1
|
Lv T, Liu J, Li F, Ma S, Wei X, Li X, Han C, Wang X. Label-Free and Ultrasensitive Detection of Cartilage Acidic Protein 1 in Osteoarthritis Using a Single-Walled Carbon Nanotube Field-Effect Transistor Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36804-36810. [PMID: 38970471 DOI: 10.1021/acsami.4c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA), a prevalent degenerative joint disease, significantly affects the well-being of afflicted individuals and compromises the standard functionality of human joints. The emerging biomarker, Cartilage acidic protein 1 (CRTAC1), intricately associates with OA initiation and serves as a prognostic indicator for the trajectory toward joint replacement. However, existing diagnostic methods for CRTAC1 are hampered by the limited abundance, thus restricting the precision and specificity. Herein, a novel approach utilizing a single-walled carbon nanotube field-effect transistor (SWCNTs FET) biosensor is reported for the direct label-free detection of CRTAC1. High-purity semiconducting carbon nanotube films, functionalized with antibodies of CRTAC1, provide excellent electrical and sensing properties. The SWCNTs FET biosensor exhibits high sensitivity, notable reproducibility, and a wide linear detection range (1 fg/mL to 100 ng/mL) for CRTAC1 with a theoretical limit of detection (LOD) of 0.2 fg/mL. Moreover, the SWCNTs FET biosensor is capable of directly detecting human serum samples, showing excellent sensing performance in differentiating clinical samples from OA patients and healthy populations. Comparative analysis with traditional enzyme-linked immunosorbent assay (ELISA) reveals that the proposed biosensor demonstrates faster detection speeds, higher sensitivity/accuracy, and lower errors, indicating high potential for the early OA diagnosis. Furthermore, the SWCNTs FET biosensor has good scalability for the combined diagnosis and measurement of multiple disease markers, thereby significantly expanding the application of SWCNTs FETs in biosensing and clinical diagnostics.
Collapse
Affiliation(s)
- Tengbo Lv
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiale Liu
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shenhui Ma
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Xianqi Wei
- School of Science, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Li
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chuanyu Han
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoli Wang
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Ma S, Ren Q, Jiang L, Liu Z, Zhu Y, Zhu J, Zhang Y, Zhang M. A triple-aptamer tetrahedral DNA nanostructures based carbon-nanotube-array transistor biosensor for rapid virus detection. Talanta 2024; 266:124973. [PMID: 37506519 DOI: 10.1016/j.talanta.2023.124973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Outbreaks of infectious viruses cause enormous challenges to global public health. Recently, the coronavirus disease 2019 (COVID-19) induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely threatened human health and resulted in the global pandemic. A strategy to detect SARS-CoV-2 with both fast sensing speed and high accuracy is urgently required. Here, rapid detection of SARS-CoV-2 antigen using carbon-nanotube-array-based thin-film transistor (CNT-array-based TFT) biosensors merged with tetrahedral DNA nanostructures (TDNs) and triple aptamers is demonstrated for the first time. Compared with CNT-network-based TFT biosensors and metal-electrode-based CNT-TFT biosensors, the response of CNT-array-based TFT biosensors can be enhanced up to 102% for SARS-CoV-2 receptor-binding domain (RBD) detection, which is supported by its sensing mechanism. By combining TDNs with triple aptamers, the biosensor has realized the wildtype SARS-CoV-2 RBD detection in a broad detection range spanning eight orders of magnitude with a low limit of detection (LOD) of 10 aM (6 copies/μL) owing to the improved protein capture efficiency. Moreover, the triple-aptamer biosensor platform has achieved the detection of SARS-CoV-2 Omicron RBD in a low LOD of 6 aM (3.6 copies/μL). Additionally, the CNT-array-based TFT biosensors have exhibited excellent specificity, enabling identification among SARS-CoV-2 antigen, SARS-CoV antigen and MERS-CoV antigen. The platform of CNT-array-based TFT biosensors combined with TDNs and triple aptamers provides a high-performance and rapid approach for SARS-CoV-2 detection, and its versatility by altering specific aptamers enables the possibility for rapid virus detection.
Collapse
Affiliation(s)
- Shenhui Ma
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China; School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Qinqi Ren
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Leying Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Zhu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Jiahao Zhu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Yaping Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Lee SS, Oudjedi F, Kirk AG, Paliouras M, Trifiro MA. Photothermal therapy of papillary thyroid cancer tumor xenografts with targeted thyroid stimulating hormone receptor antibody functionalized multiwalled carbon nanotubes. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
AbstractMultiwalled carbon nanotubes (MWCNTs) are being widely investigated in multiple biomedical applications including, and not limited to, drug delivery, gene therapy, imaging, biosensing, and tissue engineering. Their large surface area and aspect ratio in addition to their unique structural, optical properties, and thermal conductivity also make them potent candidates for novel hyperthermia therapy. Here we introduce thyroid hormone stimulating receptor (TSHR) antibody–conjugate–MWCNT formulation as an enhanced tumor targeting and light-absorbing device for the photoablation of xenografted BCPAP papillary thyroid cancer tumors. To ensure successful photothermal tumor ablation, we determined three key criteria that needed to be addressed: (1) predictive pre-operational modeling; (2) real-time monitoring of the tumor ablation process; and (3) post-operational follow-up to assess the efficacy and ensure complete response with minimal side effects. A COMSOL-based model of spatial temperature distributions of MWCNTs upon selected laser irradiation of the tumor was prepared to accurately predict the internal tumor temperature. This modeling ensured that 4.5W of total laser power delivered over 2 min, would cause an increase of tumor temperature above 45 ℃, and be needed to completely ablate the tumor while minimizing the damage to neighboring tissues. Experimentally, our temperature monitoring results were in line with our predictive modeling, with effective tumor photoablation leading to a significantly reduced post 5-week tumor recurrence using the TSHR-targeted MWCNTs. Ultimately, the results from this study support a utility for photosensitive biologically modified MWCNTs as a cancer therapeutic modality. Further studies will assist with the transition of photothermal therapy from preclinical studies to clinical evaluations.
Collapse
|
4
|
Ren Q, Jiang L, Ma S, Li T, Zhu Y, Qiu R, Xing Y, Yin F, Li Z, Ye X, Zhang Y, Zhang M. Multi-Body Biomarker Entrapment System: An All-Encompassing Tool for Ultrasensitive Disease Diagnosis and Epidemic Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304119. [PMID: 37486783 DOI: 10.1002/adma.202304119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Ultrasensitive identification of biomarkers in biofluids is essential for the precise diagnosis of diseases. For the gold standard approaches, polymerase chain reaction and enzyme-linked immunosorbent assay, cumbersome operational steps hinder their point-of-care applications. Here, a bionic biomarker entrapment system (BioES) is implemented, which employs a multi-body Y-shaped tetrahedral DNA probe immobilized on carbon nanotube transistors. Clinical identification of endometriosis is successfully realized by detecting an estrogen receptor, ERβ, from the lesion tissue of endometriosis patients and establishing a standard diagnosis procedure. The multi-body Y-shaped BioES achieves a theoretical limit of detection (LoD) of 6.74 aM and a limit of quantification of 141 aM in a complex protein milieu. Furthermore, the BioES is optimized into a multi-site recognition module for enhanced binding efficiency, realizing the first identification of monkeypox virus antigen A35R and unamplified detection of circulating tumor DNA of breast cancer in serum. The rigid and compact probe framework with synergy effect enables the BioES to target A35R and DNA with a LoD down to 991 and 0.21 aM, respectively. Owing to its versatility for proteins and nucleic acids as well as ease of manipulation and ultra-sensitivity, the BioES can be leveraged as an all-encompassing tool for population-wide screening of epidemics and clinical disease diagnosis.
Collapse
Affiliation(s)
- Qinqi Ren
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Leying Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Shenhui Ma
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Tong Li
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yang Zhu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Rui Qiu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiyang Ye
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yaping Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
7
|
Little HA, Ali A, Carter JG, Hicks MR, Dafforn TR, Tucker JHR. A plug-and-play aptamer diagnostic platform based on linear dichroism spectroscopy. Front Chem 2023; 11:1040873. [PMID: 37228864 PMCID: PMC10203435 DOI: 10.3389/fchem.2023.1040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
A plug-and-play sandwich assay platform for the aptamer-based detection of molecular targets using linear dichroism (LD) spectroscopy as a read-out method has been demonstrated. A 21-mer DNA strand comprising the plug-and-play linker was bioconjugated onto the backbone of the filamentous bacteriophage M13, which gives a strong LD signal due to its ready alignment in linear flow. Extended DNA strands containing aptamer sequences that bind the protein thrombin, TBA and HD22, were then bound to the plug-and-play linker strand via complementary base pairing to generate aptamer-functionalised M13 bacteriophages. The secondary structure of the extended aptameric sequences required to bind to thrombin was checked using circular dichroism spectroscopy, with the binding confirmed using fluorescence anisotropy measurements. LD studies revealed that this sandwich sensor design is very effective at detecting thrombin down to pM levels, indicating the potential of this plug-and-play assay system as a new label-free homogenous detection system based on aptamer recognition.
Collapse
Affiliation(s)
- Haydn A. Little
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Aysha Ali
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jake G. Carter
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Timothy R. Dafforn
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James H. R. Tucker
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
9
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
10
|
Azeem MM, Shafa M, Aamir M, Zubair M, Souayeh B, Alam MW. Nucleotide detection mechanism and comparison based on low-dimensional materials: A review. Front Bioeng Biotechnol 2023; 11:1117871. [PMID: 36937765 PMCID: PMC10018150 DOI: 10.3389/fbioe.2023.1117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The recent pandemic has led to the fabrication of new nucleic acid sensors that can detect infinitesimal limits immediately and effectively. Therefore, various techniques have been demonstrated using low-dimensional materials that exhibit ultrahigh detection and accuracy. Numerous detection approaches have been reported, and new methods for impulse sensing are being explored. All ongoing research converges at one unique point, that is, an impetus: the enhanced limit of detection of sensors. There are several reviews on the detection of viruses and other proteins related to disease control point of care; however, to the best of our knowledge, none summarizes the various nucleotide sensors and describes their limits of detection and mechanisms. To understand the far-reaching impact of this discipline, we briefly discussed conventional and nanomaterial-based sensors, and then proposed the feature prospects of these devices. Two types of sensing mechanisms were further divided into their sub-branches: polymerase chain reaction and photospectrometric-based sensors. The nanomaterial-based sensor was further subdivided into optical and electrical sensors. The optical sensors included fluorescence (FL), surface plasmon resonance (SPR), colorimetric, and surface-enhanced Raman scattering (SERS), while electrical sensors included electrochemical luminescence (ECL), microfluidic chip, and field-effect transistor (FET). A synopsis of sensing materials, mechanisms, detection limits, and ranges has been provided. The sensing mechanism and materials used were discussed for each category in terms of length, collectively forming a fusing platform to highlight the ultrahigh detection technique of nucleotide sensors. We discussed potential trends in improving the fabrication of nucleotide nanosensors based on low-dimensional materials. In this area, particular aspects, including sensitivity, detection mechanism, stability, and challenges, were addressed. The optimization of the sensing performance and selection of the best sensor were concluded. Recent trends in the atomic-scale simulation of the development of Deoxyribonucleic acid (DNA) sensors using 2D materials were highlighted. A critical overview of the challenges and opportunities of deoxyribonucleic acid sensors was explored, and progress made in deoxyribonucleic acid detection over the past decade with a family of deoxyribonucleic acid sensors was described. Areas in which further research is needed were included in the future scope.
Collapse
Affiliation(s)
- M. Mustafa Azeem
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, United States
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Shafa
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Devices, Kunming University, Kunming, Yunnan, China
| | - Muhammad Aamir
- Department of Basic Science, Deanship of Preparatory Year, King Faisal University, Hofuf, Saudi Arabia
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Zubair
- Mechanical and Nuclear Engineering Department, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma Souayeh
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
11
|
Lee C, Gwyther REA, Freeley M, Jones D, Palma M. Fabrication and Functionalisation of Nanocarbon-Based Field-Effect Transistor Biosensors. Chembiochem 2022; 23:e202200282. [PMID: 36193790 PMCID: PMC10092808 DOI: 10.1002/cbic.202200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.
Collapse
Affiliation(s)
- Chang‐Seuk Lee
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
12
|
Deng Y, Liu L, Li J, Gao L. Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. BIOSENSORS 2022; 12:776. [PMID: 36290914 PMCID: PMC9599861 DOI: 10.3390/bios12100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Nano biochemical sensors play an important role in detecting the biomarkers related to human diseases, and carbon nanotubes (CNTs) have become an important factor in promoting the vigorous development of this field due to their special structure and excellent electronic properties. This paper focuses on applying carbon nanotube field-effect transistor (CNT-FET) biochemical sensors to detect biomarkers. Firstly, the preparation method, physical and electronic properties and functional modification of CNTs are introduced. Then, the configuration and sensing mechanism of CNT-FETs are introduced. Finally, the latest progress in detecting nucleic acids, proteins, cells, gases and ions based on CNT-FET sensors is summarized.
Collapse
Affiliation(s)
- Yixi Deng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jingyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Dai B, Zhou R, Ping J, Ying Y, Xie L. Recent advances in carbon nanotube-based biosensors for biomolecular detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Ma S, Zhang Y, Ren Q, Wang X, Zhu J, Yin F, Li Z, Zhang M. Tetrahedral DNA nanostructure based biosensor for high-performance detection of circulating tumor DNA using all-carbon nanotube transistor. Biosens Bioelectron 2022; 197:113785. [PMID: 34800925 DOI: 10.1016/j.bios.2021.113785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Adopting carbon nanotube (CNT) transistors as biosensors has been developed as a promising method for cancer biomarker detection, which has shown superior sensitivity and selectivity. However, the detection of circulating tumor DNA (ctDNA) by the CNT transistor based biosensors is still a challenge and no work has been reported. Here, direct label-free DNA detection of AKT2 gene related to triple-negative breast cancer by all-CNT thin-film transistor (TFT) biosensors incorporated with tetrahedral DNA nanostructures (TDNs) is proposed and achieved for the first time. The adoption of TDNs enables improved biosensor response for at least 35% and even as high as 98% as compared with single-stranded DNA (ssDNA) probes owing to the enhanced DNA hybridization efficiency. Influence of the TDNs' linker length on the biosensor performance is important and has been investigated. Concentration-dependent DNA detection is achieved by the all-CNT TFT biosensors with a broad linear detection range of six orders of magnitude and a theoretical limit of detection (LOD) of 2 fM. In addition, the all-CNT TFT biosensors exhibit favorable selectivity and repeatability. The platform of all-CNT TFT biosensors incorporated with TDNs has great potential for multiplexed detection of various cancer biomarkers, providing a simple yet high performance universal strategy for low-cost clinical applications.
Collapse
Affiliation(s)
- Shenhui Ma
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Yaping Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Qinqi Ren
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Xiaofang Wang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Jiahao Zhu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China; Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Maheswaran R, Shanmugavel BP. A Critical Review of the Role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications. JOURNAL OF ELECTRONIC MATERIALS 2022; 51:2786-2800. [PMID: 35431411 PMCID: PMC8989124 DOI: 10.1007/s11664-022-09516-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/10/2022] [Indexed: 05/16/2023]
Abstract
Electronic products are becoming an essential part of our daily life. There is a huge demand to produce small and portable but powerful electronic products. Carbon nanotubes (CNTs) have excellent electrical, mechanical and thermal properties which can be exploited to build next-generation electronics. This paper reviews different types and properties of CNTs and also presents the CNT-based electronics along with their advantage over the conventionally used products. CNT usage in electronics, such as biosensing, energy and data storage devices, is discussed. CNT-based field emission devices, which showed outstanding results are also discussed. The current challenges of CNT-based electronics and the future of CNT in electronics applications are mentioned.
Collapse
Affiliation(s)
- Rajalakshmi Maheswaran
- Department of Mechanical Engineering, College of Engineering Guindy Campus, Anna University, Chennai, Chennai, 600025 India
| | | |
Collapse
|
16
|
Cui TR, Qiao YC, Gao JW, Wang CH, Zhang Y, Han L, Yang Y, Ren TL. Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor. Molecules 2021; 26:6947. [PMID: 34834039 PMCID: PMC8621829 DOI: 10.3390/molecules26226947] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 is a highly contagious human infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the war with the virus is still underway. Since no specific drugs have been made available yet and there is an imbalance between supply and demand for vaccines, early diagnosis and isolation are essential to control the outbreak. Current nucleic acid testing methods require high sample quality and laboratory conditions, which cannot meet flexible applications. Here, we report a laser-induced graphene field-effect transistor (LIG-FET) for detecting SARS-CoV-2. The FET was manufactured by different reduction degree LIG, with an oyster reef-like porous graphene channel to enrich the binding point between the virus protein and sensing area. After immobilizing specific antibodies in the channel, the FET can detect the SARS-CoV-2 spike protein in 15 min at a concentration of 1 pg/mL in phosphate-buffered saline (PBS) and 1 ng/mL in human serum. In addition, the sensor shows great specificity to the spike protein of SARS-CoV-2. Our sensors can realize fast production for COVID-19 rapid testing, as each LIG-FET can be fabricated by a laser platform in seconds. It is the first time that LIG has realized a virus sensing FET without any sample pretreatment or labeling, which paves the way for low-cost and rapid detection of COVID-19.
Collapse
Affiliation(s)
- Tian-Rui Cui
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (T.-R.C.); (Y.-C.Q.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yan-Cong Qiao
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (T.-R.C.); (Y.-C.Q.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jian-Wei Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (J.-W.G.); (C.-H.W.); (Y.Z.)
| | - Chun-Hua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (J.-W.G.); (C.-H.W.); (Y.Z.)
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (J.-W.G.); (C.-H.W.); (Y.Z.)
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (J.-W.G.); (C.-H.W.); (Y.Z.)
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (T.-R.C.); (Y.-C.Q.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China; (T.-R.C.); (Y.-C.Q.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Halima HB, Errachid A, Jaffrezic‐Renault N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamdi Ben Halima
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | - Abdelhamid Errachid
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | | |
Collapse
|
18
|
White DL, Day BA, Zeng Z, Schulte ZM, Borland NR, Rosi NL, Wilmer CE, Star A. Size Discrimination of Carbohydrates via Conductive Carbon Nanotube@Metal Organic Framework Composites. J Am Chem Soc 2021; 143:8022-8033. [PMID: 34003001 DOI: 10.1021/jacs.1c01673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Traditional chemical sensing methodologies have typically relied on the specific chemistry of the analyte for detection. Modifications to the local environment surrounding the sensor represent an alternative pathway to impart selective differentiation. Here, we present the hybridization of a 2-D metal organic framework (Cu3(HHTP)2) with single-walled carbon nanotubes (SWCNTs) as a methodology for size discrimination of carbohydrates. Synthesis and the resulting conductive performance are modulated by both mass loading of SWCNTs and their relative oxidation. Liquid gated field-effect transistor (FET) devices demonstrate improved on/off characteristics and differentiation of carbohydrates based on molecular size. Glucose molecule detection is limited to the single micromolar concentration range. Molecular Dynamics (MD) calculations on model systems revealed decreases in ion diffusivity in the presence of different sugars as well as packing differences based on the size of a given carbohydrate molecule. The proposed sensing mechanism is a reduction in gate capacitance initiated by the filling of the pores with carbohydrate molecules. Restricting diffusion around a sensor in combination with FET measurements represents a new type of sensing mechanism for chemically similar analytes.
Collapse
Affiliation(s)
- David L White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian A Day
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zachary M Schulte
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Noah R Borland
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christopher E Wilmer
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Meng Q, Wei S, Xu Z, Cao Q, Xiao Y, Liu N, Liu H, Han G, Zhang J, Yan J, Palov AP, Wu L. Hafnium oxide layer-enhanced single-walled carbon nanotube field-effect transistor-based sensing platform. Anal Chim Acta 2021; 1147:99-107. [PMID: 33485588 DOI: 10.1016/j.aca.2020.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Single-walled carbon nanotube-based field effect transistors (SWCNT-FETs) are ideal candidates for fabricating sensors and have been widely used for chemical sensing applications. SWCNT-FETs have low selectivity because of the environmentally sensitive electronic properties of SWCNTs, and SWCNT-FETs also show a high noise signal and poor sensitivity because of charge trapping from Si-OH hydration of the SiO2/Si substrate on the SWCNTs. Herein, poly (4-vinylpyridine) (P4VP) was used for noncovalent attachment to SWCNTs and selective binding to copper ions (Cu2+). Importantly, the introduction of a hafnium-oxide (HfO2) layer through atomic layer deposition (ALD) overcame the charge trapping by SiO2 hydration and remarkably decreased the interference signal. The sensitivity of the P4VP/SWCNT/HfO2-FET sensor for Cu2+ was 7.9 μA μM-1, which was approximately 100 times higher than that of the P4VP/SWCNT/SiO2-FET sensor, and its limit of detection (LOD) was as low as 33 pmol L-1. Thus, the P4VP/SWCNT/HfO2-FET sensor is a promising candidate for the development of Cu2+-selective sensors and can be designed for the large-scale manufacturing of custom-made sensors in the future.
Collapse
Affiliation(s)
- QingYi Meng
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Shuhua Wei
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Zhiyuan Xu
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; Shanghai Ocean University, Shanghai, 201306, China
| | - Yushi Xiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; Shanghai Ocean University, Shanghai, 201306, China
| | - Na Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; Shanghai Ocean University, Shanghai, 201306, China
| | - Huan Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jing Zhang
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Jiang Yan
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Alexander P Palov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
20
|
Xia Y, Sun Y, Li H, Chen S, Zhu T, Wang G, Man B, Pan J, Yang C. Plasma treated graphene FET sensor for the DNA hybridization detection. Talanta 2021; 223:121766. [DOI: 10.1016/j.talanta.2020.121766] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
|
21
|
Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114890] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Ziegler JM, Andoni I, Choi EJ, Fang L, Flores-Zuleta H, Humphrey NJ, Kim DH, Shin J, Youn H, Penner RM. Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016-2020. Anal Chem 2020; 93:124-166. [PMID: 33242951 DOI: 10.1021/acs.analchem.0c04476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joshua M Ziegler
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Eric J Choi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Lu Fang
- Department of Automation, Hangzhou Dianzi University, 1158 Second Street, Xiasha, Hangzhou 310018, China
| | - Heriberto Flores-Zuleta
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Nicholas J Humphrey
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Jihoon Shin
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Hyunho Youn
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
23
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
24
|
Yuan X, Yang C, He Q, Chen J, Yu D, Li J, Zhai S, Qin Z, Du K, Chu Z, Qin P. Current and Perspective Diagnostic Techniques for COVID-19. ACS Infect Dis 2020; 6:1998-2016. [PMID: 32677821 PMCID: PMC7409380 DOI: 10.1021/acsinfecdis.0c00365] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 02/08/2023]
Abstract
Since late December 2019, the coronavirus pandemic (COVID-19; previously known as 2019-nCoV) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been surging rapidly around the world. With more than 1,700,000 confirmed cases, the world faces an unprecedented economic, social, and health impact. The early, rapid, sensitive, and accurate diagnosis of viral infection provides rapid responses for public health surveillance, prevention, and control of contagious diffusion. More than 30% of the confirmed cases are asymptomatic, and the high false-negative rate (FNR) of a single assay requires the development of novel diagnostic techniques, combinative approaches, sampling from different locations, and consecutive detection. The recurrence of discharged patients indicates the need for long-term monitoring and tracking. Diagnostic and therapeutic methods are evolving with a deeper understanding of virus pathology and the potential for relapse. In this Review, a comprehensive summary and comparison of different SARS-CoV-2 diagnostic methods are provided for researchers and clinicians to develop appropriate strategies for the timely and effective detection of SARS-CoV-2. The survey of current biosensors and diagnostic devices for viral nucleic acids, proteins, and particles and chest tomography will provide insight into the development of novel perspective techniques for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xi Yuan
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Chengming Yang
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Qian He
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Junhu Chen
- National
Institute of Parasitic Diseases, Chinese
Center for Disease Control and Prevention, Shanghai 200025, China
| | - Dongmei Yu
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Department
of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Li
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Kunming
Dog Base of Police Security, Ministry of Public Security, Kunming, Yunnan 650204, China
| | - Shiyao Zhai
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Zhifeng Qin
- Animal &
Plant Inspection and Quarantine Technology Center, Shenzhen Customs District People’s Republic of China, Shenzhen, Guangdong 518045, China
| | - Ke Du
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623, United States
| | - Zhenhai Chu
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Peiwu Qin
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| |
Collapse
|
25
|
Chen S, Sun Y, Xia Y, Lv K, Man B, Yang C. Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosens Bioelectron 2020; 156:112128. [DOI: 10.1016/j.bios.2020.112128] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023]
|
26
|
An Au Nanofilm-Graphene/D-Type Fiber Surface Plasmon Resonance Sensor for Highly Sensitive Specificity Bioanalysis. SENSORS 2020; 20:s20040991. [PMID: 32059555 PMCID: PMC7070648 DOI: 10.3390/s20040991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
Abstract
A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The method of growing graphene is employed directly on the copper, and then a gold film of optimum thickness is sputtered, and the copper foil is etched to obtain the structure. This method makes the contact closer between the gold layer and the graphene layer to improve surface plasmon resonance performance. The performance of this type of surface plasmon resonance (SPR) sensor has been previously verified both theoretically and experimentally. With the proposed Au-graphene structure D-type fiber biosensor, the SPR behaviors are obtained and discussed. In the detection of ethanol solution, a red shift of 40 nm is found between the refractive index of 1.3330 and 1.3657. By calculation, the sensitivity of the sensor we designed is 1223 nm/RIU. Besides, the proposed sensor can detect the nucleotide bonding between the double-stranded DNA helix structures. Thus, our sensors can distinguish between mismatched DNA sequences.
Collapse
|
27
|
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020; 378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.
Collapse
Affiliation(s)
- Viviana Negri
- Departamento de Biotecnología y Farmacia, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Jesús Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, c/Dr. Esquerdo 56, 28007, Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, c/Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
28
|
Ali A, Little HA, Carter JG, Douglas C, Hicks MR, Kenyon DM, Lacomme C, Logan RT, Dafforn TR, Tucker JHR. Combining bacteriophage engineering and linear dichroism spectroscopy to produce a DNA hybridisation assay. RSC Chem Biol 2020; 1:449-454. [PMID: 34458772 PMCID: PMC8341927 DOI: 10.1039/d0cb00135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/12/2020] [Indexed: 11/10/2022] Open
Abstract
Nucleic acid detection is an important part of our bio-detection arsenal, with the COVID-19 pandemic clearly demonstrating the importance to healthcare of rapid and efficient detection of specific pathogenic sequences. As part of the drive to establish new DNA detection methodologies and signal read-outs, here we show how linear dichroism (LD) spectroscopy can be used to produce a rapid and modular detection system for detecting quantities of DNA from both bacterial and viral pathogens. The LD sensing method exploits changes in fluid alignment of bionanoparticles (bacteriophage M13) engineered with DNA stands covalently attached to their surfaces, with the read-out signal induced by the formation of complementary duplexes between DNA targets and two M13 bionanoparticles. This new sandwich assay can detect pathogenic material down to picomolar levels in under 1 minute without amplification, as demonstrated by the successful sensing of DNA sequences from a plant virus (Potato virus Y) and an ampicillin resistance gene, ampR. A novel DNA sensing method based on LD spectroscopy and using bionanoparticle scaffolds is described, as demonstrated by the rapid detection of DNA strands associated with bacterial and viral pathogens.![]()
Collapse
Affiliation(s)
- Aysha Ali
- School of Chemistry
- University of Birmingham
- Birmingham B15 2TT
- UK
- School of Biosciences
| | - Haydn A. Little
- School of Chemistry
- University of Birmingham
- Birmingham B15 2TT
- UK
| | - Jake G. Carter
- School of Chemistry
- University of Birmingham
- Birmingham B15 2TT
- UK
| | | | | | | | | | - Richard T. Logan
- School of Biosciences
- University of Birmingham
- Birmingham B15 2TT
- UK
| | | | | |
Collapse
|
29
|
Yang W, Yu J, Xi X, Sun Y, Shen Y, Yue W, Zhang C, Jiang S. Preparation of Graphene/ITO Nanorod Metamaterial/U-Bent-Annealing Fiber Sensor and DNA Biomolecule Detection. NANOMATERIALS 2019; 9:nano9081154. [PMID: 31408969 PMCID: PMC6723577 DOI: 10.3390/nano9081154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/28/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
In this paper, a graphene/ITO nanorod metamaterial/U-bent-annealing (Gr/ITO-NM/U-bent-A)-based U-bent optical fiber local surface plasmon resonance (LSPR) sensor is presented and demonstrated for DNA detection. The proposed sensor, compared with other conventional sensors, exhibits higher sensitivity, lower cost, as well as better biological affinity and oxidize resistance. Besides, it has a structure of an original Indium Tin Oxides (ITO) nanocolumn array coated with graphene, allowing the sensor to exert significant bulk plasmon resonance effect. Moreover, for its discontinuous structure, a larger specific surface area is created to accommodate more biomolecules, thus maximizing the biological properties. The fabricated sensors exhibit great performance (690.7 nm/RIU) in alcohol solution testing. Furthermore, it also exhibits an excellent linear response (R2 = 0.998) to the target DNA with respective concentrations from 0.1 to 100 nM suggesting the promising medical applications of such sensors.
Collapse
Affiliation(s)
- Wen Yang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jing Yu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Xiangtai Xi
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yang Sun
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yiming Shen
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Weiwei Yue
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- Shandong Key Laboratory of Medical Physics and Image Processing and Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014, China
| | - Chao Zhang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
| | - Shouzhen Jiang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
- Shandong Key Laboratory of Medical Physics and Image Processing and Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014, China.
| |
Collapse
|