1
|
Kiani P, Vatankhahan H, Zare-Hoseinabadi A, Ferdosi F, Ehtiati S, Heidari P, Dorostgou Z, Movahedpour A, Baktash A, Rajabivahid M, Khatami SH. Electrochemical biosensors for early detection of breast cancer. Clin Chim Acta 2025; 564:119923. [PMID: 39153652 DOI: 10.1016/j.cca.2024.119923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel. Recent shifts towards biosensor technologies offer a promising alternative for monitoring biological processes and providing accurate health diagnostics in a cost-effective, non-invasive manner. These biosensors are particularly advantageous for early detection of primary tumors, metastases, and recurrent diseases, contributing to more effective breast cancer management. The integration of biosensor technology into medical devices has led to the development of low-cost, adaptable, and efficient diagnostic tools. In this framework, electrochemical screening platforms have garnered significant attention due to their selectivity, affordability, and ease of result interpretation. The current review discusses various breast cancer biomarkers and the potential of electrochemical biosensors to revolutionize early cancer detection, making provision for new diagnostic platforms and personalized healthcare solutions.
Collapse
Affiliation(s)
- Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | | - Aria Baktash
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Liu L, Xiong H, Wang X, Jiang H. Gold nanomaterials: important vectors in biosensing of breast cancer biomarkers. Anal Bioanal Chem 2024; 416:3869-3885. [PMID: 38277010 DOI: 10.1007/s00216-024-05151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women worldwide, and its incidence is increasing every year. Early diagnosis and treatment are critical to improve the curability and prognosis of patients. However, existing detection methods often suffer from insufficient sensitivity and specificity, which limits their clinical application. Fortunately, the rapid development of nanotechnology offers new possibilities for diagnosing BC. For example, the unique physicochemical properties of gold nanomaterials (Au NMs), such as fascinating optical properties and quantum size effect, along with excellent biocompatibility and modifiability, enable them to manifest great potential in the field of biosensing, especially in the detection of BC biomarkers. Through fine surface modification and functionalization, Au NMs can accurately bind to specific antibodies, nucleic acids, and other biomolecules, thus achieving sensitive and precise detection of specific biomarkers. Here, we focus on the research progress of Au NMs as a key biosensing vector in BC biomarker detection. From four major perspectives of early diagnosis, prognostic evaluation, risk prediction, and bioimaging applications, we have thoroughly analyzed the broad application of Au NMs in BC biomarker detection and prospectively addressed its possible future trends. We hope this review will provide more comprehensive ideas for future researchers and promote the further development of this field.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Shi Q, Qi P, Wang Z, Zhang T, Zhang S, Wu J, Guo Z, Chen J, Zhang Q. Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis. Asian J Pharm Sci 2024; 19:100910. [PMID: 38948397 PMCID: PMC11214190 DOI: 10.1016/j.ajps.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 07/02/2024] Open
Abstract
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
Collapse
Affiliation(s)
- Xuyao Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Shi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Qi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ziming Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Tongyue Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Al-Hawary SIS, Saleh RO, Mansouri S, Noraldeen SAM, Alawadi AH, Kareem AH, Alsalamy A, Shakir MN, Alasheqi MQ, Mustafa YF. Isothermal amplification methods in cancer-related miRNA detection; a new paradigm in study of cancer pathology. Pathol Res Pract 2024; 254:155072. [PMID: 38228039 DOI: 10.1016/j.prp.2023.155072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression. They are involved in a wide range of biological processes, including development, differentiation, cell cycle regulation, and response to stress. Numerous studies have demonstrated that miRNAs are present in different bodily fluids, which could serve as an important biomarker. The advancement of techniques and strategies for the identification of cancer-associated miRNAs in human specimens offers a novel opportunity to diagnose cancer in early stages, predict patient prognosis and evaluate response to treatment. Isothermal techniques including loop-mediated isothermal amplification (LAMP), rolling circle amplification (RCA), or recombinase polymerase amplification (RPA) offer simplicity, efficiency, and rapidity in miRNA detection processes. In contrast to traditional PCR (polymerase chain reaction), these techniques analysis and quantify miRNA molecules in specimens using a single constant temperature. In this comprehensive review, we summarized the recent advances in cancer-related miRNA detection via highly sensitive isothermal amplification methods by more focusing on the involved mechanism.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, University of Najaf, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
5
|
Norouzi S, Soltani S, Alipour E. Recent advancements in biosensor designs toward the detection of intestine cancer miRNA biomarkers. Int J Biol Macromol 2023:125509. [PMID: 37364808 DOI: 10.1016/j.ijbiomac.2023.125509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer diagnosis and treatment have been of broad interest among scientists in the last decades due to the high death rate, widespread occurrence, and recurrence after treatment. The survival rate of cancer patients depends greatly on early detection and appropriate treatments. Therefore developing new technologies applicable to sensitive and specific methods of cancer detection is an inevitable task for cancer researchers. Abnormal miRNA expression is contributed to severe diseases such as cancers and since their expression level and type differ strictly during carcinogenesis and later metastasis and treatments, the improved detection accuracy of these miRNAs would undoubtedly lead to early diagnosis, prognosis, and targeted therapy. Biosensors are accurate and straightforward analytical devices that have had practical applications especially in the last decade. Their domain is still growing through a combination of attractive nanomaterials and amplification methods, leading to innovative biosensing platforms for the efficient detection of miRNAs as diagnostic and prognostic biomarkers. In this review, we will provide the recent developments in biosensors to detect intestine cancer miRNA biomarkers and also discuss the challenges and outcomings of this field.
Collapse
Affiliation(s)
| | - Somaieh Soltani
- Pharmacy faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
6
|
A light-up fluorescence platform based DNA: RNA hybrid G-quadruplet for detecting single nucleotide variant of ctDNA and miRNA-21. Talanta 2023; 257:124373. [PMID: 36801760 DOI: 10.1016/j.talanta.2023.124373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/21/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
The nucleic acid assay is an area of great concern in the diagnosis and treatment of breast cancer. Here, we developed a DNA: RNA hybrid G-quadruplet (HQ) detection platform based on strand displacement amplification (SDA) and Baby Spinach RNA aptamer for single nucleotide variant (SNV) of circulating tumor DNA (ctDNA) and miRNA-21. This was the first in vitro construction of HQ for the biosensor. It found that HQ had much stronger ability to switch on fluorescence of DFHBI-1T than Baby Spinach RNA alone. Taking advantage of the platform and the FspI enzyme with high specificity, the biosensor achieved ultra-sensitive detection of SNV of the ctDNA (PIK3CA H1047R gene) and miRNA-21. The light-up biosensor had high anti-interference ability in complex actual samples. Hence, the label-free biosensor provided a sensitive and accurate method for early diagnosis of breast cancer. Moreover, it opened a new application model for RNA aptamers.
Collapse
|
7
|
Xu L, Hou S, Huang X, Wang M, Li C, Dong N, Lin Z. Highly sensitive homogeneous electrochemiluminescence biosensor for microRNA-155 based on enzyme-free cascade signal amplification and magnetic assisted enrichment. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
8
|
Recent strategies for electrochemical sensing detection of miRNAs in lung cancer. Anal Biochem 2023; 661:114986. [PMID: 36384188 DOI: 10.1016/j.ab.2022.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
MicroRNAs (miRNAs) associated with lung cancer are diversifying. MiR-21, Let-7, and miR-141 are common diagnostic targets. Some new lung cancer miRNAs, such as miR-25, miR-145, and miR-126, have received increasing attention. Although various techniques are available for the analysis of lung cancer miRNAs, electrochemistry has been recognized for its high sensitivity, low cost, and rapid response. However, how to realize the signal amplification is one of the most important contents in the design of electrochemical biosensors. Herein, we mainly introduce the amplification strategy based on enzyme-free amplification and signal conversion, including non-linear HCR, catalytic hairpin assembly (CHA), electrochemiluminescence (ECL), and Faraday cage. Furthermore, new progress has emerged in the fields of nanomaterials, low oxidation potential, and simultaneous detection of multiple targets. Finally, we summarize some new challenges that electrochemical techniques may encounter in the future, such as improving single-base discrimination ability, shortening electrochemical detection time, and providing real body fluid samples assay.
Collapse
|
9
|
Li CH, Chan MH, Chang YC, Hsiao M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010364. [PMID: 36615558 PMCID: PMC9822408 DOI: 10.3390/molecules28010364] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Molecular biology applications based on gold nanotechnology have revolutionary impacts, especially in diagnosing and treating molecular and cellular levels. The combination of plasmonic resonance, biochemistry, and optoelectronic engineering has increased the detection of molecules and the possibility of atoms. These advantages have brought medical research to the cellular level for application potential. Many research groups are working towards this. The superior analytical properties of gold nanoparticles can not only be used as an effective drug screening instrument for gene sequencing in new drug development but also as an essential tool for detecting physiological functions, such as blood glucose, antigen-antibody analysis, etc. The review introduces the principles of biomedical sensing systems, the principles of nanomaterial analysis applied to biomedicine at home and abroad, and the chemical surface modification of various gold nanoparticles.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
10
|
A novel conductive nanocomposite-based biosensor for ultrasensitive detection of microRNA-21 in serum, using methylene blue as mediator. Bioelectrochemistry 2022; 148:108256. [PMID: 36081272 DOI: 10.1016/j.bioelechem.2022.108256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 01/01/2023]
Abstract
MicroRNA-21 (miRNA-21) is a common biomarker with high expression in breast tumors. Therefore, sensitive detection of miRNA-21 is of great significance for clinical breast tumor diagnosis. A TH/rGO/CMK-3/AuNPs nanocomposite is composed of thionine (TH), reduced graphene oxide (rGO), ordered mesoporous carbon (CMK-3), and gold nanoparticles (AuNPs), which help to increase the specific surface area of a glassy carbon electrode (GCE) and to amplify the DPV signal. Meanwhile, methylene blue (MB) was combined with the capture probe guanine and absorbed by the composite material to mediate the differential pulse voltammetry (DPV) of the obtained miRNA biosensor. The current response decreased with increasing miRNA-21 concentration under optimal conditions. The biosensor responds to miRNA-21 in the 0.1fM-1 pM concentration range, and the detection limit (LOD) was 0.046 fM. Moreover, human serum samples were effectively detected utilizing the miRNA-21 biosensor with satisfactory results.
Collapse
|
11
|
Yang X, Cui A, Zhang Y, Li S, Li Y. Electrogenerated chemiluminescence biosensor for microRNA detection incorporating enzyme-free dual DNA cyclic amplification and Ru(bpy)32+-functionalized metal-organic framework. Talanta 2022; 245:123458. [DOI: 10.1016/j.talanta.2022.123458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 01/06/2023]
|
12
|
Li X, Ma F, Deng L, Yang M, Chen X. A wheel-like DNA nanosensor with background correction for analysis of miRNA-21 in living cells. Chem Commun (Camb) 2022; 58:8270-8273. [PMID: 35788226 DOI: 10.1039/d2cc02736d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silica ring-based ratiometric fluorescence nanosensing and imaging platform was established for the quantification of miRNA-21 with carbon dots and nucleic-functionalized gold nanoparticles inside and outside the ring, respectively. In the presence of miRNA-21, on one hand, the fluorescence emission signal of the originally quenched 6-carboxyfluorescein (FAM), which was labeled on the nucleic acid molecules that modified on the gold nanoparticles, was re-emitted. On the other hand, the fluorescence intensity of the carbon dots inside the ring remained essentially unchanged, which served to eliminate background interference. The ring rather than the shell well maintained the fluorescence of the carbon dots. The ratio of the recovered fluorescence intensity of FAM to the fluorescence intensity of the carbon dots was linearly correlated with the logarithm of miRNA-21 concentration. The linear range of the probe for miRNA detection was more than 3 orders of magnitude, and the detection limit was as low as 2.5 aM. The feasibility of the method for clinical application was verified by the quantitative analysis of intracellular miRNA.
Collapse
Affiliation(s)
- Xiaoqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China.
| | - Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China.
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China.
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China. .,The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China. .,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan Province, 410083, P. R. China
| |
Collapse
|
13
|
Zheng C, Hu X, Sun S, Zhu L, Wang N, Zhang J, Huang G, Wang Y, Huang X, Wang L, Shen Z. Hairpin allosteric molecular beacons-based cascaded amplification for effective detection of lung cancer-associated microRNA. Talanta 2022; 244:123412. [DOI: 10.1016/j.talanta.2022.123412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022]
|
14
|
Li Z, Zhou Y, Cui Y, Liang G. A flexible and bright surface-enhanced electrochemiluminescence film constructed from efficient aggregation-induced emission luminogens for biomolecular sensing. J Mater Chem B 2022; 10:3320-3328. [PMID: 35380155 DOI: 10.1039/d2tb00400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bright surface-enhanced electrochemiluminescence film (SEEF) was fabricated from an organic luminogen with aggregation-induced emission (AIEgen) features on flexible substrates. Flexible carbonous substrates including carbon fiber cloth (GCFC) and carbon fiber paper (GCFP) were decorated with gold nanoparticles (AuNPs) through electrochemical deposition methods, followed by facilely casting AIEgen solutions. The resulting SEEF had a low driving potential of +0.84 V, and its electrochemiluminescence (ECL) was readily observed by the naked eye. The systematic investigation showed that the bright ECL was associated with the promoted electrochemical oxidation and radiative decay of excited AIEgens enhanced by AuNP deposition. Intriguingly, the ECL intensity of the film was linearly enhanced by increasing AIEgen loadings, which allowed tuning of ECL brightness on demand. Moreover, the SEEF was flexible and immune to folding. The ECL intensity rarely changed even when consecutively folding the film 20 times due to the strong interaction between the AIEgen and substrate. The SEEF was further used to sense biomolecules in aqueous media. The ECL of the film was linearly quenched in the presence of dopamine (DA) in the range of 10-15-10-6 M with a record-low limit of detection of 3.16 × 10-16 M. Furthermore, a simple method based on grayscale analysis of ECL images (GAEI) was used for visual sensing of DA. This work provides a kind of novel bright ECL film, useful for the ultrasensitive monitoring of biomolecules in aqueous media.
Collapse
Affiliation(s)
- Zihua Li
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yusheng Zhou
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yuhan Cui
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guodong Liang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Jiang Y, Li R, He W, Li Q, Yang X, Li S, Bai W, Li Y. MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF-N-(4-aminobutyl)-N-ethylisoluminol/Ti 3C 2T x composite and duplex-specific nuclease-assisted signal amplification. Mikrochim Acta 2022; 189:129. [PMID: 35237853 DOI: 10.1007/s00604-022-05246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
A novel electrochemiluminescence (ECL) biosensor for the determination of microRNA-21 (miRNA-21) was developed, based on a hybrid luminescent Co-MOF-ABEI/Ti3C2Tx composite as an ECL luminophore combined with a duplex-specific nuclease (DSN)-assisted signal amplification strategy. The synthesized Co-MOF-ABEI/Ti3C2Tx composite carrying N-(4-aminobutyl)-N-ethylisoluminol (ABEI) exhibited strong and stable ECL in the presence of reactive oxygen species (ROS). The ECL biosensor was fabricated by adsorbing Co-MOF-ABEI/Ti3C2Tx onto a glassy carbon electrode and covalently coupling the probe DNA onto the surface of the Co-MOF-ABEI/Ti3C2Tx-modified electrode. In the presence of the target miRNA-21, the DSN selectively cleaved the complementary DNA section (S1) to miRNA-21, resulting in the release of the transduction section (S2) and the reuse of miRNA-21 in the subsequent amplification cycle. The interaction of the stem-loop structure of the probe DNA with the Co-MOF-ABEI/Ti3C2Tx-modified glassy carbon electrode with S2 strands led to the opening of the annular part of the probe DNA. Then, the opened guanine (G)-rich sequences of probe DNA were exposed and folded into a hemin/G-quadruplex DNAzyme in the presence of hemin. The catalysis of H2O2 to ROS by the hemin/G-quadruplex DNAzyme significantly enhanced ECL intensity, and this intensity was logarithmically proportional to the concentration of target miRNA-21 between 0.00001 and 10 nM, having a limit of detection of 3.7 fM. The designed ECL biosensor can detect miRNA-21 extracted from HeLa cells, indicating its promising application in clinical diagnosis and disease prognosis analysis.
Collapse
Affiliation(s)
- Yang Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Rong Li
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, People's Republic of China
| | - Wenyu He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Qian Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Xia Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Sijia Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Wanqiao Bai
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, People's Republic of China.
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.
| |
Collapse
|
16
|
Hong R, Sun H, Li D, Yang W, Fan K, Liu C, Dong L, Wang G. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Life (Basel) 2022; 12:342. [PMID: 35330093 PMCID: PMC8955405 DOI: 10.3390/life12030342] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has the highest cancer incidence rate in women. Early screening of breast cancer can effectively improve the treatment effect of patients. However, the main diagnostic techniques available for the detection of breast cancer require the corresponding equipment, professional practitioners, and expert analysis, and the detection cost is high. Tumor markers are a kind of active substance that can indicate the existence and growth of the tumor. The detection of tumor markers can effectively assist the diagnosis and treatment of breast cancer. The conventional detection methods of tumor markers have some shortcomings, such as insufficient sensitivity, expensive equipment, and complicated operations. Compared with these methods, biosensors have the advantages of high sensitivity, simple operation, low equipment cost, and can quantitatively detect all kinds of tumor markers. This review summarizes the biosensors (2013-2021) for the detection of breast cancer biomarkers. Firstly, the various reported tumor markers of breast cancer are introduced. Then, the development of biosensors designed for the sensitive, stable, and selective recognition of breast cancer biomarkers was systematically discussed, with special attention to the main clinical biomarkers, such as human epidermal growth factor receptor-2 (HER2) and estrogen receptor (ER). Finally, the opportunities and challenges of developing efficient biosensors in breast cancer diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Rui Hong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongyu Sun
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kai Fan
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
17
|
Nehra A, Kumar A, Ahlawat S, Kumar V, Singh KP. Substrate-Free Untagged Detection of miR393a Using an Ultrasensitive Electrochemical Biosensor. ACS OMEGA 2022; 7:5176-5189. [PMID: 35187333 PMCID: PMC8851637 DOI: 10.1021/acsomega.1c06098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Rapid and sensitive detection of numerous regulatory pathways in growth and development processes and defensive responses in plant-pathogen interactions caused by miRNA has been the current interest of agricultural scientists. Herein, an uncomplicated ultrasensitive electrochemical biosensor was fabricated to detect miR393a, as its detection is of vital importance for plant diseases. A streptavidin-coated screen-printed carbon electrode (SPCE) was fabricated and characterized by scanning electrochemical microscopy, scanning electron microscopy, surface plasmon resonance, and cyclic voltammetry. The two-dimensional (2D) structure and chemical functionality of the streptavidin-coated SPCE render it a superior platform for loading a modified probe via a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide linker. This biorecognition platform is capable of efficiently using its excellent conductivity, greater surface area, and effective electrochemical execution due to its synergistic effect between streptavidin and carbon electrodes. The biosensor showed a good linear response (R 2 = 0.96) to miR393a concentrations ranging from 100 nM to 100 fM. This streptavidin-based biosensor is highly sensitive to the minimum concentration of miR393a, lowest detection limit, and ultrasensitivity under optimized conditions, i.e., 100 fM, 0.33 fM, and 33.72 μA fM-1 cm-2, respectively. In addition, remarkable recoveries could be obtained to confirm the feasibility of this assay in plant disease samples. The fabricated technology could offer a selective, adaptable, and farmer-friendly strategy for the timely detection of miRNA of plant samples.
Collapse
Affiliation(s)
- Anuj Nehra
- Centre
for Bio-Nanotechnology, and Department of Nematology, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Anil Kumar
- Department
of Nematology, College of Agriculture, Chaudhary
Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Sweeti Ahlawat
- Bio-Nanotechnology
Research Laboratory, Biophysics Unit, College of Basic Sciences &
Humanities, G.B. Pant University of Agriculture
& Technology, U.S. Nagar, Pantnagar 263145, Uttarakhand, India
| | - Vinay Kumar
- Department
of Physics, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Krishna Pal Singh
- Bio-Nanotechnology
Research Laboratory, Biophysics Unit, College of Basic Sciences &
Humanities, G.B. Pant University of Agriculture
& Technology, U.S. Nagar, Pantnagar 263145, Uttarakhand, India
- Department
of Molecular Biology, Biotechnology and Bioinformatics, College of
Basic Science & Humanities, Chaudhary
Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India
- . Phone: +91-0581-2527282
| |
Collapse
|
18
|
Jiang Y, Li S, Zhu P, Zhao J, Xiong X, Wu Y, Zhang X, Li Y, Song T, Xiao W, Wang Z, Han J. Electrochemical DNA Biosensors Based on the Intrinsic Topological Insulator BiSbTeSe 2 for Potential Application in HIV Determination. ACS APPLIED BIO MATERIALS 2022; 5:1084-1091. [PMID: 35157417 DOI: 10.1021/acsabm.1c01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we reported a sensitive, label-free electrochemical biosensor based on the intrinsic topological insulator (TI) BiSbTeSe2 for potential application in the determination of the HIV gene. With strong spin-obit coupling, TIs could have robust surface states with low electronic noise, which might be beneficial for the stable and sensitive electron transport between the electrode and electrolyte interface. Under optimized conditions of the biosensors using BiSbTeSe2, the differential pulse voltammetry (DPV) peak currents showed a linear relationship with the logarithm of target DNA concentrations ranging from 1.0 × 10-13 to 1.0 × 10-7 M, with a detection limit of 1.07 × 10-15 M. The sensing assay also displayed good selectivity and stability after storage at 4 °C for 7 days. This work provides an effective way to develop biosensors with topological materials, which have a potential application in the clinical determination and monitoring field.
Collapse
Affiliation(s)
- Yujiu Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shanshan Li
- Department of Rheumatology, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Peng Zhu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Xiong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yetong Wu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xu Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongkai Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Tinglu Song
- Experimental Centre of Advanced Materials School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wende Xiao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
19
|
Wang W, Liu J, Wu LA, Ko CN, Wang X, Lin C, Liu J, Ling L, Wang J. Nicking enzyme-free strand displacement amplification-assisted CRISPR-Cas-based colorimetric detection of prostate-specific antigen in serum samples. Anal Chim Acta 2022; 1195:339479. [DOI: 10.1016/j.aca.2022.339479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
|
20
|
Shahbazi N, Zare-Dorabei R, Naghib SM. Design of a Ratiometric Plasmonic Biosensor for Herceptin Detection in HER2-Positive Breast Cancer. ACS Biomater Sci Eng 2022; 8:871-879. [PMID: 35044154 DOI: 10.1021/acsbiomaterials.1c01369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Breast cancer is the most common cause of cancer death in women; therefore, its early detection and treatment are crucial. To achieve this goal, we designed an optical sensor based on direct interaction of trastuzumab [Herceptin (HER)], a monoclonal antibody used to treat HER2-positive breast cancer, with plasmonic nanoparticles. Surface-modified gold nanoparticles (AuNPs) have gained considerable attention in biosensing techniques over the last years, which actuated these nanoparticles to the heart of various biosensing notions. We have exploited the localized surface plasmon resonance (LSPR) of gold nanoparticles to determine HER in human serum. AuNPs were decorated with negatively charged citrate ions, yielding enhanced direct-surface interaction with HER antibodies. The AuNPs are mixed with silver nanoparticles (AgNPs) in an optimized ratio to increase selectivity and sensitivity further. AuNPs detect the HER antibodies using LSPR, whereas AgNPs help monitor interferences' effect on the sensing media. The three effective factors in HER sensing, including the nanoparticle ratio, temperature, and pH were optimized via response surface methodology (RSM) based on the central composite design (CCD). The sensor's response toward HER was achieved in the linear range of 0.5 × 10-7 to 40 × 10-7 M with the detection limit of 3.7 × 10-9 M and relative standard deviation (RSD) less than 5%. The selectivity of the LSPR sensor was assessed by monitoring its response toward HER in the presence of other biological molecules with similar physicochemical properties. Rapid response time (less than 1 min), selectivity, and the simplicity of the developed LSPR-based sensor are the key advantages of the developed sensor.
Collapse
Affiliation(s)
- Neda Shahbazi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
21
|
Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal Chem 2021; 94:269-296. [PMID: 34854296 DOI: 10.1021/acs.analchem.1c04475] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Le Jing
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chongyu Xie
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qianqian Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meiqing Yang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
22
|
Xu Q, Liu K, Jin J, Zhang X. Binding-induced output of catalyst DNA for efficient payload of DNAzyme on magnetic beads by catalyzed hairpin assembly. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021; 191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Electroluminescence (ECL) has been used in extensive applications ranging from bioanalysis to clinical diagnosis owing to its simple device requirement, low background, high sensitivity, and wide dynamic range. Nucleic acid is a significant theme in ECL bioanalysis. The inherent versatile selective molecular recognition of nucleic acids and their programmable self-assembly make it desirable for the robust construction of nanostructures. Benefiting from their unique structures and physiochemical properties, ECL biosensing based on nucleic acids has experienced rapid growth. This review focuses on recent applications of nucleic acids in ECL sensing systems, particularly concerning the employment of nucleic acids as molecular recognition elements, signal amplification units, and sensing interface schemes. In the end, an outlook of nucleic acid-based ECL biosensing will be provided for future developments and directions. We envision that nucleic acids, which act as an essential component for both bioanalysis and clinical diagnosis, will provide a new thinking model and driving force for developing next-generation sensing systems.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
24
|
Yang XY, Wang YZ, Wang LL, Zhu JW, Zhao J, Zong HL, Chen CX. Bipolar electrode ratiometric electrochemiluminescence biosensing analysis based on boron nitride quantum dots and biological release system. Biosens Bioelectron 2021; 191:113393. [PMID: 34144471 DOI: 10.1016/j.bios.2021.113393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022]
Abstract
In this article, we developed a novel ECL ratiometry on a closed bipolar electrode (BPE) for the sensitively and accurately detection of miRNA-21. High quantum yield and low toxicity BNQDs was synthesized and coated at BPE cathode as an ECL emitter, while the anode of BPE was calibrated via another ECL material, Ir(df-ppy)2(pic) (Firpic). The electron neutrality at both ends of the BPE electrically coupled the reactions on each pole of the BPE. Therefore, one electrochemical sensing reaction could be quantified at one end of the BPE. By the hybridization of target miRNA-21 and hairpin, the glucose blocked in MSNs by the hairpin was released and reacted with glucose oxidase (GOD) to generate H2O2, thereby reducing the ECL signal of the cathode BNQDs/K2S2O8 system and promoting ECL signal of anode Firpic/TPrA. Further, the G-quadruplex formed by unreacted hairpin bases consumed H2O2, which not only recovered the ECL of BNQDs, but also further improved the ECL emission of Firpic. Therefore, the concentration of miRNA-21 could be measured by the ECL ratio of BNQDs and Firpic. The data showed that the detection limit was 10-15 M (S/N = 3) with the linear range of 10-15 M to 10-9 M. The strategy of the BPE-ECL ratio method based on BNQDs showed a good prospect in clinical application.
Collapse
Affiliation(s)
- Xue-Yun Yang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Yin-Zhu Wang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| | - Ling-Ling Wang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jia Wan Zhu
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jie Zhao
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Hui-Long Zong
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Chuan-Xiang Chen
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| |
Collapse
|
25
|
Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, Malhotra BD, Willander M, de la Zerda A. Gold nanomaterials for optical biosensing and bioimaging. NANOSCALE ADVANCES 2021; 3:2679-2698. [PMID: 36134176 PMCID: PMC9418567 DOI: 10.1039/d0na00961j] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Gold nanoparticles (AuNPs) are highly compelling nanomaterials for biomedical studies due to their unique optical properties. By leveraging the versatile optical properties of different gold nanostructures, the performance of biosensing and biomedical imaging can be dramatically improved in terms of their sensitivity, specificity, speed, contrast, resolution and penetration depth. Here we review recent advances of optical biosensing and bioimaging techniques based on three major optical properties of AuNPs: surface plasmon resonance, surface enhanced Raman scattering and luminescence. We summarize the fabrication methods and optical properties of different types of AuNPs, highlight the emerging applications of these AuNPs for novel optical biosensors and biomedical imaging innovations, and discuss the future trends of AuNP-based optical biosensors and bioimaging as well as the challenges of implementing these techniques in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University California 94305 USA
| | - Nasrin Razmi
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Omer Nur
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Chandra Mouli Pandey
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Magnus Willander
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University California 94305 USA
| |
Collapse
|
26
|
Sun Y, Fang L, Zhang Z, Yi Y, Liu S, Chen Q, Zhang J, Zhang C, He L, Zhang K. A Multitargeted Electrochemiluminescent Biosensor Coupling DNAzyme with Cascading Amplification for Analyzing Myocardial miRNAs. Anal Chem 2021; 93:7516-7522. [DOI: 10.1021/acs.analchem.1c01051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - La Fang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Zhe Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Yang Yi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Shengjun Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Cheng Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Lifang He
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| |
Collapse
|
27
|
Sharifi M, Hasan A, Attar F, Taghizadeh A, Falahati M. Development of point-of-care nanobiosensors for breast cancers diagnosis. Talanta 2020; 217:121091. [DOI: 10.1016/j.talanta.2020.121091] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
|
28
|
Ding H, Guo W, Su B. Electrochemiluminescence Single‐Cell Analysis: Intensity‐ and Imaging‐Based Methods. Chempluschem 2020; 85:725-733. [DOI: 10.1002/cplu.202000145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Weiliang Guo
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| |
Collapse
|