1
|
Kumar A, Islam MR, Zughaier SM, Chen X, Zhao Y. Precision classification and quantitative analysis of bacteria biomarkers via surface-enhanced Raman spectroscopy and machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124627. [PMID: 38880073 DOI: 10.1016/j.saa.2024.124627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The SERS spectra of six bacterial biomarkers, 2,3-DHBA, 2,5-DHBA, Pyocyanin, lipoteichoic acid (LTA), Enterobactin, and β-carotene, of various concentrations, were obtained from silver nanorod array substrates, and the spectral peaks and the corresponding vibrational modes were identified to classify different spectra. The spectral variations in three different concentration regions due to various reasons have imposed a challenge to use classic calibration curve methods to quantify the concentration of biomarkers. Depending on baseline removal strategy, i.e., local or global baseline removal, the calibration curve differed significantly. With the aid of convolutional neural network (CNN), a two-step process was established to classify and quantify biomarker solutions based on SERS spectra: using a specific CNN model, a remarkable differentiation and classification accuracy of 99.99 % for all six biomarkers regardless of the concentration can be achieved. After classification, six regression CNN models were established to predict the concentration of biomarkers, with coefficient of determination R2 > 0.97 and mean absolute error (MAE) < 0.27. The feature of important calculations indicates the high classification and quantification accuracies were due to the intrinsic spectral features in SERS spectra. This study showcases the synergistic potential of SERS and advanced machine learning algorithms and holds significant promise for bacterial infection diagnostics.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| | - Md Redwan Islam
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2731, Qatar
| | - Xianyan Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Barshutina M, Arsenin A, Volkov V. SERS analysis of single cells and subcellular components: A review. Heliyon 2024; 10:e37396. [PMID: 39315187 PMCID: PMC11417266 DOI: 10.1016/j.heliyon.2024.e37396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
SERS is a rapidly advancing and non-destructive technique that has been proven to be more reliable and convenient than other traditional analytical methods. Due to its sensitivity and specificity, this technique is earning its place as a routine and powerful tool in biological and medical studies, especially for the analysis of living cells and subcellular components. This paper reviewed the research progress of single-cell SERS that has been made in the last few years and discussed challenges and future perspectives of this technique. The reviewed SERS platforms have been categorized according to their nature into the following types: (1) colloid-based, substrate-based, or hybrid; (2) ligand-based or ligand-free, and (3) label-based or label-free. The advantages and disadvantages of each type and their potential applications in various fields are thoroughly discussed.
Collapse
Affiliation(s)
- M. Barshutina
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - V. Volkov
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
- Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Han C, Wang Q, Yao Y, Zhang Q, Huang J, Zhang H, Qu L. Thin layer chromatography coupled with surface enhanced Raman scattering for rapid separation and on-site detection of multi-components. J Chromatogr A 2023; 1706:464217. [PMID: 37517317 DOI: 10.1016/j.chroma.2023.464217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
The separation and detection of multi-component mixtures has always been a challenging task. Traditional detection methods often suffer from complex operation, high cost, and low sensitivity. Surface enhanced Raman scattering (SERS) technique is a high sensitivity, powerful and rapid detection tool, which can realize the specific detection of single substance components, but it must solve the problem that multi-component mixtures cannot be accurately determined. Thin layer chromatography (TLC) technology, as a high-throughput separation technology, uses chromatographic plate as the stationary phase, and could select different developing phases for separation experiments. The advantages of TLC technology in short distance and rapid separation are widely used in protein, dye and biomedical fields. However, TLC technology has limitations in detection ability and difficulty in obtaining ideal signal intensity. The combination of TLC technology and SERS technology made the operation procedure simple and the sample size small, which can achieve rapid on-site separation and quantitative detection of mixtures. Due to the rapid development of TLC-SERS technology, it has been widely used in the investigation of various complex systems. This paper reviews the application of TLC-SERS technology in food science, environmental pollution and biomedicine.
Collapse
Affiliation(s)
- Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Qin Wang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Yue Yao
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Jiawei Huang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Hengchang Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
5
|
Li Y, Liao H, Wu S, Weng X, Wang Y, Liu L, Qu J, Song J, Ye S, Yu X, Chen Y. ReS 2 Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing. Molecules 2023; 28:molecules28114288. [PMID: 37298764 DOI: 10.3390/molecules28114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
ReS2, as a new member of transition metal dichalcogenides (TMDCs), has emerged as a promising substrate for semiconductor surface-enhanced Raman spectroscopy (SERS) due to its unique optoelectronic properties. Nevertheless, the sensitivity of the ReS2 SERS substrate poses a significant challenge to its widespread application in trace detection. In this work, we present a reliable approach for constructing a novel ReS2/AuNPs SERS composite substrate, enabling ultrasensitive detection of trace amounts of organic pesticides. We demonstrate that the porous structures of ReS2 nanoflowers can effectively confine the growth of AuNPs. By precisely controlling the size and distribution of AuNPs, numerous efficient and densely packed "hot spots" were created on the surface of ReS2 nanoflowers. As a result of the synergistic enhancement of the chemical and electromagnetic mechanisms, the ReS2/AuNPs SERS substrate demonstrates high sensitivity, good reproducibility, and superior stability in detecting typical organic dyes such as rhodamine 6G and crystalline violet. The ReS2/AuNPs SERS substrate shows an ultralow detection limit of 10-10 M and a linear detection of organic pesticide molecules within 10-6-10-10 M, which is significantly lower than the EU Environmental Protection Agency regulation standards. The strategy of constructing ReS2/AuNPs composites would contribute to the development of highly sensitive and reliable SERS sensing platforms for food safety monitoring.
Collapse
Affiliation(s)
- Yongping Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Haohui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Shaobing Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Shuai Ye
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiantong Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Li J, Dong C, Gan H, Gu X, Zhang J, Zhu Y, Xiong J, Song C, Wang L. Nondestructive separation/enrichment and rolling circle amplification-powered sensitive SERS enumeration of circulating tumor cells via aptamer recognition. Biosens Bioelectron 2023; 231:115273. [PMID: 37054599 DOI: 10.1016/j.bios.2023.115273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Nondestructive separation/enrichment and reliable detection of extremely rare circulating tumor cells (CTCs) in peripheral blood are of considerable importance in tumor precision diagnosis and treatment, yet this remains a big challenge. Herein, a novel strategy for nondestructive separation/enrichment and ultra-sensitive surface-enhanced Raman scattering (SERS)-based enumeration of CTCs is proposed via aptamer recognition and rolling circle amplification (RCA). In this work the magnetic beads modified with "Aptamer (Apt)-Primer" (AP) probes were utilized to specifically capture CTCs, and then after magnetic separation/enrichment, the RCA-powered SERS counting and benzonase nuclease cleavage-assisted nondestructive release of CTCs were realized, respectively. The AP was assembled by hybridizing the EpCAM-specific aptamer with a primer, and the optimal AP contains 4 mismatched bases. The RCA enhanced SERS signal nearly 4.5-fold, and the SERS strategy has good specificity, uniformity and reproducibility. The proposed SERS detection possesses a good linear relationship with the concentration of MCF-7 cells spiked in PBS with the limit of detection (LOD) of 2 cells/mL, which shows good potential practicality for detecting CTCs in blood with recoveries ranging from 100.56% to 116.78%. Besides, the released CTCs remained good cellular activity with the normal proliferation after re-culture for 48 h and normal growth for at least three generations. The proposed strategy of nondestructive separation/enrichment and SERS-based sensitive enumeration is promising for reliable analysis of EpCAM-positive CTCs in blood, which is expected to provide a powerful tool for analysis of extremely rare circulating tumor cells in complex peripheral blood for liquid biopsy.
Collapse
|
7
|
Yang H, Li K, Wang Y, Yuan X, Zhang M. A label-free strategy for H2O2 assay by chemical vapor generation-atomic fluorescence spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Zhang J, Miao X, Song C, Chen N, Xiong J, Gan H, Ni J, Zhu Y, Cheng K, Wang L. Non-enzymatic signal amplification-powered point-of-care SERS sensor for rapid and ultra-sensitive assay of SARS-CoV-2 RNA. Biosens Bioelectron 2022; 212:114379. [PMID: 35635970 PMCID: PMC9110061 DOI: 10.1016/j.bios.2022.114379] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
The development of rapid and ultra-sensitive detection technology of SARS-CoV-2 RNA for shortening the diagnostic window and achieving early detection of virus infections is a huge challenge to the efficient prevention and control of COVID-19. Herein, a novel ultra-sensitive surface-enhanced Raman spectroscopy (SERS) sensor powered by non-enzymatic signal amplification is proposed for rapid and reliable assay of SARS-CoV-2 RNA based on SERS-active silver nanorods (AgNRs) sensing chips and a specially designed smart unlocking-mediated target recycling signal amplification strategy. The SERS sensing was carried out by a one-pot hybridization of the lock probes (LPs), hairpin DNAs and SERS tags with SARS-CoV-2 RNA samples on an arrayed SERS sensing chip to achieve the recognition of SARS-CoV-2 RNA, the execution of nuclease-free unlocking-mediated target recycling signal amplification, and the combination of SERS tags to generate SERS signal. The SERS sensor for SARS-CoV-2 RNA can be achieved within 50 min with an ultra-high sensitivity low to 51.38 copies/mL, and has good selectivity in discriminating SARS-CoV-2 RNA against other respiratory viruses in representative clinical samples, which is well adapted for rapid, ultra-sensitive, multi-channel and point-of-care testing of viral nucleic acids, and is expected to achieve detection of SARS-CoV-2 infection in earlier detection windows for efficient COVID-19 prevention and control.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiaping Miao
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China; Guangzhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Na Chen
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China
| | - Jingrong Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Ni
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kaiting Cheng
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China; Guangzhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
9
|
Yang Y, Xu B, Haverstick J, Ibtehaz N, Muszyński A, Chen X, Chowdhury MEH, Zughaier SM, Zhao Y. Differentiation and classification of bacterial endotoxins based on surface enhanced Raman scattering and advanced machine learning. NANOSCALE 2022; 14:8806-8817. [PMID: 35686584 PMCID: PMC9575096 DOI: 10.1039/d2nr01277d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bacterial endotoxin, a major component of the Gram-negative bacterial outer membrane leaflet, is a lipopolysaccharide shed from bacteria during their growth and infection and can be utilized as a biomarker for bacterial detection. Here, the surface enhanced Raman scattering (SERS) spectra of eleven bacterial endotoxins with an average detection amount of 8.75 pg per measurement have been obtained based on silver nanorod array substrates, and the characteristic SERS peaks have been identified. With appropriate spectral pre-processing procedures, different classical machine learning algorithms, including support vector machine, k-nearest neighbor, random forest, etc., and a modified deep learning algorithm, RamanNet, have been applied to differentiate and classify these endotoxins. It has been found that most conventional machine learning algorithms can attain a differentiation accuracy of >99%, while RamanNet can achieve 100% accuracy. Such an approach has the potential for precise classification of endotoxins and could be used for rapid medical diagnoses and therapeutic decisions for pathogenic infections.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| | - Beibei Xu
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - James Haverstick
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Nabil Ibtehaz
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xianyan Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, PO. Box 2713, Doha, Qatar
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO. Box 2713, Doha, Qatar.
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Dong C, Xiong J, Ni J, Fang X, Zhang J, Zhu D, Weng L, Zhang Y, Song C, Wang L. Intracellular miRNA-Triggered Surface-Enhanced Raman Scattering Imaging and Dual Gene-Silencing Therapy of Cancer Cell. Anal Chem 2022; 94:9336-9344. [PMID: 35728270 DOI: 10.1021/acs.analchem.2c00842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of theranostic nanosystems integrating cascaded surface-enhanced Raman scattering (SERS) imaging and gene silencing therapy for accurate cancer diagnosis and treatment is still a big challenge and rarely reported. Herein, a novel Au nanoparticles (AuNPs)-based theranostic nanosystem containing AuNP-Ys and AuNP-Ds for highly sensitive and specific cancer diagnosis and treatment was proposed for cascaded SERS imaging of intracellular cancer-related miR-106a and miR-106a-triggered DNAzyme-based dual gene-silencing therapy of cancer cells. The AuNP-Ys were prepared by modifying the AuNPs with specially designed Y-motifs, and the AuNP-Ds were obtained by colabeling Raman molecules and dsDNA linkers on AuNPs. When identifying the intracellular cancer-related miRNAs, the Y-motifs and dsDNA linkers undergoes miRNA-triggered ATP-driven conformational transitions and releases the miRNA for recycling, which results in the formation of AuNP network nanostructures to generate significantly enhanced SERS signals for sensitive identification of the cancer cells as well as the amplification and specific activation of DNAzymes to catalyze the Mg2+-assisted cleavage of the Survivin and c-Jun mRNAs for effective dual gene-silencing therapy of cancer cells. The AuNP-based theranostic nanosystem achieves the synergism of target-triggered SERS imaging and DNAzyme-based dual gene-silencing therapy with enhanced specificity, sensitivity, and curative effect, which can be a powerful tool for accurate diagnosis and efficient treatment of cancers.
Collapse
Affiliation(s)
- Chen Dong
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jingrong Xiong
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jie Ni
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinyue Fang
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dan Zhu
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Chunyuan Song
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
11
|
Wang JJ, Liu Y, Ding Z, Zhang L, Han C, Yan C, Amador E, Yuan L, Wu Y, Song C, Liu Y, Chen W. The exploration of quantum dot-molecular beacon based MoS 2 fluorescence probing for myeloma-related Mirnas detection. Bioact Mater 2022; 17:360-368. [PMID: 35386454 PMCID: PMC8964961 DOI: 10.1016/j.bioactmat.2021.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Highly sensitive and reliable detection of multiple myeloma remains a major challenge in liquid biopsy. Herein, for the first time, quantum dot-molecular beacon (QD-MB) functionalized MoS2 (QD-MB @MoS2) fluorescent probes were designed for the dual detection of multiple myeloma (MM)-related miRNA-155 and miRNA-150. The results indicate that the two probes can effectively detect miRNA-155 and miRNA-150 simultaneously with satisfactory recovery rates, and the limit of detections (LODs) of miRNA-155 and miRNA-150 in human serum are low to 7.19 fM and 5.84 fM, respectively. These results indicate that our method is the most sensitive detection so far reported and that the designed fluorescent probes with signal amplification strategies can achieve highly sensitive detection of MM-related miRNAs for MM diagnosis. Novel quantum dot-molecular beacon functionalized MoS2 (QD-MB@MoS2) fluorescent probes were designed and fabricated. The dual detection of miRNA-155 and miRNA-150 with high sensitivity, low detection limit and high recovery was realized. The fluorescence probes have a great influence on the fluorescence quenching efficiency and the sensitivity. The new MB@MoS2 fluorescent probe and dual detection strategy provide a valuable tool for the detection of miRNA.
Collapse
Affiliation(s)
- Jing Jing Wang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhou Ding
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Le Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Changchun Yan
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Eric Amador
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, ChangSha, Hu'nan, 410011, China
| | - Ying Wu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chunyuan Song
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA.,Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK
| |
Collapse
|
12
|
Chen H, Luo C, Xing L, Guo H, Ma P, Zhang X, Zeng L, Sui M. Simultaneous and ultra-sensitive SERS detection of SLPI and IL-18 for the assessment of donor kidney quality using black phosphorus/gold nanohybrids. OPTICS EXPRESS 2022; 30:1452-1465. [PMID: 35209305 DOI: 10.1364/oe.445809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Due to the global challenge of donor kidney shortage, expanding the pool of deceased donors has been proposed to include expanded criteria donors. However, the lack of methods to precisely measure donor kidney injury and predict the outcome still leads to high discard rates and recipient complications. As such, evaluation of deceased donor kidney quality is critical prior to transplantation. Biomarkers from donor urine or serum provide potential advantages for the precise measure of kidney quality. Herein, simultaneous detection of secretory leukocyte peptidase inhibitor (SLPI) and interleukin 18 (IL-18), two important kidney injury biomarkers, has been achieved, for the first time, with an ultra-high sensitivity using surface enhanced Raman scattering (SERS). Specifically, black phosphorus/gold (BP/Au) nanohybrids synthesized by depositing Au nanoparticles (NPs) onto the BP nanosheets serve as SERS-active substrates, which offer a high-density of inherent and accessible hot-spots. Meanwhile, the nanohybrids possess biocompatible surfaces for the enrichment of target biomarkers through the affinity with BP nanosheets. Quantitative detection of SLPI and IL-18 were then achieved by characterizing SERS signals of these two biomarkers. The results indicate high sensitivity and excellent reproducibility of this method. The limits of detection reach down to 1.53×10-8 mg/mL for SLPI and 0.23×10-8 mg/mL for IL-18. The limits of quantification are 5.10×10-8 mg/mL and 7.67×10-9 mg/mL for SLPI and IL-18. In addition, simultaneous detection of these biomarkers in serum was investigated, which proves the feasibility in biologic environment. More importantly, this method is powerful for detecting multiple analytes inheriting from excellent multiplexing ability of SERS. Giving that the combined assessment of SLPI and IL-18 expression level serves as an indicator of donor kidney quality and can be rapidly and reproducibly conducted, this SERS-based method holds great prospective in clinical practice.
Collapse
|
13
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
14
|
Song C, Zhang J, Jiang X, Gan H, Zhu Y, Peng Q, Fang X, Guo Y, Wang L. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network. Biosens Bioelectron 2021; 190:113376. [PMID: 34098358 DOI: 10.1016/j.bios.2021.113376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Highly sensitive and reliable detection of disease-related nucleic acids is still a big challenge in liquid biopsy because of their homologous sequences and low abundance. Herein, a novel surface plasmon resonance/surface-enhanced Raman scattering (SPR/SERS) dual-mode plasmonic biosensor based on catalytic hairpin assembly (CHA)-induced Au nanoparticle (AuNP) network was proposed for highly sensitive and reliable detection of cancer-related miRNA-652. The biosensor includes capture DNA-functionalized AuNPs (Probe 1), H1 and 4-mercaptobenzoic acid (4-MBA) co-modified AuNPs (Probe 2), and 6-carboxyl-Xrhodamine (ROX)-labeled H2 (fuel strands). The Probe 1-Probe 2 networks were formed via the target-triggered CHA reactions, which resulted in the color change of dark-field microscopy (DFM) images and enhanced SERS effect. The SPR sensing was achieved by extracting the integral optical density of dark-field color in DFM images, and the SERS sensing was realized by the ratiometric SERS signals of ROX and internal standards 4-MBA molecules. After characterizing the feasibility and optimality of the sensing strategy, the good performance of biosensors on sensitivity, specificity and uniformity was approved. The practicability of biosensors was confirmed by detecting miRNA-652 in human serum, and both the SPR and SERS assays showed good linear calibration curves and low limit of detections (LODs) of 42.5 fM and 2.91 fM, respectively, with the recovery in the range of 94.67-111.4%. These two modes show complementary advantages, and the combined SPR/SERS dual-mode can provide more options for detection and double check the results to improve the accuracy and reliability of assays, which holds a great application prospect for cancer-related nucleic acids detection in early disease stage.
Collapse
Affiliation(s)
- Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyu Jiang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qian Peng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yan Guo
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
15
|
Fan C, Zhao N, Cui K, Chen G, Chen Y, Wu W, Li Q, Cui Y, Li R, Xiao Z. Ultrasensitive Exosome Detection by Modularized SERS Labeling for Postoperative Recurrence Surveillance. ACS Sens 2021; 6:3234-3241. [PMID: 34472832 DOI: 10.1021/acssensors.1c00890] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exosome-based liquid biopsy holds great potential in monitoring tumor progression. Current exosome detection biosensors rely on signal amplification strategies to improve sensitivity; however, these strategies pay little attention to manipulating the number of signal reporters, limiting the rational optimization of the biosensors. Here, we have developed a modularized surface-enhanced Raman spectroscopy (SERS) labeling strategy, where each Raman reporter is coupled with lysine as a signal-lysine module, and thus the number of Raman reporters can be precisely controlled by the modularized solid-phase peptide synthesis. Using this strategy, we screened out an optimum Raman biosensor for ultrasensitive exosome detection, with the limit of detection of 2.4 particles per microliter. This biosensor enables a successful detection of the tumor with an average diameter of approximately 3.55 mm, and thus enables successful surveillance of the postoperative tumor recurrence in mice models and distinguishing cancer patients from healthy subjects. Our work provides a de novo strategy to precisely amplify signals toward a myriad of biosensor-related medical applications.
Collapse
Affiliation(s)
- Chenchen Fan
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Na Zhao
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yingzhi Chen
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenwei Wu
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Qingyun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanna Cui
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Ruike Li
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
16
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
17
|
Huang Y, Zhao S, Zhang W, Duan Q, Yan Q, Fu H, Zhong L, Yi G. Multifunctional electrochemical biosensor with "tetrahedral tripods" assisted multiple tandem hairpins assembly for ultra-sensitive detection of target DNA. RSC Adv 2021; 11:20046-20056. [PMID: 35479883 PMCID: PMC9033681 DOI: 10.1039/d1ra02424h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/23/2021] [Indexed: 01/12/2023] Open
Abstract
Nucleic acids are genetic materials in the human body that play important roles in storing, copying, and transmitting genetic information. Abnormal nucleic acid sequences, base mutations, and genetic changes often lead to cancer and other diseases. Meanwhile, methylated DNA is one of the main epigenetic modifications, which is considered to be an excellent biomarker in the early detection, prognosis, and treatment of cancers. Therefore, a multifunctional electrochemical biosensor was constructed with sturdy tetrahedral tripods, which assisted multiple tandem hairpins through base complementary pairing and effective ultra-sensitive detection of targets (DNA, microRNA, and methylated DNA). In the experiments, experimental conditions were optimized, and different DNA concentrations in serum were detected to verify the sensitivity of the biosensor and the feasibility of this protocol. In addition, microRNA and DNA methylation were detected through different designs of tetrahedral tripods (TTs) that capture probes to prove the superiority of this scheme. A sturdy pyramid structure of TTs extremely enhanced the capture efficiency of targets. The targets triggered the one-step isothermal multi-tandem amplification reaction by incubating multiple hairpin assemblies. To our knowledge, a combination of two parts, which greatly reduced background interference and decreased non-specific substance interference, has appeared for the first time in this paper. Moreover, the load area of electrochemical substances was significantly increased than that in previous studies. This greatly increased the detection range and detection limit of targets. The electrochemical signal responses were generated in freely diffusing hexaammineruthenium(iii) chloride (RuHex). RuHex could adhere to the DNA phosphate backbone by a powerful electrostatic attraction, causing increased current responses. Schematic illustration of the fabricated electrochemical biosensor. TTs assisted multiple tandem hairpins assembly for ultra-sensitive detection of target DNA.![]()
Collapse
Affiliation(s)
- Yuqi Huang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Shuhui Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Wenxiu Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Qiuyue Duan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Qi Yan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Hu Fu
- Clinical Laboratory of Chengdu First People's Hospital Chengdu 610000 PR China
| | - Liang Zhong
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| |
Collapse
|
18
|
Liu Y, Ding Z, Zhang J, Song C, Zhang L, Liu Y. Highly Sensitive Detection of miRNA-155 Using Molecular Beacon-Functionalized Monolayer MoS₂ Nanosheet Probes with Duplex-Specific Nuclease-Mediated Signal Amplification. J Biomed Nanotechnol 2021; 17:1034-1043. [PMID: 34167618 DOI: 10.1166/jbn.2021.3096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNA-155 (miRNA-155) as a characteristic myeloma-associated biomarker exhibits significant potential application in the diagnosis of multiple myeloma (MM). In this paper, a novel type of molecular beacon (MB)-functionalized monolayer MoS₂ nanosheet probe was proposed as fluorescent probe for high-sensitive assays of miRNA-155that uses a duplexspecificnuclease (DSN) enzyme to amplify the fluorescence signal. The preparation and detection conditions of the fluorescent probes were optimized in some aspects, such as the concentration of MoS₂ (0.80 μM) and DSN (0.2 U), and the incubation time of DSN (30 min). The probesexhibited a sensitive fluorescence response to miRNA-155 and the fluorescence signal of the assay was significantly amplified by the cleavage of DSN. The relationship between F/F0 and logC miRNA follows a linear calibration curve, and the limit of detection (LOD) of miRNA-155 in 10% human serum is calculated to be 10.96 fM based on this relationship. The good performance and fluorescence amplification effect of the fluorescent probe were confirmed by studying the recovery of miRNA-155 in 10% human serum, which was ranged from 98.32% to 106.3% with a relative standard deviation of less than 4.14%. Besides, the high expression of miRNA-155 in clinic blood of MM patients was sensitively distinguished from healthy peoples by using the proposed probes. The proposed novel fluorescent probe based on the DSN can be used to detect miRNA-155 in human serum and provide a potential, convenient and reliable tool for diagnosis of MM.
Collapse
Affiliation(s)
- Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhou Ding
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jingjing Zhang
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Le Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
19
|
Sun Y, Shi L, Mi L, Guo R, Li T. Recent progress of SERS optical nanosensors for miRNA analysis. J Mater Chem B 2021; 8:5178-5183. [PMID: 32432312 DOI: 10.1039/d0tb00280a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review focuses on emerging applications of surface-enhanced Raman spectroscopy (SERS) optical nanosensors for miRNA analysis, in which the key enhancement factors of the SERS signal, i.e. SERS-active substrates, SERS nanoprobes and nano-assembly strategy, are emphasized. This article includes many nanomaterials for miRNA analysis by the SERS technique. We summarize these reported nanomaterials mainly according to their function in the miRNA assay biosensor. We also briefly summarize the research progress of these nanomaterials in SERS detection of intracellular miRNA. Finally, we discussed the prospect and limitations of SERS nanosensors for analyzing miRNA.
Collapse
Affiliation(s)
- Yudie Sun
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China. and School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lin Shi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Lan Mi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Ruiyan Guo
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Tao Li
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
20
|
Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. NANO CONVERGENCE 2021; 8:13. [PMID: 33934252 PMCID: PMC8088419 DOI: 10.1186/s40580-021-00263-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Liquid biopsy is considered as the most attractive alternative to traditional tissue biopsies. The major advantages of this approach lie in the non-invasive procedure, the rapidness of sample collection and the potential for early cancer diagnosis and real-time monitoring of the disease and the treatment response. Nanotechnology has dynamically emerged in a wide range of applications in the field of liquid biopsy. The benefits of using nanomaterials for biosensing include high sensitivity and detectability, simplicity in many cases, rapid analysis, the low cost of the analysis and the potential for portability and personalized medicine. The present paper reports on the nanomaterial-based methods and biosensors that have been developed for liquid biopsy applications. Most of the nanomaterials used exhibit great analytical performance; moreover, extremely low limits of detection have been achieved for all studied targets. This review will provide scientists with a comprehensive overview of all the nanomaterials and techniques that have been developed for liquid biopsy applications. A comparison of the developed methods in terms of detectability, dynamic range, time-length of the analysis and multiplicity, is also provided.
Collapse
|
21
|
Song C, Zhang J, Liu Y, Guo X, Guo Y, Jiang X, Wang L. Highly sensitive SERS assay of DENV gene via a cascade signal amplification strategy of localized catalytic hairpin assembly and hybridization chain reaction. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128970. [PMID: 33012990 PMCID: PMC7521935 DOI: 10.1016/j.snb.2020.128970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 05/14/2023]
Abstract
Pathogenic viruses with worldwide distribution, high incidence and great harm are significantly and increasingly threatening human health. However, there is still lack of sufficient, highly sensitive and specific detection methods for on-time and early diagnosis of virus infection. In this work, taking dengue virus (DENV) as an example, a highly sensitive SERS assay of DENV gene was proposed via a cascade signal amplification strategy of localized catalytic hairpin assembly (LCHA) and hybridization chain reaction (HCR). The SERS assay was performed by two steps, i.e., the operation of cascade signal amplification strategy and the following SERS measurements by transferring the products on SERS-active AgNRs arrays. The sensitivity of the cascade signal amplification strategy is significantly amplified, which is 4.5 times that of individual CHA, and the signal-to-noise ratio is also improved to 5.4 relative to 1.8 of the CHA. The SERS sensing possesses a linear calibration curve from 1 fM to 10 nM with the limit of detection low to 0.49 fM, and has good specificity, uniformity and recovery, which indicates that the highly sensitive SERS assay provides an attractive tool for reliable, early diagnosis of DENV gene and is worth to be popularized in a wide detection of other viruses.
Collapse
Affiliation(s)
- Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yang Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiangyin Guo
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yan Guo
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyu Jiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
22
|
Lei M, Xu C, Shan Y, Xia C, Wang R, Ran HH, Wu FG, Chen R, Zhao X, Cui Q. Plasmon-coupled microcavity aptasensors for visual and ultra-sensitive simultaneous detection of Staphylococcus aureus and Escherichia coli. Anal Bioanal Chem 2020; 412:8117-8126. [PMID: 32948890 DOI: 10.1007/s00216-020-02942-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023]
Abstract
Septicemia and bacteremia are serious infections in the bloodstream. Thus, time-saving and ultra-sensitive pathogenic bacteria detection is highly required. Herein, we constructed gold nanoparticle-modified polystyrene microspheres (Au/PS) as plasmon-coupled microcavities to realize simultaneous detection of Staphylococcus aureus and Escherichia coli based on a fluorescence and surface-enhanced Raman spectroscopy (SERS) dual-mode method. Fluorescence imaging, serving as a means for assistant validation and rapid screening, was carried out to achieve qualitative and semi-quantitative determination, which gave us visual information of the existence and distribution of the target bacteria. Meanwhile, SERS test was conducted to realize ultra-sensitive quantitative detection. The evanescent wave aroused from total internal reflection in PS microcavities coupled with the localized electromagnetic field from surface plasmons of gold nanoparticles to improve light-matter interaction synergistically, leading to an enhancement factor of 2.25 × 1011 for SERS sensing. The whole measurement was carried out in a typical sandwich assay of "capture probe-target bacteria-signal probe." As a result, calibrated concentration response curves demonstrated the sensitive quantitative detection with the limit of detection (LOD) of 3 cfu/mL for S. aureus and 2 cfu/mL for E. coli. This rapid, ultra-sensitive, and visual sensing method was further developed for dual-bacteria detection in the whole blood samples.
Collapse
Affiliation(s)
- Milan Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Yaqi Shan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Chuansheng Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Ru Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Ruipeng Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Qiannan Cui
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| |
Collapse
|
23
|
Gambucci M, Cambiotti E, Sassi P, Latterini L. Multilayer Gold-Silver Bimetallic Nanostructures to Enhance SERS Detection of Drugs. Molecules 2020; 25:molecules25153405. [PMID: 32731377 PMCID: PMC7436262 DOI: 10.3390/molecules25153405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a widely used technique for drug detection due to high sensitivity and molecular specificity. The applicability and selectivity of SERS in the detection of specific drug molecules can be improved by gathering information on the specific interactions occurring between the molecule and the metal surface. In this work, multilayer gold-silver bimetallic nanorods (Au@Ag@AuNRs) have been prepared and used as platforms for SERS detection of specific drugs (namely promethazine, piroxicam, furosemide and diclofenac). The analysis of SERS spectra provided accurate information on the molecular location upon binding and gave some insight into molecule-surface interactions and selectivity in drug detection through SERS.
Collapse
|
24
|
Song C, Jiang X, Yang Y, Zhang J, Larson S, Zhao Y, Wang L. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31242-31254. [PMID: 32608960 DOI: 10.1021/acsami.0c08453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel surface-enhanced Raman scattering/surface plasmon resonance (SERS/SPR) dual-mode biosensor prepared on a silver nanorod-covered silver nanohole (Ag NR-NH) array by surface modification of tetrahedral DNA probes is proposed for highly sensitive detecting nucleic acids by a special signal amplification strategy of DNA supersandwich. The Ag NR-NH with a large area and uniformly arrayed nanostructure possesses excellent anisotropic extraordinary optical transmission and strong localized surface plasmon resonance, which lead to sensitive SPR response to the change of a local refractive index and strong localized electric fields for excellent SERS activity. To obtain high sensitivity and specificity, smart tetrahedral DNA probes are immobilized onto the Ag NR-NH array and the DNA supersandwich sensing strategy, including the signal amplification of DNA concatamers, is used. About 10 times signal enhancement for SPR and 4 times for SERS are achieved by this sensing strategy. In the detection of the target DNA in the human serum, the two sensing modes have complementary performances, i.e., the limit of detection for the SPR array is high (0.51 pM), while for SERS, it is low (0.77 fM), but the specificity for SPR is much higher than that of SERS. This improves the robustness of the DNA sensors, and subsequent recovery tests also confirm good reliability of the biosensor. The proposed SERS/SPR dual-mode biosensor has a great potential for high performance and reliable detection of trace disease-related nucleic acid biomarkers in the serum and is a powerful sensing platform for early-stage disease diagnosis.
Collapse
Affiliation(s)
- Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinyu Jiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanjun Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Department of Physics and Astronomy, University of Georgia, Athens Georgia 30602, United States
| | - Jingjing Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Steven Larson
- Department of Physics and Astronomy, University of Georgia, Athens Georgia 30602, United States
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens Georgia 30602, United States
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
25
|
Zhang J, Song C, Zhou H, Jia J, Dai Y, Cui D, Wang L, Weng L. A dual signal amplification strategy for the highly sensitive fluorescence detection of nucleic acids. Analyst 2020; 145:1219-1226. [DOI: 10.1039/c9an02183c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A dual signal amplification strategy comprising target-triggered recycling and DSN-mediated amplifications was designed and proposed for a highly sensitive fluorescence assay of nucleic acids.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Huiling Zhou
- School of Geography and Biological Information
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Juan Jia
- School of Geography and Biological Information
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Yinna Dai
- School of Geography and Biological Information
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering
- Department of Instrument Science and Engineering
- Thin Film and Microfabrciation Key Laboratory of Administration of Education
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Lixing Weng
- School of Geography and Biological Information
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
26
|
Pyrak E, Krajczewski J, Kowalik A, Kudelski A, Jaworska A. Surface Enhanced Raman Spectroscopy for DNA Biosensors-How Far Are We? Molecules 2019; 24:E4423. [PMID: 31817059 PMCID: PMC6943648 DOI: 10.3390/molecules24244423] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
A sensitive and accurate identification of specific DNA fragments (usually containing a mutation) can influence clinical decisions. Standard methods routinely used for this type of detection are PCR (Polymerase Chain Reaction, and its modifications), and, less commonly, NGS (Next Generation Sequencing). However, these methods are quite complicated, requiring time-consuming, multi-stage sample preparation, and specially trained staff. Usually, it takes weeks for patients to obtain their results. Therefore, different DNA sensors are being intensively developed by many groups. One technique often used to obtain an analytical signal from DNA sensors is Raman spectroscopy. Its modification, surface-enhanced Raman spectroscopy (SERS), is especially useful for practical analytical applications due to its extra low limit of detection. SERS takes advantage of the strong increase in the efficiency of Raman signal generation caused by a local electric field enhancement near plasmonic (typically gold and silver) nanostructures. In this condensed review, we describe the most important types of SERS-based nanosensors for genetic studies and comment on their potential for becoming diagnostic tools.
Collapse
Affiliation(s)
- Edyta Pyrak
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Jan Krajczewski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| | - Artur Kowalik
- Holy Cross Cancer Center, 3 Stefana Artwińskiego St., 25-734 Kielce, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| | - Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| |
Collapse
|