1
|
Jiang X, Su W, Shi W, Wang H. Electrochemiluminescence immunosensor based on a novel heterostructured Fe-MIL-88@1T-MoS 2 dual-nanozyme with high peroxidase-like activity for the sensitive detection of NT-proBNP. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8333-8340. [PMID: 39526978 DOI: 10.1039/d4ay01748j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this work, an efficient Fe-MIL-88@1T-MoS2 dual-nanozyme and hollow CeO2 mono-nanozyme were synthesized as coreaction accelerators to fabricate an electrochemiluminescence (ECL) immunosensor for the detection of the N-terminal pro-brain natriuretic peptide (NT-proBNP). First, the peroxidase-like activity of the proposed Fe-MIL-88@1T-MoS2 dual-nanozyme was found to be superior to that of individual Fe-MIL-88 and MoS2, owing to the synergistic catalytic effect caused by the heterostructure. Therefore, it could be utilized as an ideal coreaction accelerator to boost H2O2 decomposition and subsequently generate abundant reactive oxygen species, which could promote electrical oxidation of ABEI and obtain a high ECL signal. Second, the rough surface of Fe-MIL-88@1T-MoS2 facilitated the mass capture of luminescent ABEI-modified silver nanoparticles (Ag-ABEI), which could further enhance the ECL signal of the immunosensor. Finally, hollow CeO2 also exhibited excellent catalytic performance toward H2O2 decomposition owing to its facile redox-active Ce3+/Ce4+ and abundant surface oxygen vacancies, resulting in a further enhancement in the ECL signal of the immunosensor. Therefore, the ECL immunosensor based on Fe-MIL-88@1T-MoS2 and hollow CeO2 exhibited an extremely strong ECL signal and realized the ultra-sensitive detection of NT-proBNP with a detection limit as low as 0.21 fg mL-1. Thus, these results demonstrate that the proposed strategy may afford an efficient means for the sensitive detection of trace proteins.
Collapse
Affiliation(s)
- Xinya Jiang
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China.
| | - Weidan Su
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China.
| | - Wenbing Shi
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China.
| | - Huijun Wang
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, People's Republic of China.
| |
Collapse
|
2
|
Jiang F, Meng Y, Mo M, Li Y, Liu Q, Wang P, Li Y, Wei Q. A sensitive electrochemical immunosensor based on high-efficiency catalytic cycle amplification strategy for detection of cardiac troponin I. Bioelectrochemistry 2024; 159:108730. [PMID: 38762950 DOI: 10.1016/j.bioelechem.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
An electrochemical immunosensor based on the novel high efficiency catalytic cycle amplification strategy for the sensitive detection of cardiac troponin I (cTnI). With its variable valence metal elements and spiny yolk structure, the Cu2O/CuO@CeO2 nanohybrid exhibits high speed charge mobility and exceptional electrochemical performance. Notably, fluorite-like cubic crystal CeO2 shell would undergo redox reaction with Cu2O core, which successfully ensures the continuous recycling occurrence of "fresh" Cu (II)/Cu (I) and Ce (Ⅳ)/Ce (Ⅲ) pairs at the electrode interface. The "fresh" active sites continue to emerge constantly, resulting in a significant increase in the current signal. In light of the electrochemical characterization, the electron transfer pathway and catalytic cycle mechanism among CeO2, Cu2O and CuO were further discussed. The developed electrochemical immunosensor detected cTnI from 100 fg/mL to 100 ng/mL with a LOD of 15.85 fg/mL under optimal conditions. The analysis results indicate that the immunosensor would hold promise for broad application prospects in the biological detection for other biomarkers.
Collapse
Affiliation(s)
- Feng Jiang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yaoyao Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Mengxiao Mo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, the Republic of Korea.
| |
Collapse
|
3
|
Huang J, Sun Z, Gu Y, Lin A, Pan X, Li J. Rapid and convenient screening method based on single-chain variable fragments for the detection of restricted monensin in chicken muscle. Int J Biol Macromol 2024; 278:134639. [PMID: 39128758 DOI: 10.1016/j.ijbiomac.2024.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
A colloidal gold immunochromatographic assay (CGIA) based on single-chain variable fragments (scFvs) has been successfully developed for the detection of monensin (MON). Colloidal gold probes were conjugated to anti-MON scFvs through electrostatic interaction, with the conjugated objects serving as the visual signals. The detection lines were formed by capturing the antibody with MON-OVA. This assay offers a rapid detection time of 15 min, a wide linear range from 2.19 to 10.76 ng mL-1, and boasts high accuracy, precision, and an absence of cross-reactivity. By homology modeling and molecular docking, we predicted the interaction patterns between the scFv and monensin, and the amino acid residues involved in the recognition of MON by the antibody were analyzed. These key amino acid sites are presumed integral to ligand recognition per current interaction models. This hypothesis was confirmed by computer-aided alanine scanning mutation, MM/P(G)BSA molecular dynamics simulation, and in vitro binding experiments. In this study, we successfully developed the scFvs-based CGIA system for rapid and easy quantification of monensin, providing a simple, efficient routine detection of chicken muscle samples.
Collapse
Affiliation(s)
- Jingjie Huang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China
| | - Zhixuan Sun
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yani Gu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ao Lin
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoyle Pan
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China
| | - Jiancheng Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China.
| |
Collapse
|
4
|
Sun T, Yi X, Liu L, Zhao F. Colorimetric Immunoassays with Boronic Acid-Decorated, Peroxidase-like Metal-Organic Frameworks as the Carriers of Antibodies and Enzymes. Molecules 2024; 29:3000. [PMID: 38998952 PMCID: PMC11243670 DOI: 10.3390/molecules29133000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The sensitivity of immunoassays is generally limited by the low signal reporter/recognition element ratio. Nanomaterials serving as the carriers can enhance the loading number of signal reporters, thus improving the detection sensitivity. However, the general immobilization strategies, including direct physical adsorption and covalent coupling, may cause the random orientation and conformational change in proteins, partially or completely suppressing the enzymatic activity and the molecular recognition ability. In this work, we proposed a strategy to load recognition elements of antibodies and enzyme labels using boronic acid-modified metal-organic frameworks (MOFs) as the nanocarriers for signal amplification. The conjugation strategy was proposed based on the boronate ester interactions between the carbohydrate moieties in antibodies and enzymes and the boronic acid moieties on MOFs. Both enzymes and MOFs could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, therefore achieving dual signal amplification. To indicate the feasibility and sensitivity of the strategy, colorimetric immunoassays of prostate specific antigen (PSA) were performed with boronic acid-modified Cu-MOFs as peroxidase mimics to catalyze TMB oxidation and nanocarriers to load antibody and enzyme (horseradish peroxidase, HRP). According to the change in the absorbance intensity of the oxidized TMB (oxTMB), PSA at the concentration range of 1~250 pg/mL could be readily determined. In addition, this work presented a site-specific and oriented conjugation strategy for the modification of nanolabels with recognition elements and signal reporters, which should be valuable for the design of novel biosensors with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Ting Sun
- Guizhou Provincial University Key Laboratory of Advanced Functional Electronic Materials, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Feng Zhao
- Guizhou Provincial University Key Laboratory of Advanced Functional Electronic Materials, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
5
|
Ouyang R, Feng M, Liu J, Wang C, Wang Z, Hu X, Miao Y, Zhou S. Hydrangea-like TiO 2/Bi 2MoO 6 porous nanoflowers triggering highly sensitive electrochemical immunosensing to tumor marker. Mikrochim Acta 2024; 191:262. [PMID: 38613581 DOI: 10.1007/s00604-024-06346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Rapid and sensitive detection of carcinoembryonic antigen (CEA) is of great significance for cancer patients. Here, molybdenum (Mo) was doped into bismuth oxide (Bi2O3) by one-pot hydrothermal method forming porous tremella Bi2MoO6 nanocomposites with a larger specific surface area than the spherical structure. Then, a new kind of hydrangea-like TiO2/Bi2MoO6 porous nanoflowers (NFs) was prepared by doping titanium into Bi2MoO6, where titanium dioxide (TiO2) grew in situ on the surface of Bi2MoO6 nanoparticles (NPs). The hydrangea-like structure provides larger specific surface area, higher electron transfer ability and biocompatibility as well as more active sites conducive to the attachment of anti-carcinoembryonic antigen (anti-CEA) to TiO2/Bi2MoO6 NFs. A novel label-free electrochemical immunosensor was then constructed for the quantitative detection of CEA using TiO2/Bi2MoO6 NFs as sensing platform, showing a good linear relationship with CEA in the concentration range 1.0 pg/mL ~ 1.0 mg/mL and a detection limit of 0.125 pg/mL (S/N = 3). The results achieved with the designed immunosensor are comparable with many existing immunosensors used for the detection of CEA in real samples.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Meina Feng
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Caihong Wang
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongmin Wang
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Hu
- Zhejiang Zhili Environmental Protection Technology, Jinhua, 321000, China
| | - Yuqing Miao
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Patil AVP, Yang PF, Yang CY, Gaur MS, Wu CC. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors. Crit Rev Biomed Eng 2024; 52:17-40. [PMID: 38523439 DOI: 10.1615/critrevbiomedeng.2023049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An outbreak of foodborne pathogens would cause severe consequences. Detecting and diagnosing foodborne diseases is crucial for food safety, and it is increasingly important to develop fast, sensitive, and cost-effective methods for detecting foodborne pathogens. In contrast to traditional methods, such as medium-based culture, nucleic acid amplification test, and enzyme-linked immunosorbent assay, electrochemical biosensors possess the advantages of simplicity, rapidity, high sensitivity, miniaturization, and low cost, making them ideal for developing pathogen-sensing devices. The biorecognition layer, consisting of recognition elements, such as aptamers, antibodies and bacteriophages, and other biomolecules or polymers, is the most critical component to determine the selectivity, specificity, reproducibility, and lifetime of a biosensor when detecting pathogens in a biosample. Furthermore, nanomaterials have been frequently used to improve electrochemical biosensors for sensitively detecting foodborne pathogens due to their high conductivity, surface-to-volume ratio, and electrocatalytic activity. In this review, we survey the characteristics of biorecognition elements and nanomaterials in constructing electrochemical biosensors applicable for detecting foodborne pathogens during the past five years. As well as the challenges and opportunities of electrochemical biosensors in the application of foodborne pathogen detection are discussed.
Collapse
Affiliation(s)
- Avinash V Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Ping-Feng Yang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan R.O.C
| | - M S Gaur
- Department of Physics, Hindustan College of Science and Technology, Farah, Mathura, 281122 U.P., India
| | | |
Collapse
|
8
|
Zhao J, He C, Long Y, Lei J, Liu H, Hou J, Hou C, Huo D. 3D DNAzyme walker based electrochemical biosensor for attomolar level microRNA-155 detection. Anal Chim Acta 2023; 1276:341642. [PMID: 37573120 DOI: 10.1016/j.aca.2023.341642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
Herein, an ultrasensitive electrochemical biosensor for microRNA-155 (miR-155) detection based on the powerful catalytic and continuous walking signal amplification capability of 3D DNAzyme walker and the gold nanoparticles/graphene aerogels carbon fiber paper-based (AuNPs/GAs/CFP) flexible sensing electrode with excellent electrochemical performance was successfully constructed. In a proof-of-concept experiment, in the presence of miR-155, the DNAzyme strands anchored on the streptavidin-modified magnetic beads (MBs) silenced by locked strands can be activated, thus generating the walking arm of the 3D DNAzyme walker. Meanwhile, the substrate strands modified with Fe-MOF-NH2 nanoparticles were evenly distributed on the surface of MBs and served as tracks of the 3D DNAzyme walker. Once the DNAzyme strand was activated, the catalytic site in the substrate strand can be cleaved in the presence of Mn2+, and a large number of stumps modified with Fe-MOF-NH2 nanoparticles (output@Fe-MOF-NH2) will be generated during the continuous and efficient walking cleavage of the DNAzyme walker, driving the recognition-catalysis-release cycle process for signal amplification. Immediately afterwards, the signal was read out through the base complementary pairing of capture probe (PS) immobilized on the surface of the paper-based flexible sensing electrode AuNPs/GAs/CFP and signal probes output@Fe-MOF-NH2, thus achieving the quantitative detection of miR-155. Under optimal experimental conditions, the designed 3D DNAzyme walker-based biosensor exhibited a relatively lower limit of detection (LOD) of 56.23 aM, with a linear range of 100 aM to 100 nM. Overall, the proposed 3D DNAzyme walker biosensor exhibited good interference and reproducibility, demonstrating a promising future in the field of clinical disease diagnosis.
Collapse
Affiliation(s)
- Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Congjuan He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yanyi Long
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Jincan Lei
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| |
Collapse
|
9
|
Suwannasung K, Kanokkantapong V, Wongkiew S. Modified air-Fenton with MIL-88A for chemical oxygen demand treatment in used coolant oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105429-105439. [PMID: 37715905 DOI: 10.1007/s11356-023-29685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Coolant oil from auto part manufacturing contains additives resulting in high chemical oxygen demand (COD) in wastewater. In this study, COD treatment of coolant oil was investigated in a metal-organic framework (MOF) with MIL-88A by a modified air-Fenton (MAF) process by varying synthetic coolant oil concentrations (1-5%), pH (3-9), air-flow rate (1-2 L/min), amount of MIL-88A (0.2-1.0 g), and reaction time (30-180 min). The results were analyzed using central composite design (CCD) and response surface methodology (RSM) using Minitab ver. 19. The characteristic MIL-88A was characterized by XRD that showed a spindle-like shape with 2θ at 10.2° and 13.0°. The FTIR spectrum revealed the vibrational frequencies at Fe-O (564 cm-1), C-O (1391 and 1600 cm-1), and C = O (1216 and 1710 cm-1). The optimum treatment efficiency was studied from 30 CCD conditions in the presence of coolant oil (5%, COD ~ 132,000 mg/L), pH (9), air flow rate (2 L/min), and MIL-88A (1 g) within 177 min. The results obtained from the experiment and the COD prediction were found to be 92.64% and 93.45%, respectively. The main mechanism of iron(III) in MIL-88A is proposed to be the production of hydroxyl radical (·OH) that oxidizes the organic matter in the coolant oil. Moreover, the MAF process was applied to the used industrial coolant oil and was found to be 62.59% efficient.
Collapse
Affiliation(s)
- Kwanruedee Suwannasung
- Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorapot Kanokkantapong
- Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Wei XW, Zhang Y, Zhou Y, Li M, Liu ZF, Feng XS, Tan Y. A Review on Pretreatment and Analysis Methods of Polyether Antibiotics in Complex Samples. Crit Rev Anal Chem 2023; 54:3453-3477. [PMID: 37647335 DOI: 10.1080/10408347.2023.2251156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polyether antibiotics (PAs) are the anti-coccidiosis drugs used for treating and preventing coccidiosis. Studies show the residues of these antibiotics in food cause adversities and threaten human health. PAs thus need robust, rugged, and accurate methods for their analysis. This review encompasses pretreatment and detection methods of PAs in diverse matrices since 2010. Both conventional and developed methods are part of the pretreatments, such as dispersive liquid-liquid microextraction, solid-phase extraction, solid-phase microextraction, solvent front position extraction, QuEChERS (Quick Easy Cheap Effective Rugged and Safe), supercritical fluid extraction, and others. The analysis methods involve liquid chromatography coupled with detectors, sensors, etc. The pros and cons of various techniques for PAs have been discussed and future tendencies are proposed.
Collapse
Affiliation(s)
- Xin-Wei Wei
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Yi Y, Zhou X, Liao D, Hou J, Liu H, Zhu G. High Peroxidase-Mimicking Metal-Organic Frameworks Decorated with Platinum Nanozymes for the Colorimetric Detection of Acetylcholine Chloride and Organophosphorus Pesticides via Enzyme Cascade Reaction. Inorg Chem 2023; 62:13929-13936. [PMID: 37583283 DOI: 10.1021/acs.inorgchem.3c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The sensitive detection of acetylcholinesterase (AChE) and organophosphorus pesticides (OPs) is very important for the protection of human health. Herein, a hybrid material, Pt NPs/Fe-MOF, consisting of a metal-organic framework (MIL-88B-NH2, Fe-MOF) decorated with platinum nanoparticles (Pt NPs), was prepared first and exhibited remarkably improved and excellent peroxidase-mimicking activity compared to the Fe-MOF material resulting from the synergistic catalysis effect between Fe-MOF and Pt NPs, which can effectively catalyze 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to generate a blue product (oxidized TMB, oxTMB). Interestingly, in the presence of AChE and acetylcholinesterase, the peroxidase-mimicking activity from Pt NPs/Fe-MOF was inhibited obviously, and thus, a colorimetric sensing platform for AChE can be constructed; more importantly, after the addition of OPs, this nanozyme activity can be recovered, inducing the further successful construction of a sensitive colorimetric sensing platform for OPs. The related sensing mechanism and condition optimization were studied, and the as-prepared Pt NPs/Fe-MOF nanozyme-based colorimetric method for AChE and OP detection displayed superior analytical performances with wide linearities and low detection limits. Furthermore, the designed method offers satisfactory real application ability. We expect the as-proposed Pt NPs/Fe-MOF nanozyme-based colorimetric sensing platform for AChE and OPs via the enzyme cascade reaction to show great potential application.
Collapse
Affiliation(s)
- Yinhui Yi
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing 100125, P. R. China
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xun Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Diyan Liao
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jieling Hou
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongde Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
12
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
13
|
Wang L, Li Z, Wang Y, Gao M, He T, Zhan Y, Li Z. Surface ligand-assisted synthesis and biomedical applications of metal-organic framework nanocomposites. NANOSCALE 2023. [PMID: 37323021 DOI: 10.1039/d3nr01723k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic framework (MOF) nanocomposites have recently gained intensive attention for biosensing and disease therapy applications owing to their outstanding physiochemical properties. However, the direct growth of MOF nanocomposites is usually hindered by the mismatched lattice in the interface between the MOF and other nanocomponents. Surface ligands, molecules with surfactant-like properties, are demonstrated to exhibit the robust capability to modify the interfacial properties of nanomaterials and can be utilized as a powerful strategy for the synthesis of MOF nanocomposites. Besides this, surface ligands also exhibit significant functions in the morphological control and functionalization of MOF nanocomposites, thus greatly enhancing their performance in biomedical applications. In this review, the surface ligand-assisted synthesis and biomedical applications of MOF nanocomposites are comprehensively reviewed. Firstly, the synthesis of MOF nanocomposites is discussed according to the diverse roles of surface ligands. Then, MOF nanocomposites with different properties are listed with their applications in biosensing and disease therapy. Finally, current challenges and further directions of MOF nanocomposites are presented to motivate the development of MOF nanocomposites with elaborate structures, enriched functions, and excellent application prospects.
Collapse
Affiliation(s)
- Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingqian Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Ting He
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| |
Collapse
|
14
|
Zhang P, Xu X, He W, Li H, Huang Y, Wu G. Autocatalytically hydroxyl-producing composite wound dressing for bacteria-infected wound healing. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102683. [PMID: 37105341 DOI: 10.1016/j.nano.2023.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
The creation of wound dressings with low drug resistance and broad-spectrum antibacterial capability is a key topic of scientific interest. To achieve this, a bactericidal wound dressing with the capacity to autocatalytically produce hydroxyl radicals (OH) was developed. The wound dressing was an electrospun PCL/gelatin/glucose composite fiber mesh (PGD) with functional iron-containing metal-organic framework (Fe-MOF) nanozymes. These functional nanozymes (G@Fe) were formed by coupling glucose oxidase (GOx) and Fe-MOF through amide bonds. These nanozymes enabled the conversion of glucose released from the PGD composite mesh into hydroxyl radicals via an autocatalytic cascade reaction to destroy bacteria. The antibacterial efficiency of wound dressings and their stimulation of tissue regeneration were assessed using a MRSA-infected skin wound infection model on the back of SD mice. The G@Fe/PGD wound dressing exhibited improved wound healing capacity and had comparable biosafety to commercial silver-containing dressings, suggesting a potential replacement in the future.
Collapse
Affiliation(s)
- Pinrui Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaomu Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Wangmei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou 510632, PR China.
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
An electrochemiluminescence aptasensor for amyloid-β protein with signal enhancement from AuNPs/Fe-MOFs nanocomposite. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
16
|
Wang A, Zhou Y, Chen Y, Zhou J, You X, Liu H, Liu Y, Ding P, Qi Y, Liang C, Zhu X, Zhang Y, Liu E, Zhang G. Electrochemical immunosensor for ultrasensitive detection of human papillomaviruse type 16 L1 protein based on Ag@AuNPs-GO/SPA. Anal Biochem 2023; 660:114953. [PMID: 36243135 DOI: 10.1016/j.ab.2022.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Human papillomaviruse type 16 (HPV16) is a high-risk serotype. As the main protective antigen protein, L1 protein is also the target protein for diagnosis. A simple label free electrochemical immunosensor (ECIS) was fabricated for ultrasensitive detection of HPV16 L1 protein in this work. Quasi-spherical Ag@Au core-shell nanoparticles on graphene oxide (Ag@AuNPs-GO) was developed as current response amplifier and characterized by UV-Vis Spectroscopy, Transmission Electron Microscopy and energy dispersive X-ray spectroscopy. Staphylococcal protein A was decorated on the modified electrode and utilized to immobilized the Fc portion of the monoclonal antibody specific for HPV16 L1 protein. Cyclic Voltammetry, Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy were used to verify the electrochemical performance and interfacial kinetic property. The increased concentration of HPV16 L1 protein led to slow electron transport and linearly decreased differential pulse voltammetry peak current with a detection limit of 0.002 ng mL-1 and a wide linear relationship in the range of 0.005-400 ng mL-1at a regression coefficient (R2) of 0.9948. Furthermore, this ECIS demonstrated acceptable accuracy with good reproducibility, stability and selectivity, suggesting a promising immunological strategy for HPV typing and early screening.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yiting Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Ying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Enping Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China; School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
17
|
Wang B, He B, Xie L, Cao X, Liang Z, Wei M, Jin H, Ren W, Suo Z, Xu Y. A novel detection strategy for nitrofuran metabolite residues: Dual-mode competitive-type electrochemical immunosensor based on polyethyleneimine reduced graphene oxide/gold nanorods nanocomposite and silica-based multifunctional immunoprobe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158676. [PMID: 36096228 DOI: 10.1016/j.scitotenv.2022.158676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Excessive residues of semicarbazide (SEM) can accumulate in animals after the original drug has been abused, posing a risk to human health. Herein, based on multifunctional silica-initiated dual mode signal response, a novel competitive-type immunosensor was constructed for ultrasensitive detection of SEM. As a preliminary signal amplification platform for immunosensors, polyethyleneimine reduced graphene oxide composite gold nanorods (PEI-rGO/AuNRs) modified gold electrodes (AuE) provide a high specific surface area and high electrical conductivity. The thionine-aminated silica nanospheres-AuPt (thi-SiO2@AuPt) were synthesized by a racile coprecipitation method for enzyme immobilization and redox species loading. The multifunctional silica nanosphere conjugated with labeling antibodies (Ab2) was employed as an immunoprobe. The per unit concentration target of SEM can be determined by differential pulse voltammetry (DPV) to detect the thi loaded on the immunoprobe, which can also be determined by square wave voltammetry (SWV) to detect the current generated by the reaction system of H2O2 and hydroquinone (HQ) catalyzed by the immunoprobe with peroxidase. Under optimal conditions, the proposed immunosensor displayed a wide linear range from 1 μg-0.01 ng/mL and low detection limits (S/N = 3) of 0.488 pg/mL and 0.0157 ng/mL, respectively. Ultimately, the developed method exhibits excellent performance in practical applications, providing promising probabilities for SEM detection.
Collapse
Affiliation(s)
- Botao Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Zhengyong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
18
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
19
|
Li G, Liu S, Huo Y, Zhou H, Li S, Lin X, Kang W, Li S, Gao Z. “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal Chim Acta 2022; 1222:340178. [DOI: 10.1016/j.aca.2022.340178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
|
20
|
Zhang M, Guo X. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A. A Comprehensive Review of Metal-Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:2238. [PMID: 35336408 PMCID: PMC8953394 DOI: 10.3390/s22062238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Many studies have addressed electrochemical biosensors because of their simple synthesis process, adjustability, simplification, manipulation of materials' compositions and features, and wide ranges of detection of different kinds of biomedical analytes. Performant electrochemical biosensors can be achieved by selecting materials that enable faster electron transfer, larger surface areas, very good electrocatalytic activities, and numerous sites for bioconjugation. Several studies have been conducted on the metal-organic frameworks (MOFs) as electrode modifiers for electrochemical biosensing applications because of their respective acceptable properties and effectiveness. Nonetheless, researchers face challenges in designing and preparing MOFs that exhibit higher stability, sensitivity, and selectivity to detect biomedical analytes. The present review explains the synthesis and description of MOFs, and their relative uses as biosensors in the healthcare sector by dealing with the biosensors for drugs, biomolecules, as well as biomarkers with smaller molecular weight, proteins, and infectious disease.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | | | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Antonio Di Bartolomeo
- Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
22
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
23
|
Chen S, Yu J, Chen Z, Huang Z, Song Y. Simultaneous electrochemical sensing of heavy metal ions based on a g-C 3N 4/CNT/NH 2-MIL-88(Fe) nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5830-5837. [PMID: 34842866 DOI: 10.1039/d1ay01682b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of Cd2+, Pb2+, Cu2+ and Hg2+ in drinking-water can be harmful to human health, even if their concentration is fairly low. Hence, it is significant to detect these heavy metal ions in sewage to evaluate the quality of water. Herein, amino-functionalized metal-organic frameworks (NH2-MIL-88(Fe)) embedded with graphitic carbon nitride (g-C3N4) nanosheets and acid-functionalized carbon nanotubes were prepared via a one-pot synthesis. The composite can be directly modified on the surface of glass carbon electrodes without the assistance of Nafion or other binders. The modified glass carbon electrodes can be used to simultaneously detect Cd2+, Pb2+, Cu2+ and Hg2+ in water via square wave stripping voltammetry. The doping of g-C3N4 in the composite, rich in N-containing functional groups, participates in the adsorption of metal ions on the surface of the electrodes. The porous composite provides accommodation room for metals generated by electro-reduction. The detection limit for Cd2+, Pb2+, Cu2+ and Hg2+ is 39.6 nM, 7.6 nM, 11.9 nM, and 9.6 nM, respectively. And the sensitivity for Cd2+, Pb2+, Cu2+ and Hg2+ is 0.0789 mA μM-1 cm-2, 0.4122 mA μM-1 cm-2, 0.2616 mA μM-1 cm-2, and 0.3251 mA μM-1 cm-2, respectively. This work not only enriches the functional design of Fe-MOF materials, but also develops a method for the determination of metal ions using the adsorption sites in g-C3N4.
Collapse
Affiliation(s)
- Shouhui Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Jingguo Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Zhen Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Zhenzhong Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Yonghai Song
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| |
Collapse
|
24
|
An ultrasensitive electrochemical aptasensor based on a single-stranded aptamer-Au@Fe-MIL-88 complex using methylene blue as an electrochemical probe for insulin detection. Anal Bioanal Chem 2021; 413:7451-7462. [PMID: 34668997 DOI: 10.1007/s00216-021-03703-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
This work introduces an electrochemical aptasensor based on a single-stranded aptamer-Au@Fe-MIL-88 complex for sensitive and selective determination of insulin using differential pulls voltammetry. Au@Fe-MIL-88 with a large surface area was synthesized and employed as a suitable substrate for immobilization of the aptamer (APT-Au@Fe-MIL-88). Methylene blue (MB), as an electrochemical probe, was intercalated into the aptamer. Graphene oxide (GO) and zinc sulfide (ZnS) were placed on the Au electrode to amplify the MB current. Also, ZnS improves the immobilization of APT-Au@Fe-MIL-88 into the aptasensor through the strong interaction of Au-S. In the presence of the insulin, MB is released from the aptamer due to DNA conformational change, and as a result, the peak intensity of the intercalated MB was decreased. Under optimal conditions, the change in the current of MB was proportional to the insulin concentration in the range of 5.0 × 10-16-5.0 × 10-11 mol L-1, with a superior ultra-low detection limit of 1.3 × 10-16 mol L-1. It was observed that the aptasensor is suitable for determining insulin in serum samples with good sensitivity and reproducibility and with recoveries ranging from 96.4 to 102.0%. The relative standard deviations (RSD) were lower than 3.8% (n = 3).
Collapse
|
25
|
Tang D, Yang X, Wang B, Ding Y, Xu S, Liu J, Peng Y, Yu X, Su Z, Qin X. One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46225-46232. [PMID: 34553591 DOI: 10.1021/acsami.1c09095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To date, two-dimensional (2D) and three-dimensional (3D) metal organic frameworks (MOFs) have been promising materials for applications in electrocatalysis, separation, and sensing. However, the exploration of a simple method for simultaneous fabrication of 2D/3D MOFs on a surface remains challenging. Herein, a one-step and in situ electrosynthesis strategy for fabrication of 2D Hemin-bridged MOF sheets (Hemin-MOFs) or 2D/3D Zn(II)-MOF hybrid nanocomposites on an electrode is reported. It exhibits varied morphologies at different electrodeposition times and attains a 2D/3D complex morphology by adding 1,3,5-benzenetricarboxylic acid (H3BTC) as an organic ligand. The morphology and size of 2D Hemin-MOFs are important factors that influence their performance. Since Pt nanoparticles (PtNPs) are grown on 2D Hemin-MOF sheets, this composite can serve as the peroxidase mimics and PtNPs can act as an anchor to capture the antibody. Therefore, this hybrid nanosheet-modified electrode is used as an electrochemical sensing platform for ultrasensitive pig immunoglobulin G (IgG) and the surface-protective antigen (Spa) protein of Erysipelothrix rhusiopathiae immunodetection. Moreover, this work provides a new avenue for the electrochemical synthesis of 2D/3D MOF hybrid nanocomposites with a high surface area and biomimetic catalysts.
Collapse
Affiliation(s)
- Daili Tang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolan Yang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Birui Wang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yanbin Ding
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Siyu Xu
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Junjie Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yang Peng
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhaohong Su
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoli Qin
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
26
|
A novel affinity peptide-antibody sandwich electrochemical biosensor for PSA based on the signal amplification of MnO 2-functionalized covalent organic framework. Talanta 2021; 233:122520. [PMID: 34215135 DOI: 10.1016/j.talanta.2021.122520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
This work describes a novel affinity peptide-antibody sandwich electrochemical strategy for the ultrasensitive detection of prostate-specific antigen (PSA). Herein, polydopamine-coated boron-doped carbon nitride (Au@PDA@BCN) was synthesized and used as a sensing platform to anchor gold nanoparticles and immobilize primary antibody. Meanwhile, AuPt metallic nanoparticle and manganese dioxide (MnO2)-functionalized covalent organic frameworks (AuPt@MnO2@COF) was facilely synthesized to serve as a nanocatalyst and ordered nanopore for the enrichment and amplification of signal molecules (methylene blue, MB). PSA affinity peptide was bound to AuPt@MnO2@COF to form Pep/MB/AuPt@MnO2@COF nanocomposites (probe). The peptide-PSA-antibody sandwich biosensor was constructed, and the redox signal of MB was measured with the existence of PSA. The fabricated sensor exhibited a linear response (0.00005-10 ng mL-1) with a low detection limit of 16.7 fg mL-1 under the optimum condition. Additionally, the sensor showed an excellent selectivity, ideal repeatability, and good stability for PSA detection in real samples. Furthermore, the porous structure of COF can enrich more MB molecules and increase the sensitivity of the biosensor. This study provides an efficient and ultrasensitive strategy for PSA detection and broadens the use of organic/inorganic porous nanocomposite in biosensing.
Collapse
|
27
|
Zhang J, Sun H, Pei W, Jiang H, Chen J. Nanobody-based immunosensing methods for safeguarding public health. J Biomed Res 2021; 35:318-326. [PMID: 34421007 PMCID: PMC8383166 DOI: 10.7555/jbr.35.20210108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immunosensing methods are biosensing techniques based on specific recognition of an antigen-antibody immunocomplex, which have become commonly used in safeguarding public health. Taking advantage of antibody-related biotechnological advances, the utilization of an antigen-binding fragment of a heavy-chain-only antibody termed as 'nanobody' holds significant biomedical potential. Compared with the conventional full-length antibody, a single-domain nanobody retaining cognate antigen specificity possesses remarkable physicochemical stability and structural adaptability, which enables a flexible and efficient molecular design of the immunosensing strategy. This minireview aims to summarize the recent progress in immunosensing methods using nanobody targeting tumor markers, environmental pollutants, and foodborne microbes.
Collapse
Affiliation(s)
- Jiarong Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hui Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | - Wei Pei
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
28
|
Wang A, You X, Liu H, Zhou J, Chen Y, Zhang C, Ma K, Liu Y, Ding P, Qi Y, Zhang G. Development of a label free electrochemical sensor based on a sensitive monoclonal antibody for the detection of tiamulin. Food Chem 2021; 366:130573. [PMID: 34311232 DOI: 10.1016/j.foodchem.2021.130573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 11/04/2022]
Abstract
Based on a murine monoclonal antibody (mAb) against tiamulin (TML), an electrochemical immunosensor was proposed using silver-graphene oxide (Ag-GO) nanocomposites and gold nanocomposites (AuNPs) to detect tiamulin (TML). Due to the synergetic properties of Ag-GO nanocomposites and AuNPs, the conductivity of the immunosensor was significantly enhanced. On account of the specific mAb and conductive nanocomposites, the proposed electrochemical immunosensor exhibited a low LOD of 0.003 ng mL-1 for the detection of TML in a wide linear range of 0.01 to 1000 ng mL-1. In addition, the immunosensor did not involve additional redox species. Furthermore, the efficient and simple electrochemical immunosensor was employed to detect TML in real samples with high accuracy, suggesting a potential detection platform for other veterinary antibiotics in animal derived foods.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Chenyang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaikai Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
29
|
Rong S, Zou L, Li Y, Guan Y, Guan H, Zhang Z, Zhang Y, Gao H, Yu H, Zhao F, Pan H, Chang D. An ultrasensitive disposable sandwich-configuration electrochemical immunosensor based on OMC@AuNPs composites and AuPt-MB for alpha-fetoprotein detection. Bioelectrochemistry 2021; 141:107846. [PMID: 34087545 DOI: 10.1016/j.bioelechem.2021.107846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/20/2023]
Abstract
Early finding and diagnosis are critical for prevention and treatment of hepatocellular carcinoma (HCC). Alpha-fetoprotein (AFP) is a typical biomarker of HCC. Since AFP level can reflect the severity of HCC, it is essential to ensure the accurate detection of AFP. In this study, through a combination of the advantages exhibited by ordered mesoporous carbon (OMC)@gold nanoparticles (AuNPs) composites and AuPt-methylene blue (AuPt-MB), a disposable ultrasensitive sandwich-configuration electrochemical immunosensor for determination of AFP was designed. Characterized by excellent conductivity, highly ordered pore distribution and great surface area, OMC can be effective in promoting electron transfer and loading a large number of AuNPs. In the meantime, AuNPs can also immobilize AFP-Ab1 through Au-N bonds. As a new redox-active species, rod-like AuPt-MB demonstrates high conductivity, uniform morphology and excellent biocompatibility, which makes it capable not only to fix AFP-Ab2, but also to release electrochemical signals. A wide linearity of 10 fg mL-1-100 ng mL-1 and a low detection limit of 3.33 fg mL-1 (S/N = 3) were obtained. Moreover, the proposed immunosensor exhibited acceptable selectivity, high stability and reproducibility. The excellent performance in detecting serum samples endows the proposed immunosensor with broad prospects of extensive application in the detection of disease biomarkers.
Collapse
Affiliation(s)
- Shengzhong Rong
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China; Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lina Zou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Yang Li
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Guan
- Heilongjiang Nursing College, Harbin, China
| | - Huilin Guan
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Ze Zhang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Yingcong Zhang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Hongmin Gao
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Hongwei Yu
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Fuyang Zhao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Dong Chang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Zhang C, Zhang N, Xu Y, Feng J, Yao T, Wang F, Ma Z, Han H. Fenton reaction-mediated dual-attenuation of signal for ultrasensitive amperometric immunoassay. Biosens Bioelectron 2021; 178:113009. [PMID: 33493899 DOI: 10.1016/j.bios.2021.113009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
In order to alter the complexion of immunoprobe with large impedance as negative factor in sensitivity of amperometric immunosensor, a strategy of Fenton reaction-mediated dual-attenuation of signal was proposed. Herein, metal-polydopamine-Fe3+ composite with the ability of Fenton reaction was initially prepared as immunoprobe for an ultrasensitive immunoassay. The polymerization of dopamine occurred on the surface of ZIF-67 to gain the metal-polydopamine shell, which possessed rich functional groups, negative charge and high specific surface. Then the prepared functional shell was further used to absorb Fe3+ and immobilize labeling antibody as immunoprobe, which was used to construct a sandwich type immunosensor. With addition of H2O2 and aniline, Fenton reaction was triggered to produce hydroxyl radicals, which can not only decrease the current value by degrading methylene blue molecules, but also further initiate aniline to polymerize into non-conductive polyaniline for successive abatement of signal intensity. Therefore, the dual-attenuation of signal model rendered the immunoprobe into a favorable factor and synchronously enhance sensitivity. Expectedly, the detection performance with a linear range from 1.0 × 10-4-100 ng mL-1 and ultralow detection limit of 9.07 × 10-5 ng mL-1 toward neuron-specific enolase was obtained under optimal conditions. This work offered a novel tactic for enhancing sensitivity of immunosensor through the preparation of functional immunoprobe and its rational utilization as signal enhancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Nana Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yang Xu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jiejie Feng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Fei Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
31
|
Contribution of Nanomaterials to the Development of Electrochemical Aptasensors for the Detection of Antimicrobial Residues in Food Products. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The detection of antimicrobial residues in food products of animal origin is of utmost importance. Indeed antimicrobial residues could be present in animal derived food products because of animal treatments for curative purposes or from illegal use. The usual screening methods to detect antimicrobial residues in food are microbiological, immunological or physico-chemical methods. The development of biosensors to propose sensitive, cheap and quick alternatives to classical methods is constantly increasing. Aptasensors are one of the major trends proposed in the literature, in parallel with the development of immunosensors based on antibodies. The characteristics of electrochemical sensors (i.e., low cost, miniaturization, and portable instrumentation) make them very good candidates to develop screening methods for antimicrobial residues in food products. This review will focus on the recent advances in the development of electrochemical aptasensors for the detection of antimicrobial residues in food products. The contribution of nanomaterials to improve the performance characteristics of electrochemical aptasensors (e.g., Sensitivity, easiness, stability) in the last ten years, as well as signal amplification techniques will be highlighted.
Collapse
|
32
|
Gao X, Teng P, Peng L, Ji H, Qiu Y, Liu X, Guo D, Jiang S. Development and Validation of an Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method to Determine Maduramicin in Crayfish ( Procambarus clarkii) and Evaluate Food Safety. Foods 2021; 10:foods10020301. [PMID: 33540848 PMCID: PMC7913001 DOI: 10.3390/foods10020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Maduramicin (MAD) is widely introduced into aquatic environments and results in the contamination of fish products. Worryingly, the consumption of MAD-contaminated crayfish (Procambarus clarkii) may induce symptoms of Haff disease. In this study, to monitor this potential contamination and to understand the residue and elimination characteristics of MAD in edible tissues of crayfish, a sensitive and efficient ultra-performance liquid chromatography-tandem mass spectrometry method was developed, validated, and applied. After extraction with acetonitrile and purification by solid-phase extraction column, multiple-reaction monitoring mass spectrometry with positive ionization mode was used to determine MAD's residues. The limits of detection and of quantification were 6 μg·kg-1 and 20 μg·kg-1, respectively. The fortified recoveries ranged from 74.2% to 110.4%, with relative standard deviation of 1.2% to 10.1%. Furthermore, MAD was completely eliminated after 3 and 5 days from abdominal muscle and hepatopancreas tissues of crayfish, respectively. The maximum residue limits (MRLs) of MAD respectively was 200 μg·kg-1 in muscle and 600 μg·kg-1 in the hepatopancreas, and its withdrawal time in both edible tissues was 25.8 °C·d. Collectively, the results of this study indicate the proposed method is an efficient tool to evaluate the public health risk associated with crayfish consumption.
Collapse
Affiliation(s)
- Xiuge Gao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (X.G.); (P.T.); (L.P.); (H.J.); (Y.Q.); (X.L.); (D.G.)
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Pei Teng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (X.G.); (P.T.); (L.P.); (H.J.); (Y.Q.); (X.L.); (D.G.)
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lin Peng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (X.G.); (P.T.); (L.P.); (H.J.); (Y.Q.); (X.L.); (D.G.)
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Ji
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (X.G.); (P.T.); (L.P.); (H.J.); (Y.Q.); (X.L.); (D.G.)
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yawei Qiu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (X.G.); (P.T.); (L.P.); (H.J.); (Y.Q.); (X.L.); (D.G.)
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaoxiao Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (X.G.); (P.T.); (L.P.); (H.J.); (Y.Q.); (X.L.); (D.G.)
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (X.G.); (P.T.); (L.P.); (H.J.); (Y.Q.); (X.L.); (D.G.)
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shanxiang Jiang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (X.G.); (P.T.); (L.P.); (H.J.); (Y.Q.); (X.L.); (D.G.)
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-8439-6770
| |
Collapse
|
33
|
Yin L, Wang Y, Tan R, Li H, Tu Y. Determination of β-amyloid oligomer using electrochemiluminescent aptasensor with signal enhancement by AuNP/MOF nanocomposite. Mikrochim Acta 2021; 188:53. [PMID: 33496823 DOI: 10.1007/s00604-021-04710-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/10/2021] [Indexed: 01/17/2023]
Abstract
In order to effectively and conveniently detect the β-amyloid oligomer (AβO) for earlier diagnosis of Alzheimer's disease (AD), a disposable aptamer biosensor has been developed with high performance, facile operation, and low cost. Using a nanocomposite by in situ reduction of chloroauric acid to decorate Au nanoparticles (AuNPs) on Fe-MIL-88NH2 material via Au-N bond to effectively enhance the electrochemiluminescence (ECL) of luminol, the functioned basal electrode provides adequate background for sensing response. When the aptamer is linked via Au-S bond on the surface, the sensor gets the ability of specific recognition and coalescence toward the target (AβO). After incubating the sample on the aptasensor, its ECL signal is inhibited owing to the steric hindrance of the AβO macromolecules. The relative inhibition ratio linearly depends to the logarithm of AβO concentration in the range 0.1 pM to 10 pM, with an LOD of 71 fM. The aptasensor has high selectivity to AβO among its analogs. The recoveries in human serum were 98.9-105.4%. This research provides a new approach for sensitive detection of AβO in clinic laboratories for investigation and diagnosis of AD.
Collapse
Affiliation(s)
- Lixiu Yin
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yueju Wang
- First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| | - Rong Tan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Huiling Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
34
|
Li W, Yang Y, Ma C, Song Y, Qiao X, Hong C. A sandwich-type electrochemical immunosensor for ultrasensitive detection of multiple tumor markers using an electrical signal difference strategy. Talanta 2020; 219:121322. [DOI: 10.1016/j.talanta.2020.121322] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
|
35
|
Zuo J, Yuan Y, Zhao M, Wang J, Chen Y, Zhu Q, Bai L. An efficient electrochemical assay for miR-3675-3p in human serum based on the nanohybrid of functionalized fullerene and metal-organic framework. Anal Chim Acta 2020; 1140:78-88. [PMID: 33218492 DOI: 10.1016/j.aca.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unclear pathogenesis, for which diagnosis has been a great challenge. Recent researches have revealed that miR-3675-3p is a promising biomarker for IPF diagnosis. Herein, the present work describes a novel electrochemical microRNA biosensor for rapid and sensitive detection of miR-3675-3p based on multiple signal amplification strategies. First of all, fullerene (C60) is doped with poly(amidoamine) (PAMAM)-functionalized metal-organic framework (MOF) to form a new nanohybrid of C60@PAMAM-MOF, which exhibits more remarkable redox activity compared with the other two synthesized C60-based nanohybrids when triggered by tetraoctylammonium bromide (TOAB). C60@PAMAM-MOF also possesses a large specific surface area and abundant amino groups to anchor Au nanoparticles (AuNPs) for the immobilization of signal probe (SP) to form tracer label and enhance the electrochemical response signal. In addition, core@shell Au-Pt nanoparticles (Au@PtNPs) are absorbed on chitosan-acetylene black (CS-AB) to act as sensing platform, which can promote electron transfer and increase the loading of capture probe (CP). Under optimum conditions, the proposed biosensor displays a wide linear range for miR-3675-3p from 10 fM to 10 nM, with a limit of detection (LOD) as low as 2.99 fM. More significantly, this biosensor shows a lower LOD and wider linear range than that of qRT-PCR, and its trial application in human serum shows favorable results, which exhibits a promising prospect for IPF diagnosis.
Collapse
Affiliation(s)
- Jianli Zuo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yonghua Yuan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jie Wang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Qiqi Zhu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
36
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
37
|
Leng Y, Bu S, Li Z, Hao Z, Ma C, He X, Wan J. A Colorimetric Immunosensor Based on Hemin@MI Nanozyme Composites, with Peroxidase-like Activity for Point-of-care Testing of Pathogenic E. coli O157:H7. ANAL SCI 2020; 37:941-947. [PMID: 32893249 DOI: 10.2116/analsci.20p081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, nanozymes have become a topic of particular interest due to their high activity level, stability and biocompatibility. In this study, a visual, sensitive and selective point-of-care immunosensor was established to test the pathogen Escherichia coli O157:H7 (E. coli O157:H7). Hemin and magainin I (MI) hybrid nanocomposites (Hemin@MI) with peroxidase-mimicking activities were synthesized via a "one-pot" method, involving the simple mixing of an antimicrobial peptide (MI) against E. coli O157:H7 and hemin in a copper sulfate sodium phosphate saline buffer. Hemin@MI nanocomposites integrating target recognition and signal amplification were developed as signal probes for the point-of-care colorimetric detection of pathogenic E. coli O157:H7. Hemin@MI nanocomposites exhibit excellent peroxidase activity for the chromogenic reaction of ABTS, which allows for the visual point-of-care testing of E. coli O157:H7 in the range of 102 to 108 CFU/mL, with a limit of detection of 85 CFU/mL. These data suggest this immunosensor provides accessible and portable assessments of pathogenic E. coli O157:H7 in real samples.
Collapse
Affiliation(s)
- Yan Leng
- School of Life Science and Technology, Changchun University of Science and Technology.,Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Zhongyi Li
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Zhuo Hao
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Chengyou Ma
- College of Geo-Exploration Science and Technology, Jilin University
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences
| |
Collapse
|
38
|
Chen L, Sun Y, Hu X, Xing Y, Kwee S, Na G, Zhang G. Colloidal gold-based immunochromatographic strip assay for the rapid detection of diminazene in milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1667-1677. [DOI: 10.1080/19440049.2020.1778185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Linlin Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunrui Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Sharon Kwee
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Guanqiong Na
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
39
|
Du L, Chen W, Zhu P, Tian Y, Chen Y, Wu C. Applications of Functional Metal-Organic Frameworks in Biosensors. Biotechnol J 2020; 16:e1900424. [PMID: 32271998 DOI: 10.1002/biot.201900424] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Indexed: 12/12/2022]
Abstract
In recent decades, fast advancements in the fields of metal-organic frameworks (MOFs) are providing unprecedented opportunities for the development of novel functional MOFs for various biosensing applications. Exciting progress is achieved due to the combination of MOFs with various functional components, which introduces novel structures and new features to the MOFs-based biosensing applications, such as higher stability, higher sensitivity, higher flexibility, and higher specificity. This review aims to be a comprehensive summary of the most recent advances in the development of functional MOFs for various biosensing applications, placing special attention on important contributions in recent 3 years. In this review, the most recent developments in design and synthesis of functional MOFs for biosensing applications are summarized. MOFs-based biosensing applications are outlined according to the central roles of MOFs in biosensors, which include carriers of sensitive elements, enzyme-mimic elements, electrochemical signaling, optical signaling, and gas sensing. Finally, the current challenges and future development trends of functional MOFs for biosensing applications are proposed and discussed.
Collapse
Affiliation(s)
- Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|