1
|
Cheng X, Liu S, Hu Y. Recent Advances in Nanozyme Sensors Based on Metal-Organic Frameworks and Covalent-Organic Frameworks. BIOSENSORS 2024; 14:520. [PMID: 39589979 PMCID: PMC11592407 DOI: 10.3390/bios14110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity, which have drawn increasing attention on account of their unique superiorities including very high robustness, low cost, and ease of modification. Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) have emerged as promising candidates for nanozymes due to their abundant catalytic activity centers, inherent porosity, and tunable chemical functionalities. In this review, we first compare the enzyme-mimicking activity centers and catalytic mechanisms between MOF and COF nanozymes, and then summarize the recent research on designing and modifying MOF and COF nanozymes with inherent catalytic activity. Moreover, typical examples of sensing applications based on these nanozymes are presented, as well as the translation of enzyme catalytic activity into a visible signal response. At last, a discussion of current challenges is presented, followed by some future prospects to provide guidance for designing nanozyme sensors based on MOFs and COFs for practical applications.
Collapse
Affiliation(s)
| | | | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510060, China; (X.C.); (S.L.)
| |
Collapse
|
2
|
Mao H, Yu L, Tu M, Wang S, Zhao J, Zhang H, Cao Y. Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Crit Rev Anal Chem 2024; 54:1273-1289. [PMID: 35980613 DOI: 10.1080/10408347.2022.2111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and selective detection of cancer biomarkers is crucial for early diagnosis and treatment of cancer, one of the most dangerous diseases in the world. Metal-organic frameworks (MOFs), a class of hybrid porous materials fabricated through the assembly of metal ions/clusters and organic ligands, have attracted increasing attention in the sensing of cancer biomarkers, due to the advantages of adjustable size, high porosity, large surface area and ease of modification. MOFs have been utilized to not only fabricate active sensing interfaces but also arouse a variety of measurable signals. Several representative analytical technologies have been applied in MOF-based biosensing strategies to ensure high detection sensitivity toward cancer biomarkers, such as fluorescence, electrochemistry, electrochemiluminescence, photochemistry and colorimetric methods. In this review, we summarized recent advances on MOFs-based biosensing strategies for the detection of cancer biomarkers in recent three years based on the categories of metal nodes, and aimed to provide valuable references for the development of innovative biosensing platform for the purpose of clinical diagnosis.
Collapse
Affiliation(s)
- Huiru Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Longmei Yu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuning Wang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiyun Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ya Cao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Cai X, Huang Y, Zhu C. Immobilized Multi-Enzyme/Nanozyme Biomimetic Cascade Catalysis for Biosensing Applications. Adv Healthc Mater 2024:e2401834. [PMID: 38889805 DOI: 10.1002/adhm.202401834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Multiple enzyme-induced cascade catalysis has an indispensable role in the process of complex life activities, and is widely used to construct robust biosensors for analyzing various targets. The immobilized multi-enzyme cascade catalysis system is a novel biomimetic catalysis strategy that immobilizes various enzymes with different functions in stable carriers to simulate the synergistic catalysis of multiple enzymes in biological systems, which enables high stability of enzymes and efficiency enzymatic cascade catalysis. Nanozymes, a type of nanomaterial with intrinsic enzyme-like characteristics and excellent stabilities, are also widely applied instead of enzymes to construct immobilized cascade systems, achieving better catalytic performance and reaction stability. Due to good stability, reusability, and remarkably high efficiency, the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems show distinct advantages in promoting signal transduction and amplification, thereby attracting vast research interest in biosensing applications. This review focuses on the research progress of the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems in recent years. The construction approaches, factors affecting the efficiency, and applications for sensitive biosensing are discussed in detail. Further, their challenges and outlooks for future study are also provided.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
4
|
Patil SM, Karade VC, Kim JH, Chougale AD, Patil PB. Electrochemical Detection of a Breast Cancer Biomarker with an Amine-Functionalized Nanocomposite Pt-Fe 3O 4-MWCNTs-NH 2 as a Signal-Amplifying Label. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25601-25609. [PMID: 38727578 DOI: 10.1021/acsami.3c15531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
We report an ultrasensitive sandwich-type electrochemical immunosensor to detect the breast cancer biomarker CA 15-3. Amine-functionalized composite of reduced graphene oxide and Fe3O4 nanoparticles (MRGO-NH2) was used as an electrochemical sensing platform material to modify the electrodes. The nanocomposite comprising Pt and Fe3O4 nanoparticles (NPs) anchored on multiwalled carbon nanotubes (Pt-Fe3O4-MWCNTs-NH2) was utilized as a pseudoenzymatic signal-amplifying label. Compared to reduced graphene oxide, the composite MRGO-NH2 platform material demonstrated a higher electrochemical signal. In the Pt-Fe3O4-MWCNTs-NH2 label, multiwalled carbon nanotubes provided the substratum to anchor abundant catalytic Pt and Fe3O4 NPs. The nanocomposites were thoroughly characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. An electroanalytical study and prevalidation of the immunosensor was carried out. The immunosensor exhibited exceptional capabilities in detecting CA 15-3, offering a wider linear range of 0.0005-100 U mL-1 and a lower detection limit of 0.00008 U mL-1. Moreover, the designed immunosensor showed good specificity, reproducibility, and acceptable stability. The sensor was successfully applied to analyze samples from breast cancer patients, yielding reliable results.
Collapse
Affiliation(s)
- Sunil M Patil
- Department of Physics, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| | - Vijay C Karade
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Jin Hyeok Kim
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Ashok D Chougale
- Department of Chemistry, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| | - Prashant B Patil
- Department of Physics, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| |
Collapse
|
5
|
Li Y, Feng J, Yao T, Han H, Ma Z, Yang H. Novel dual-responsive hydrogel composed of polyacrylamide/Fe-MOF/zinc finger peptide for construction of electrochemical sensing platform. Anal Chim Acta 2024; 1289:342201. [PMID: 38245204 DOI: 10.1016/j.aca.2024.342201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Responsive hydrogels have received much attention for improving the detection performance of electrochemical sensors because of their special responsiveness. However, current responsive hydrogels generally suffer from long response times, ranging from tens of minutes to several hours. This situation severely limits the detection performance and practical application of electrochemical sensors. Here, an electrochemical sensing platform was constructed by employing dual-responsive polyacrylamide/zinc finger peptide/Fe-MOF hydrogel (PZFH) as the silent layer, sodium alginate-Ni2+-graphene oxide hydrogel as the signal layer. GOx@ZIF-8, as the immunoprobe, catalyzed glucose to H2O2 and gluconic acid, resulting in the cleavage of immunoprobe as the pH decreased and subsequent release of Zn2+ ions. During the process of Fe-MOF converting from Fe3+ to Fe2+, free radicals were generated and used to destroy the structure of the PZFH. Cysteine and histidine in the zinc finger peptide can specifically bind to Zn2+ to create many pores in PZFH, exposing the signal layer. These synergistic effects rapidly decreased the impedance of PZFH and increased the electrochemical signal of Ni2+. The electrochemical sensing platform was used to detect pro-gastrin-releasing peptide with response times as short as 7 min of PZFH, a wide linear range from 100 ng mL-1 to 100 fg mL-1, and an ultra-low limit of detection of 14.24 fg mL-1 (S/N = 3). This strategy will provide a paradigm for designing electrochemical sensors.
Collapse
Affiliation(s)
- Youyu Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jiejie Feng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Haijun Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
6
|
Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. MICROMACHINES 2024; 15:181. [PMID: 38398911 PMCID: PMC10890403 DOI: 10.3390/mi15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Collapse
Affiliation(s)
- Nikita Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Andrey Ryabko
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Vyacheslav Moshnikov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
| | - Andrey Aleshin
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Dmitry Kaplun
- Artificial Intelligence Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China;
- Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Tatiana Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| |
Collapse
|
7
|
Robinson C, Juska VB, O'Riordan A. Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 237:116877. [PMID: 37579966 DOI: 10.1016/j.envres.2023.116877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Immunosensors are promising alternatives as detection platforms for the current gold standards methods. Electrochemical immunosensors have already proven their capability for the sensitive, selective, detection of target biomarkers specific to COVID-19, varying cancers or Alzheimer's disease, etc. Among the electrochemical techniques, electrochemical impedance spectroscopy (EIS) is a highly sensitive technique which examines the impedance of an electrochemical cell over a range of frequencies. There are several important critical requirements for the construction of successful impedimetric immunosensor. The applied surface chemistry and immobilisation protocol have impact on the electroanalytical performance of the developed immunosensors. In this Review, we summarise the building blocks of immunosensors based on EIS, including self-assembly monolayers, nanomaterials, polymers, immobilisation protocols and antibody orientation.
Collapse
Affiliation(s)
- Caoimhe Robinson
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland
| | - Vuslat B Juska
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| |
Collapse
|
8
|
Wang M, Jiang M, Ma C, Zhao C, Lai W, Li J, Wang D, Hong C, Qi Y. Construction of a Dual-Mode Immune Platform Based on the Photothermal Effect of AgCo@NC NPs for the Detection of α-Fetoprotein. Anal Chem 2023; 95:16225-16233. [PMID: 37877873 DOI: 10.1021/acs.analchem.3c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Compared with the accuracy of a single signal and the limitation of environmental applicability, the application value of dual-mode detection is gradually increasing. To this end, based on the photothermal effect of Ag/Co embedded N-rich mesoporous carbon nanomaterials (AgCo@NC NPs), we designed a dual-mode signal response system for the detection of α-fetoprotein (AFP). First, AgCo@NC NPs act as a photothermal immunoprobe that converts light energy into heat driven by a near-infrared (NIR) laser and obtains temperature changes corresponding to the analyte concentration on a hand-held thermal imager. In addition, this temperature recognition system can significantly improve the efficiency of Fenton-like reactions. AgCo@NC NPs act as peroxidase mimics to initiate the generation of poly N-isopropylacrylamide (PNIPAM, resistance enhancer) by cascade catalysis and the degradation of methylene blue (MB), thus enabling electrochemical testing. The dual-mode assay ranges from 0.01 to 100 and 0.001-10 ng/mL, with lower limits of detection (LOD) of 3.2 and 0.089 pg/mL, respectively, and combines visualization, portability, and high efficiency, opening new avenues for future clinical diagnostics and inhibitor studies.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Mingzhe Jiang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chaoyun Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chulei Zhao
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wenjing Lai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jiajia Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Dasheng Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chenglin Hong
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yu Qi
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
9
|
Chen DN, Wang AJ, Feng JJ, Cheang TY. One-pot wet-chemical fabrication of 3D urchin-like core-shell Au@PdCu nanocrystals for electrochemical breast cancer immunoassay. Mikrochim Acta 2023; 190:353. [PMID: 37581740 DOI: 10.1007/s00604-023-05932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Carbohydrate antigen 15-3 (CA15-3) is an important biomarker for early diagnosis of breast cancer. Herein, a label-free electrochemical immunosensor was built based on three-dimensional (3D) urchin-like core-shell Au@PdCu nanocrystals (labeled Au@PdCu NCs) for highly sensitive detection of CA15-3, where K3[Fe(CN)6] behaved as an electroactive probe. The Au@PdCu NCs were synthesized by a simple one-pot wet-chemical approach and the morphology, structures, and electrocatalytic property were investigated by several techniques. The Au@PdCu NCs prepared worked as electrode material to anchor more antibodies and as signal magnification material by virtue of its exceptional catalytic property. The developed biosensor exhibited a wide linear detection range from 0.1 to 300 U mL-1 and a low limit of detection (0.011 U mL-1, S/N = 3) for determination of CA15-3 under the optimal conditions. The established biosensing platform exhibits some insights for detecting other tumor biomarkers in clinical assays and early diagnosis.
Collapse
Affiliation(s)
- Di-Nan Chen
- Department of Breast Care Centre, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiu-Ju Feng
- Department of Breast Care Centre, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Tuck Yun Cheang
- Department of Breast Care Centre, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, Ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands.
| | | | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands.
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Du J, Chen G, Yuan X, Yuan J, Li L. Multi-stimuli responsive Cu-MOFs@Keratin drug delivery system for chemodynamic therapy. Front Bioeng Biotechnol 2023; 11:1125348. [PMID: 36815879 PMCID: PMC9936514 DOI: 10.3389/fbioe.2023.1125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Although the potential of metal-organic framework (MOF) nanoparticles as drug delivery systems (DDS) for cancer treatment has been established by numerous studies, their clinical applications are still limited due to relatively poor biocompatibility. We fabricated a multifunctional Cu-MOFs@Keratin DDS for loaded drug and chemodynamic therapy (CDT) against tumor cells. The Cu-MOFs core was prepared using a hydrothermal method, and then loaded with the anticancer drug DOX and wrapped in human hair keratin. The Cu-MOFs@Keratin was well characterized by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray photoelectron spectroscopy (XPS). Characterization and pharmacokinetic studies of Cu-MOFs@Keratin were performed in vitro and in vivo. The keratin shell reduced the cytotoxicity and potential leakage of Cu-MOFs to normal cells, and allowed the drug-loaded nanoparticles to accumulate in the tumor tissues through enhanced permeability and retention effect (EPR). The particles entered the tumor cells via endocytosis and disintegrated under the stimulation of intracellular environment, thereby releasing DOX in a controlled manner. In addition, the Cu-MOFs produced hydroxyl radicals (·OH) by consuming presence of high intracellular levels of glutathione (GSH) and H2O2, which decreased the viability of the tumor cells.
Collapse
Affiliation(s)
- Jinsong Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China,Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Guanping Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China,*Correspondence: Jiang Yuan, ; Li Li,
| | - Li Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China,School of Clinical Medicine and The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China,*Correspondence: Jiang Yuan, ; Li Li,
| |
Collapse
|
12
|
Early detection of tumour-associated antigens: Assessment of point-of-care electrochemical immunoassays. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Blueprint for Impedance-based Electrochemical Biosensors as Bioengineered Tools in the Field of Nano-Diagnostics. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Wang Q, Jiao C, Wang X, Wang Y, Sun K, Li L, Fan Y, Hu L. A hydrogel-based biosensor for stable detection of glucose. Biosens Bioelectron 2022; 221:114908. [DOI: 10.1016/j.bios.2022.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
15
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
16
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
17
|
Hu X, Hu R, Zhu H, Chen Q, Lu Y, Chen J, Liu Y, Chen H. Nanozyme-based cascade SPR signal amplification for immunosensing of nitrated alpha-synuclein. Mikrochim Acta 2022; 189:367. [PMID: 36056240 DOI: 10.1007/s00604-022-05465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
A self-assembled nanozyme of iron porphyrin mediated supramolecular modified gold nanoparticles (FpA) was fabricated to determine nitrated alpha-synuclein as the Tyr 39 residue (nT39 α-Syn) of a potential biomarker for early diagnosis of Parkinson's disease (PD). Mechanically, localized surface plasmon resonance (LSPR) and the mass effect caused by catalytic deposition of the nanozyme contributed to a cascade signal amplification strategy. The sensor allowed a signal amplification and selective nT39 α-Syn bioanalysis with a 1.34-fold enhancement by cascade amplified SPR signal and double specific recognition. The detection limit was 1.78 ng/mL in the detection range of 7-240 ng/mL. Benefiting from the excellent immunosensor, this method can distinguish healthy people and PD patients using actual samples. Overall, this strategy provides a nanozyme-based biosensing platform for the early diagnosis of PD and can be applied to detect other protein biomarkers, such as PD-L1.
Collapse
Affiliation(s)
- Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ruhui Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jie Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
18
|
Huang S, Chen G, Ouyang G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem Soc Rev 2022; 51:6824-6863. [PMID: 35852480 DOI: 10.1039/d1cs01011e] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
19
|
Feng Y, Xu Y, Liu S, Wu D, Su Z, Chen G, Liu J, Li G. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214414] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Electrochemical immunosensor for point-of-care quantitative detection of tumor markers based on personal glucometer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A. A Comprehensive Review of Metal-Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:2238. [PMID: 35336408 PMCID: PMC8953394 DOI: 10.3390/s22062238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Many studies have addressed electrochemical biosensors because of their simple synthesis process, adjustability, simplification, manipulation of materials' compositions and features, and wide ranges of detection of different kinds of biomedical analytes. Performant electrochemical biosensors can be achieved by selecting materials that enable faster electron transfer, larger surface areas, very good electrocatalytic activities, and numerous sites for bioconjugation. Several studies have been conducted on the metal-organic frameworks (MOFs) as electrode modifiers for electrochemical biosensing applications because of their respective acceptable properties and effectiveness. Nonetheless, researchers face challenges in designing and preparing MOFs that exhibit higher stability, sensitivity, and selectivity to detect biomedical analytes. The present review explains the synthesis and description of MOFs, and their relative uses as biosensors in the healthcare sector by dealing with the biosensors for drugs, biomolecules, as well as biomarkers with smaller molecular weight, proteins, and infectious disease.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | | | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Antonio Di Bartolomeo
- Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
22
|
Huang W, Huang S, Chen G, Ouyang G. Biocatalytic Metal-Organic Framework: Promising Materials for Biosensing. Chembiochem 2022; 23:e202100567. [PMID: 35025113 DOI: 10.1002/cbic.202100567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The high-efficient and specific catalysis of enzyme allow it to recognize a myriad of substrate that impels the biosensing. Nevertheless, the fragility of natural enzymes severely restricts their practical applications. Metal-organic frameworks (MOFs) with porous network and attractive functions have been intelligently employed as supports to encase enzymes for protecting them against hash environments. More importantly, the customizable construction and composition affords the intrinsic enzyme-like activity of some MOFs (known as nanozymes), which provides an alternative guideline to construct robust enzymes mimics. Herein, this review will introduce the concept of these biocatalytic MOFs, with the special emphasis on how the biocatalytic processes operated in these MOFs materials can reverse the plight of native enzymes-based biosensing. In addition, the present challenges and future outlooks in this research field are briefly put forward.
Collapse
Affiliation(s)
- Wei Huang
- Sun Yat-Sen University, School of Chemical Engineering and Technology, CHINA
| | - Siming Huang
- Guangzhou Medical University, School of pharmaceutical sciences, CHINA
| | - Guosheng Chen
- Sun Yat-Sen University, School of Chemistry, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China, 510275, Guangzhou, CHINA
| | | |
Collapse
|
23
|
Cen SY, Ge XY, Chen Y, Wang AJ, Feng JJ. Label-free electrochemical immunosensor for ultrasensitive determination of cardiac troponin I based on porous fluffy-like AuPtPd trimetallic alloyed nanodendrites. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Ge XY, Feng YG, Cen SY, Wang AJ, Mei LP, Luo X, Feng JJ. A label-free electrochemical immnunosensor based on signal magnification of oxygen reduction reaction catalyzed by uniform PtCo nanodendrites for highly sensitive detection of carbohydrate antigen 15-3. Anal Chim Acta 2021; 1176:338750. [PMID: 34399893 DOI: 10.1016/j.aca.2021.338750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 01/03/2023]
Abstract
Developing a highly sensitive immunoassay for tumor biomarkers is particularly important in bioanalysis and early disease diagnosis. In this work, a simple one-pot solvothermal method was developed for controllable synthesis of well-dispersed PtCo alloyed nanodendrites (PtCo NDs) by using l-carnosine as the co-structure-directing agent. The PtCo NDs had a large specific surface area and provided abundant active sites available for electrocatalytic oxygen reduction reaction (ORR). Based on the highly enhanced currents of the ORR, a novel label-free electrochemical immunosensor was fabricated for highly sensitive assay of carbohydrate antigen 15-3 (CA15-3). The sensor showed a wide linear range of 0.1-200 U mL-1 and a low limit of detection (LOD) down to 0.0114 U mL-1 (S/N = 3), in turn exploring its application to diluted human serum samples with satisfactory results. This study provides a feasible platform for monitoring other tumor markers in clinical diagnosis.
Collapse
Affiliation(s)
- Xin-Yue Ge
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yi-Ge Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shi-Yun Cen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
26
|
Xu W, Jiao L, Wu Y, Hu L, Gu W, Zhu C. Metal-Organic Frameworks Enhance Biomimetic Cascade Catalysis for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005172. [PMID: 33893661 DOI: 10.1002/adma.202005172] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Multiple enzymes-induced biological cascade catalysis guides efficient and selective substrate transformations in vivo. The biomimetic cascade systems, as ingenious strategies for signal transduction and amplification, have a wide range of applications in biosensing. However, the fragile nature of enzymes greatly limits their wide applications. In this regard, metal-organic frameworks (MOFs) with porous structures, unique nano/microenvironments, and good biocompatibility have been skillfully used as carriers to immobilize enzymes for shielding them against hash surroundings and improving the catalytic efficiency. For another, nanomaterials with enzyme-like properties and brilliant stabilities (nanozymes), have been widely applied to ameliorate the low stability of the enzymes. Inheriting the abovementioned merits of MOFs, the performances of MOFs-immboilized nanozymes could be significantly enhanced. Furthermore, in addition to carriers, some MOFs can also serve as nanozymes, expanding their applications in cascade systems. Herein, recent advances in the fabrication of efficient MOFs-involving enzymes/nanozymes cascade systems and biosensing applications are highlighted. Integrating diversified signal output modes, including colorimetry, electrochemistry, fluorescence, chemiluminescence, and surface-enhanced Raman scattering, sensitive detection of various targets (including biological molecules, environmental pollutants, enzyme activities, and so on) are realized. Finally, challenges and opportunities about further constructions and applications of MOFs-involving cascade reaction systems are briefly put forward.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
27
|
Zhu X, Liu Z, Li J, Li Z, Si F, Yang H, Kong J. Dual signal amplification based on polysaccharide-initiated ring-opening polymerization and click polymerization for exosomes detection. Talanta 2021; 233:122531. [PMID: 34215034 DOI: 10.1016/j.talanta.2021.122531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Exosomes, as a biomarker with enhancing tumor invasion and spread, play an essential role for lung cancer diagnosis, therapy, and prognosis. In this work, a novel electrochemical sensor was fabricated for detecting exosomes secreted by lung cancer cells based on polysaccharide-initiated ring-opening polymerization (ROP) and click polymerization. First, MPA formed a self-assembled monolayer on the gold electrode surface, and then anti-EGFR was immobilized on the electrode surface by amide bond. Subsequently, a lot of phosphate groups were introduced by the specific recognition between anti-EGFR and exosomes, then sodium alginate grafted Glycidyl propargyl ether (SA-g-GPE) prepared via ROP was attached to the exosomes through PO43-Zr4+-COOH coordination bond. After that, click polymerization was initiated by alkyne groups on the SA-g-GPE polymerization chain to realize highly sensitive detection of A549 exosomes. Under the optimum conditions, the fabricated sensor showed a good linear relationship between the logarithm of exosomes concentration and peak current in the range of 5 × 103 - 5 × 109 particles/mL, and the limit of detection (LOD) was as low as 1.49 × 102 particles/mL. In addition, this method had the advantages of high specificity, anti-interference, high sensitivity, simplicity, rapidity and green economy, which proposed a novel avenue for the detection of exosomes, and also had potential applications in early cancer diagnosis and biomedicine.
Collapse
Affiliation(s)
- Xin Zhu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zenghui Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Jinge Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zutian Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Fuchun Si
- Henan Key Laboratory of TCM Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
28
|
Zhang C, Zhang N, Xu Y, Feng J, Yao T, Wang F, Ma Z, Han H. Fenton reaction-mediated dual-attenuation of signal for ultrasensitive amperometric immunoassay. Biosens Bioelectron 2021; 178:113009. [PMID: 33493899 DOI: 10.1016/j.bios.2021.113009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
In order to alter the complexion of immunoprobe with large impedance as negative factor in sensitivity of amperometric immunosensor, a strategy of Fenton reaction-mediated dual-attenuation of signal was proposed. Herein, metal-polydopamine-Fe3+ composite with the ability of Fenton reaction was initially prepared as immunoprobe for an ultrasensitive immunoassay. The polymerization of dopamine occurred on the surface of ZIF-67 to gain the metal-polydopamine shell, which possessed rich functional groups, negative charge and high specific surface. Then the prepared functional shell was further used to absorb Fe3+ and immobilize labeling antibody as immunoprobe, which was used to construct a sandwich type immunosensor. With addition of H2O2 and aniline, Fenton reaction was triggered to produce hydroxyl radicals, which can not only decrease the current value by degrading methylene blue molecules, but also further initiate aniline to polymerize into non-conductive polyaniline for successive abatement of signal intensity. Therefore, the dual-attenuation of signal model rendered the immunoprobe into a favorable factor and synchronously enhance sensitivity. Expectedly, the detection performance with a linear range from 1.0 × 10-4-100 ng mL-1 and ultralow detection limit of 9.07 × 10-5 ng mL-1 toward neuron-specific enolase was obtained under optimal conditions. This work offered a novel tactic for enhancing sensitivity of immunosensor through the preparation of functional immunoprobe and its rational utilization as signal enhancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Nana Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yang Xu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jiejie Feng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Fei Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
29
|
Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosens Bioelectron 2021; 178:113021. [DOI: 10.1016/j.bios.2021.113021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
|
30
|
Fan X, Wu L, Yang L. Fabrication and characterization of thermoresponsive composite carriers: PNIPAAm-grafted glass spheres. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Processing capacity and product yield of three-dimensional (3D) smart responsive carriers are markedly superior to those of two-dimensional substrates with the same compositions due to the special structure; therefore, more attempts have been made to develop the 3D intelligent systems in recent decades. A novel preparation strategy of thermoresponsive glass sphere-based composite carriers was reported in this study. First, PNIPAAm copolymers were synthesized by free-radical polymerization of N-isopropylacrylamide (NIPAAm), hydroxypropyl methacrylate (HPM), and 3-trimethoxysilypropyl methacrylate (TMSPM). Then, the copolymer solution was sprayed on the surfaces of glass spheres using a self-made bottom-spray fluidized bed reactor, and the bonding between copolymers and glass spheres was fabricated by thermal annealing to form PNIPAAm copolymer/glass sphere composite carriers. The coating effects of PNIPAAm copolymers on sphere surfaces were investigated, including characteristic functional groups, surface microstructure, grafting density, equilibrium swelling, as well as biocompatibility and potential application for cell culture. The results show that the temperature-responsive PNIPAAm copolymers can be linked to the surfaces of glass spheres by bottom-spray coating technology, and the copolymer layers can be formed on the sphere surfaces. The composite carriers have excellent thermosensitivity and favorable biocompatibility, and they are available for effective cell adhesion and spontaneous cell detachment by the use of smart responsiveness.
Collapse
Affiliation(s)
- Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University , Shenyang 110866 , China
| | - Liyan Wu
- College of Engineering, Shenyang Agricultural University , Shenyang 110866 , China
| | - Lei Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University , Fushun 113001 , China
| |
Collapse
|
31
|
Wang H, Ma Z. Copper peroxide/ZIF-8 self-producing H 2O 2 triggered cascade reaction for amperometric immunoassay of carbohydrate antigen 19-9. Biosens Bioelectron 2020; 169:112644. [PMID: 32979592 DOI: 10.1016/j.bios.2020.112644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Generally, H2O2 is frequently adopted to improve analysis capabilities of various detection systems. However, the addition of H2O2 with relatively higher concentration can lower the bioactivity of antibodies or antigens and the sensing interface stability in most peroxidase and peroxidase-like immunosensors. In order to solve these issues, we designed a novel copper peroxide/ZIF-8 immunoprobe that can self-produce H2O2 to trigger a cascade reaction for the sensitive detection of carbohydrate antigen 19-9. Specifically, CP/ZIF-8 plays a key role as a "signal switch" in the immunosensor. In the presence of HCl, the structures of ZIF-8 and copper peroxide can be broken, producing Cu2+ and H2O2 and a subsequent Fenton-type reaction that generates •OH. The resulting •OH can induce the decomposition of 3-aminobenzeneboronic acid/poly (vinyl alcohol) (PVA) film on the electrode. Although the immunosensor initially showed little current signal due to the poor conductivity pf ZIF-8 and PVA, the current signal was significantly amplified by a HCl-triggered cascade reaction. Under optimal conditions, the immunosensor displayed a wide linear range from 0.0001 to 100 U mL-1 with an ultralow limit of detection of 53.5 μU mL-1 (S/N = 3) for carbohydrate antigen 19-9. Considering these advantages, namely self-producing H2O2 and easy operation, this strategy paves a new way to design other novel sensors.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
32
|
Liu H, Chen Y, Cheng Y, Xie Q, Liu R, Yang X. Immunosensing of NT‐proBNP via Cu
2+
‐based MOFs Biolabeling and in situ Microliter‐droplet Anodic Stripping Voltammetry. ELECTROANAL 2020. [DOI: 10.1002/elan.202000076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 China (Q. Xie)
| | - Yingying Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 China (Q. Xie)
| | - Yan Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 China (Q. Xie)
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 China (Q. Xie)
| | - Rushi Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of MedicineHunan Normal University Changsha 410013 China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of MedicineHunan Normal University Changsha 410013 China
| |
Collapse
|
33
|
Xu L, Zou L, Guo J, Cao Y, Feng C, Ye B. Simple “Signal‐Off” Electrochemical Aptasensor Based on Aptamer‐Cu
3
(PO
4
)
2
Hybrid Nanoflowers/Graphene Oxide for Carcinoembryonic Antigen Detection. ChemElectroChem 2020. [DOI: 10.1002/celc.202000307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lingling Xu
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Lina Zou
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Jiaxin Guo
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Ying Cao
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Changrui Feng
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Baoxian Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| |
Collapse
|
34
|
Elevating performance of electrochemical immunosensor via photo-induced microscale hyperthermia in situ. Biosens Bioelectron 2020; 150:111951. [DOI: 10.1016/j.bios.2019.111951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023]
|
35
|
Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a Fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity. Mikrochim Acta 2020; 187:95. [DOI: 10.1007/s00604-019-4075-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/06/2019] [Indexed: 01/30/2023]
|
36
|
PtCu nanoprobe-initiated cascade reaction modulated iodide-responsive sensing interface for improved electrochemical immunosensor of neuron-specific enolase. Biosens Bioelectron 2019; 143:111612. [DOI: 10.1016/j.bios.2019.111612] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022]
|