOI: 10.1128/mbio.00882-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In most organisms, methylglyoxal (MG), a toxic metabolite by-product that causes diabetes in humans, is predominantly detoxified by the glyoxalase enzymes. This process begins with the so-called “spontaneous” conjugation of MG with the cytoprotectant metabolite glutathione (GSH). In this study, we unravel a logical, but as yet unsuspected, link between MG detoxification and a (prokaryotic) representative of the ubiquitous glutathione transferase (GST) enzymes. We show that a GST of a model cyanobacterium plays a prominent role in the detoxification of MG in catalyzing its conjugation with GSH. This finding is important because this reaction, always regarded as nonenzymatic, could exist in plants and/or human and thus have an impact on agriculture and/or human health. Methylglyoxal (MG) is a detrimental metabolic by-product that threatens most organisms (in humans MG causes diabetes). MG is predominantly detoxified by the glyoxalase pathway. This process begins with the conjugation of MG with glutathione (GSH), yielding a hemithioacetal product that is subsequently transformed by the glyoxalase enzymes into d-lactate and GSH. MG has been overlooked in photosynthetic organisms, although they inevitably produce it not only by the catabolism of sugars, lipids, and amino acids, as do heterotrophic organisms, but also by their active photoautotrophic metabolism. This is especially true for cyanobacteria that are regarded as having developed photosynthesis and GSH-dependent enzymes to detoxify the reactive oxygen species produced by their photosynthesis (CO2 assimilation) and respiration (glucose catabolism), which they perform in the same cell compartment. In this study, we used a combination of in vivo and in vitro approaches to characterize a logical, but as yet never described, link between MG detoxification and a (prokaryotic) representative of the evolutionarily conserved glutathione transferase (GST) detoxification enzymes. We show that the Sll0067 GST of the model cyanobacterium Synechocystis sp. strain PCC 6803 plays a prominent role in MG tolerance and detoxification, unlike the other five GSTs of this organism. Sll0067 catalyzes the conjugation of MG with GSH to initiate its elimination driven by glyoxalases. These results are novel because the conjugation of MG with GSH is always described as nonenzymatic. They will certainly stimulate the analysis of Sll0067 orthologs from other organisms with possible impacts on human health (development of biomarkers or drugs) and/or agriculture.
Collapse
|
36
|
Chen T, Dong J, Zhou H, Deng X, Li R, Chen N, Luo M, Li Y, Wu J, Wang L. Glycation of fibronectin inhibits VEGF-induced angiogenesis by uncoupling VEGF receptor-2-c-Src crosstalk. J Cell Mol Med 2020; 24:9154-9164. [PMID: 32613750 PMCID: PMC7417727 DOI: 10.1111/jcmm.15552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 01/08/2023] Open
Abstract
Glycation of extracellular matrix proteins has been demonstrated to contribute to the pathogenesis of vascular complications. However, no previous report has shown the role of glycated fibronectin (FN) in vascular endothelial growth factor (VEGF)‐induced angiogenesis. Thus, this study aimed to investigate the effects of glycated FN on VEGF signalling and to clarify the molecular mechanisms involved. FN was incubated with methylglyoxal (MGO) in vitro to synthesize glycated FN, and human umbilical vein endothelial cells (HUVECs) were seeded onto unmodified and MGO‐glycated FN. Then, VEGF‐induced angiogenesis and VEGF‐induced VEGF receptor‐2 (VEGFR‐2) signalling activation were measured. The results demonstrated that normal FN‐positive bands (260 kD) vanished and advanced glycation end products (AGEs) appeared in MGO‐glycated FN and glycated FN clearly changed to a higher molecular mass. The glycation of FN inhibited VEGF‐induced VEGF receptor‐2 (VEGFR‐2), Akt and ERK1/2 activation and VEGF‐induced cell migration, proliferation and tube formation. The glycation of FN also inhibited the recruitment of c‐Src to VEGFR‐2 by sequestering c‐Src through receptor for AGEs (RAGE) and the anti‐RAGE antibody restored VEGF‐induced VEGFR‐2, Akt and ERK1/2 phosphorylation, endothelial cell migration, proliferation and tube formation. Furthermore, the glycation of FN significantly inhibited VEGF‐induced neovascularization in the Matrigel plugs implanted into subcutaneous tissue of mice. Taken together, these data suggest that the glycation of FN may inhibit VEGF signalling and VEGF‐induced angiogenesis by uncoupling VEGFR‐2‐c‐Src interaction. This may provide a novel mechanism for the impaired angiogenesis in diabetic ischaemic diseases.
Collapse
Affiliation(s)
- Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jinling Dong
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Haiyan Zhou
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Rong Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ni Chen
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mao Luo
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yongjie Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqun Wang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Esmaeili F, Maleki V, Kheirouri S, Alizadeh M. The Effects of Taurine Supplementation on Metabolic Profiles, Pentosidine, Soluble Receptor of Advanced Glycation End Products and Methylglyoxal in Adults With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Can J Diabetes 2020; 45:39-46. [PMID: 32861603 DOI: 10.1016/j.jcjd.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Advanced glycation end products, along with methylglyoxal (MGO) as their precursor, play a major role in increased complications of type 2 diabetes mellitus (T2DM). Taurine (2-aminoethanesulphonic acid), a conditionally essential amino acid, is found in most mammalian tissues. Taurine is known as an antiglycation compound. This study was designed to investigate the effects of taurine supplementation on metabolic profiles, pentosidine, MGO and soluble receptors for advanced glycation end products in patients with T2DM. METHODS In this double-blind randomized controlled trial, 46 patients with T2DM were randomly allocated into taurine and placebo groups. Participants received either 3,000 mg/day taurine or placebo for 8 weeks. Metabolic profiles, pentosidine, MGO and soluble receptors for advanced glycation end products levels were assessed after 12 h of fasting at baseline and completion of the clinical trial. Independent t test, paired t test, Pearson correlation and analysis of covariance were used for analysis. RESULTS The mean serum levels of fasting blood sugar (p=0.01), glycated hemoglobin (p=0.04), insulin (p=0.03), homeostasis model assessment-insulin resistance (p=0.004), total cholesterol (p=0.01) and low-density lipoprotein cholesterol (p=0.03) significantly were reduced in the taurine group at completion compared with the placebo group. In addition, after completion of the study, pentosidine (p=0.004) and MGO (p=0.006) were significantly reduced in the taurine group compared with the placebo group. CONCLUSIONS The results of this trial show that taurine supplementation may decrease diabetes complications through improving glycemic control and advanced glycation end products.
Collapse
Affiliation(s)
- Fatemeh Esmaeili
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Omolaoye TS, du Plessis SS. Male infertility: A proximate look at the advanced glycation end products. Reprod Toxicol 2020; 93:169-177. [DOI: 10.1016/j.reprotox.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 01/07/2023]
|
39
|
Kold-Christensen R, Johannsen M. Methylglyoxal Metabolism and Aging-Related Disease: Moving from Correlation toward Causation. Trends Endocrinol Metab 2020; 31:81-92. [PMID: 31757593 DOI: 10.1016/j.tem.2019.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MG) is a ubiquitous metabolite that spontaneously reacts with biopolymers forming advanced glycation end-products (AGEs). AGEs are strongly associated with aging-related diseases, including cancer, neurodegenerative diseases, and diabetes. As the formation of AGEs is nonenzymatic, the damage caused by MG and AGEs has been regarded as unspecific. This may have resulted in the field generally been regarded as unappealing by many researchers, as detailed mechanisms have been difficult to probe. However, accumulating evidence highlighting the importance of MG in human metabolism and disease, as well as data revealing how MG can elicit its signaling function via specific protein AGEs, could change the current mindset, accelerating the field to the forefront of future research.
Collapse
Affiliation(s)
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
40
|
Fava EL, Martimiano do Prado T, Almeida Silva T, Cruz de Moraes F, Censi Faria R, Fatibello‐Filho O. New Disposable Electrochemical Paper‐based Microfluidic Device with Multiplexed Electrodes for Biomarkers Determination in Urine Sample. ELECTROANAL 2020. [DOI: 10.1002/elan.201900641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elson Luiz Fava
- Department of Chemistry Federal University of São Carlos São Carlos, P.O. Box 676 13560-970, SP Brazil
| | | | - Tiago Almeida Silva
- Department of Chemistry Federal University of São Carlos São Carlos, P.O. Box 676 13560-970, SP Brazil
- Department of Metallurgy and Chemistry Federal Center for Technological Education of Minas Gerais Timóteo 35180-008, MG Brazil
| | - Fernando Cruz de Moraes
- Department of Chemistry Federal University of São Carlos São Carlos, P.O. Box 676 13560-970, SP Brazil
| | - Ronaldo Censi Faria
- Department of Chemistry Federal University of São Carlos São Carlos, P.O. Box 676 13560-970, SP Brazil
| | - Orlando Fatibello‐Filho
- Department of Chemistry Federal University of São Carlos São Carlos, P.O. Box 676 13560-970, SP Brazil
| |
Collapse
|
41
|
Association between lncRNA and GCKR gene in type 2 diabetes mellitus. Clin Chim Acta 2019; 501:66-71. [PMID: 31756311 DOI: 10.1016/j.cca.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To screen long non-coding RNA (lncRNA) related to glucokinase regulatory protein gene (GCKR), its differential expression was analyzed in patients with Type 2 diabetes mellitus (T2DM) and control samples. The correlation of lncRNA with GCKR was verified and its potential value as a molecular marker of T2DM was assessed. METHODS Lymphocyte RNA was extracted from five patients with T2DM and five patients with non-T2DM. The expression profiles of circulating lncRNAs and mRNAs were obtained by microarray. Bioinformatics analysis was used to screen lncRNAs associated with the GCKR gene in 127 patients with T2DM and 130 patients with non-T2DM were selected. The expression levels of the GCKR gene and lncRNA (ENST00000588707.1 and TCONS_00004187) in the T2DM group and control group were verified by real-time PCR. Additionally, a correlation analysis was conducted. The value of circulating ENST00000588707.1 and TCONS_00004187 as biomarkers for the diagnosis of T2DM was performed by receiver operating characteristic curve analysis. RESULTS We identified 68 lncRNAs and 74 mRNAs differentially expressed from the expression profile. Compared with the control group, the expression levels of the GCKR gene and lncRNA ENST00000588707.1 and TCONS_00004187 in the T2DM group were significantly lower (P < 0.05). The correlation analysis revealed that ENST00000588707.1 and TCONS_00004187 were correlated with GCKR gene expression and glycolipid metabolism (P < 0.05). ROC analysis showed that the area under the curve value of ENST00000588707.1 between T2DM patients and non-T2DM patients was 0.816 (95% CI: 0.764-0.869, sensitivity 72.0%, specificity 80.3%) and the AUC value of TCONS_00004187 was 0.826 (95% CI: 0.774-0.879, sensitivity 81.6%, specificity 61.3%). CONCLUSION lncRNA ENST0000588707.1 and TCONS_00004187 could serve as potential biomarkers for T2DM, which could involve in glycolipid metabolism by regulating the GCKR gene.
Collapse
|
42
|
Jiang Z, Shen L, Wang S, Wu S, Hu Y, Guo J, Fu L. Hsa_circ_0028502 and hsa_circ_0076251 are potential novel biomarkers for hepatocellular carcinoma. Cancer Med 2019; 8:7278-7287. [PMID: 31595711 PMCID: PMC6885881 DOI: 10.1002/cam4.2584] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) have been increasingly revealed to be desirable biomarkers for some tumors, including hepatocellular carcinoma (HCC). Combined with our previous microarray screening results, we aimed to determine the hsa_circ_0028502 and hsa_circ_0076251 expression features in HCC, analyze the relationship between their expression level and clinical and pathological characteristics, and investigate their diagnostic and prognostic values. Our data demonstrated that the hsa_circ_0028502 and hsa_circ_0076251 levels were considerably lower in HCC tissues than in adjacent paracancerous tissues (P < .001). Further study revealed that hsa_circ_0028502 expression levels were related to tumor node metastasis (TNM) stage (P = .015) and that hsa_circ_0076251 expression levels were related to Barcelona Clinic Liver Cancer (BCLC) stage (P = .038), comorbidity with type 2 diabetes mellitus (P = .023) and the presence of serum HbsAg (P = .044). Furthermore, the degree of expression of both hsa_circ_0028502 and hsa_circ_0076251 increased from HCC to liver cirrhosis (LC) to chronic hepatitis (CH). The receiver operating characteristic (ROC) curve demonstrated that hsa_circ_0028502 and hsa_circ_0076251 could serve as fairly accurate markers to distinguish HCC tissues from CH tissues and LC tissues, as well as distinguishing LC tissues from CH tissues. Cox regression analysis showed that low expression of has_circ_0076251 was associated with unfavorable survival rates in HCC (HR = 0.46; 95% CI = 0.22‐0.98; P < .05). These findings implied that hsa_circ_0028502 and hsa_circ_0076251 were potentially valuable biomarkers for HCC diagnosis, whereas hsa_circ_0076251 could be used as a prognostic indicator for HCC.
Collapse
Affiliation(s)
- Zhenluo Jiang
- Department of HepatologyHwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
- Department of Biochemistry and Molecular BiologyZhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
| | - Lili Shen
- Department of HepatologyHwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
- Department of Biochemistry and Molecular BiologyZhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
| | - Shuwei Wang
- Department of HepatologyHwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
- Department of Biochemistry and Molecular BiologyZhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
| | - Shengdong Wu
- Department of General SurgeryLi Hui‐Li Hospital and the Affiliated HospitalMedical School of Ningbo UniversityNingboChina
| | - Yaoren Hu
- Department of HepatologyHwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
| | - Junming Guo
- Department of Biochemistry and Molecular BiologyZhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
| | - Liyun Fu
- Department of HepatologyHwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
- Department of Biochemistry and Molecular BiologyZhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
| |
Collapse
|
43
|
Wang J, Yan B. Improving Covalent Organic Frameworks Fluorescence by Triethylamine Pinpoint Surgery as Selective Biomarker Sensor for Diabetes Mellitus Diagnosis. Anal Chem 2019; 91:13183-13190. [PMID: 31529947 DOI: 10.1021/acs.analchem.9b03534] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nitrogen-containing imine or hydrazone linked covalent organic frameworks (COFs) are poorly luminescent due to the fluorescence quenching by nitrogen atoms in the linkages, even if highly luminescent units and linkers are employed. The fluorescence quenching pathway to prevent linkage-originated to mitigate the inherent limitations of the linkage is a promising method for luminescent COFs. The generation of N- by deprotonation of the N-H unit eliminates the electron transfer from N lone pair to COF (TpPa-1) and enhances the luminescence. In this work, TpPa-1 achieved turn-on luminescence response with good sensitivity and reproducibility toward triethylamine (TEA) vapor in the process of deprotonation. The fabricated detector offers a viable approach for sensing ppm-level TEA, which can remind people to take timely measures to reduce the environmental hazards caused by TEA. The fluorescent sensor TpPa-1@LE constructed by the products of TpPa-1 and TEA can quantitatively trace biomarker methylglyoxal (MGO) for diabetes mellitus diagnosis in serum system. Furthermore, using TEA and MGO as input signals and the two fluorescence emissions G476 and Y525 as output signals, an advanced analytical device based on two Boolean logic gates with INH and AND function is constructed. This work provides a new strategy for improving the weak luminescence of COF in aqueous solution and realizes selective response to biomarker (MGO) for diabetes mellitus diagnosis.
Collapse
Affiliation(s)
- Jinmin Wang
- School of Chemical Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Bing Yan
- School of Chemical Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China.,School of Materials Science and Engineering , Liaocheng University , Liaocheng 252059 , China
| |
Collapse
|
44
|
Kold-Christensen R, Jensen KK, Smedegård-Holmquist E, Sørensen LK, Hansen J, Jørgensen KA, Kristensen P, Johannsen M. ReactELISA method for quantifying methylglyoxal levels in plasma and cell cultures. Redox Biol 2019; 26:101252. [PMID: 31254735 PMCID: PMC6604041 DOI: 10.1016/j.redox.2019.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 01/14/2023] Open
Abstract
Methylglyoxal (MG) is a toxic glycolytic by-product associated with increased levels of inflammation and oxidative stress and has been linked to ageing-related diseases, such as diabetes and Alzheimer's disease. As MG is a highly reactive dicarbonyl compound, forming both reversible and irreversible adducts with a range of endogenous nucleophiles, measuring endogenous levels of MG are quite troublesome. Furthermore, as MG is a small metabolite it is not very immunogenic, excluding conventional ELISA for detection purposes, thus only more instrumentally demanding LC-MS/MS-based methods have demonstrated convincing quantitative data. In the present work we develop a novel bifunctional MG capture probe as well as a high specificity monoclonal antibody to finally setup a robust reaction-based ELISA (ReactELISA) method for detecting the highly reactive and low-level (nM) metabolite MG in human biological specimens. The assay is tested and validated against the current golden standard LC-MS/MS method in human blood plasma and cell-culture media. Furthermore, we demonstrate the assays ability to measure small perturbations of MG levels in growth media caused by a small molecule drug buthionine sulfoximine (BSO) of current clinical relevance. Finally, the assay is converted into a homogenous (no-wash) AlphaLISA version (ReactAlphaLISA), which offers the potential for operationally simple screening of further small molecules capable of perturbing cellular MG. Such compounds could be of relevance as probes to gain insight into MG metabolism as well as drug-leads to alleviate ageing-related diseases. MG is challenging to quantify, here we present a simple and specific ReactELISA based approach and validate against LC-MS/MS. Sensitivity at low (nM) endogenous concentration in both human blood plasma and cell culture media. Impact of BSO treatment of HEK293 cells can be profiled in culture media. Potential use in cell-based phenotypic screen for small molecules modulating MG metabolism.
Collapse
Affiliation(s)
- Rasmus Kold-Christensen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Karina Kragh Jensen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Emil Smedegård-Holmquist
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
45
|
Rajpurohit AS, Punde NS, Srivastava AK. An electrochemical sensor with a copper oxide/gold nanoparticle-modified electrode for the simultaneous detection of the potential diabetic biomarkers methylglyoxal and its detoxification enzyme glyoxalase. NEW J CHEM 2019. [DOI: 10.1039/c9nj03553b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Highly sensitive electro-oxidation of the MGO and GLO biomarkers at the CuO/Au/GCE sensor employing the AdSDPV method.
Collapse
Affiliation(s)
- Anuja S. Rajpurohit
- Department of Chemistry
- University of Mumbai
- Vidyanagari
- Santacruz (East)
- Mumbai-400 098
| | - Ninad S. Punde
- Department of Chemistry
- University of Mumbai
- Vidyanagari
- Santacruz (East)
- Mumbai-400 098
| | - Ashwini K. Srivastava
- Department of Chemistry
- University of Mumbai
- Vidyanagari
- Santacruz (East)
- Mumbai-400 098
| |
Collapse
|