1
|
Samadi Pakchin P, Fathi F, Samadi H, Adibkia K. Recent advances in receptor-based optical biosensors for the detection of multiplex biomarkers. Talanta 2025; 281:126852. [PMID: 39321560 DOI: 10.1016/j.talanta.2024.126852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
Multiplex biosensors are highly sought-after tools in disease diagnosis. This technique involves the simultaneous sensing of multiple biomarkers, whose levels and ratios can provide a more comprehensive assessment of disease conditions compared to single biomarker detection. In most diseases like cancer due to its complexity, several biomarkers are involved in their occurrence. On the other hand, a single biomarker may be implicated in various diseases. Multiplex sensing employs various techniques, such as optical, electrochemical, and electrochemiluminescence methods. This comprehensive review focuses on optical multiplex sensing techniques, including surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, chemiluminescence, surface-enhanced Raman spectroscopy, and photonic crystal sensors. The review delves into their mechanisms, materials utilized, and strategies for biomarker detection.
Collapse
Affiliation(s)
- Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hamed Samadi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Wang Q, Meng S, Zhou G, Shi Q, Xu Z, Xie X. Polymer-enhanced peroxidase activity of ceria nanozyme for highly sensitive detection of alkaline phosphatase. Anal Bioanal Chem 2024; 416:6113-6124. [PMID: 38704473 DOI: 10.1007/s00216-024-05307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Nanoceria have demonstrated a wide array of catalytic activity similar to natural enzymes, holding considerable significance in the colorimetric detection of alkaline phosphatase (ALP), which is a biomarker of various biological disorders. However, the issues of physiological stability and formation of protein corona, which are strongly related to their surface chemistry, limit their practical application. In this work, CeO2 nanoparticles characterized by enhanced dimensional uniformity and specific surface area were synthesized, followed by encapsulation with various polymers to further increase catalytic activity and physiological stability. Notably, the CeO2 nanoparticles encapsulated within each polymer exhibited improved catalytic characteristics, with PAA-capped CeO2 exhibiting the highest performance. We further demonstrated that the PAA-CeO2 obtained with enhanced catalytic activity was attributed to an increase in surface negative charge. PAA-CeO2 enabled the quantitative assessment of AA activity within a wide concentration range of 10 to 60 μM, with a detection limit of 0.111 μM. Similarly, it allowed for the evaluation of alkaline phosphatase activity throughout a broad range of 10 to 80 U/L, with a detection limit of 0.12 U/L. These detection limits provided adequate sensitivity for the practical detection of ALP in human serum.
Collapse
Affiliation(s)
- Qian Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Song Meng
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Ziqiang Xu
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| |
Collapse
|
3
|
Anwar A, Kaur T, Chaugule S, Yang YS, Mago A, Shim JH, John AA. Sensors in Bone: Technologies, Applications, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2024; 24:6172. [PMID: 39409211 PMCID: PMC11478373 DOI: 10.3390/s24196172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Osteoporosis, a prevalent ailment worldwide, compromises bone strength and resilience, particularly afflicting the elderly population. This condition significantly heightens susceptibility to fractures even from trivial incidents, such as minor falls or impacts. A major challenge in diagnosing osteoporosis is the absence of discernible symptoms, allowing osteoporosis to remain undetected until the occurrence of a fracture event. Early symptom detection and swift diagnosis are critical for preventing severe issues related to bone diseases. Assessing bone turnover markers aids in identifying, diagnosing, and monitoring these conditions, guiding treatment decisions. However, conventional techniques for measuring bone mineral density are costly, time-consuming, and require specialized expertise. The integration of sensor technologies into medical practices has transformed how we monitor, diagnose, and treat various health conditions, including bone health and orthopedics. This review aims to provide a comprehensive overview of the current state of sensor technologies used in bone, covering their integration with bone tissue, various applications, recent advancements, challenges, and future directions.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Biotechnology and Zoology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Taruneet Kaur
- Faculty of Engineering and Design, Carleton University, 125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Sachin Chaugule
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Aryan Mago
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Aijaz Ahmad John
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
4
|
Xiang Y, Ke W, Qin Y, Zhou B, Hu Y. PfAgo-based dual signal amplification biosensor for rapid and highly sensitive detection of alkaline phosphatase activity. Mikrochim Acta 2024; 191:439. [PMID: 38954110 DOI: 10.1007/s00604-024-06516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
A Pyrococcus furiosus Argonaute (PfAgo)-based biosensor is presented for alkaline phosphatase (ALP) activity detection in which the ALP-catalyzed hydrolysis of 3'-phosphate-modified functional DNA activates the strand displacement amplification, and the amplicon mediates the fluorescent reporter cleavage as a guide sequence of PfAgo. Under the dual amplification mode of PfAgo-catalyzed multiple-turnover cleavage activity and pre-amplification technology, the developed method was successfully applied to ALP activity determination with a detection limit (LOD) of 0.0013 U L-1 (3σ) and a detection range of 0.0025 to 1 U L-1 within 90 min. The PfAgo-based method exhibits satisfactory analytic performance in the presence of potential interferents and in complex human serum samples. The proposed method shows several advantages, such as rapid analysis, high sensitivity, low-cost, and easy operation, and has great potential in disease evolution fundamental studies and clinical diagnosis applications.
Collapse
Affiliation(s)
- YuQiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Weikang Ke
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Yuqing Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Bosheng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Yonggang Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
5
|
Han Z, Fu Q, Lv Y, Wang N, Su X. A two-dimensional iron-doped carbon-based nanoenzyme with catalase-like activity for the detection of alkaline phosphatase and ascorbate oxidase. Talanta 2024; 272:125704. [PMID: 38359716 DOI: 10.1016/j.talanta.2024.125704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/17/2024]
Abstract
Herein, we successfully synthesized two-dimensional iron-doped carbon-based nanosheets (Fe-N800 CS) with catalase-like activity through doping Fe into Zn MOF and introducing graphitic C3N4 (g-C3N4). The interaction of the Fe-N800 CS with hydrogen peroxide could generated abundant reactive oxygen species (ROS) and further oxidize o-Phenylenediamine (OPD) to 2,3-diaminophenazine (DAP) which has constant fluorescence at 560 nm. Ascorbic acid (AA) could be generated via the hydrolysis reaction between alkaline phosphatase (ALP) and ascorbic acid 2-phosphate (AAP). AA can be oxidized to dehy-droascorbic acid (DHA) by ROS, and then combined with OPD to generate 3-(1,2-dihydroxyethyl)furo[3,4b]-quinoxaline (QXD) with fluorescence at 440 nm, which could increase as the concentration of AA enhanced. DHA could also be generated through oxidation of AA by ascorbate oxidase (AAO). Thus, by monitoring the fluorescence ratio (I560/I440), a ratiometric fluorescence biosensing platform for ALP and AAO was established with the linear ranges in 0.2-10 U/L and 1-60 U/L, respectively. The limit of detection for ALP and AAO were 0.12 U/L and 0.59 U/L. Furthermore, the biosensing platform was successfully applied for the detection of ALP and AAO activity in human serum samples. This work provides a potential tool for future biomedical diagnostics.
Collapse
Affiliation(s)
- Zhixuan Han
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qingjie Fu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
6
|
Zhang Q, Hu J, Li DL, Qiu JG, Jiang BH, Zhang CY. Construction of single-molecule counting-based biosensors for DNA-modifying enzymes: A review. Anal Chim Acta 2024; 1298:342395. [PMID: 38462345 DOI: 10.1016/j.aca.2024.342395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers. DNA-modifying enzymes have emerged as the potential biomarkers in early diagnosis of diseases and new therapeutic targets in genomic research. Consequently, the development of highly specific and sensitive biosensors for the detection of DNA-modifying enzymes is of great importance for basic biomedical research, disease diagnosis, and drug discovery. Single-molecule fluorescence detection has been widely implemented in the field of molecular diagnosis due to its simplicity, high sensitivity, visualization capability, and low sample consumption. In this paper, we summarize the recent advances in single-molecule counting-based biosensors for DNA-modifying enzyme (i.e, alkaline phosphatase, DNA methyltransferase, DNA glycosylase, flap endonuclease 1, and telomerase) assays in the past four years (2019 - 2023). We highlight the principles and applications of these biosensors, and give new insight into the future challenges and perspectives in the development of single-molecule counting-based biosensors.
Collapse
Affiliation(s)
- Qian Zhang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
7
|
Zhu L, Zeng W, Li Y, Han Y, Wei J, Wu L. Development of magnetic fluorescence aptasensor for sensitive detection of saxitoxin based on Fe 3O 4@Au-Pt nanozymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171236. [PMID: 38412877 DOI: 10.1016/j.scitotenv.2024.171236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
In this work, on the basis of Fe3O4@Au-Pt nanozymes (MAP NZs) and aptamer recognition, a magnetic fluorescent aptasensor (MFA) was developed for sensitive and accurate detection of saxitoxin (STX). With the bridge of STX aptamer (AptSTX) and complementary DNA (cDNA), AptSTX decorated MAP NZs (MAP/Apt) and cDNA modified green quantum dots (cDNA@g-QDs) were connected to form MAP/Apt-cDNA@g-QDs complex. As STX behaves a strong binding ability towards AptSTX, it will compete with cDNA and hybridize with Apt to release cDNA@g-QDs. With the addition of TMB, MAP will catalyze TMB to the oxidized TMB (ox-TMB), thereby quenching the fluorescence of g-QDs due to the inner filter effect. Based on this finding, the quantitative relationship between the change in fluorescence of gQDs and STX concentration was explored with a limit of detection (LOD, S/N = 3) of 0.6 nM. An internal standard signal of oxTMB was adopted and reduced the fluctuation of fluorescence signal output. Besides, the fluorescence probe can selectively recognize and detect STX among five marine toxins. Eventually, the MFA method behaved good performance in detecting seafood samples with recoveries of 82.0 % ∼ 102.6 % as well as coefficient of variations (CV) of 7.2 % ∼ 10.3 %. Therefore, the method with internal signal is hopeful to be a potential candidate for sensitive and accurate detection of STX in seafood.
Collapse
Affiliation(s)
- Lin Zhu
- Hubei Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, PR China
| | - Wei Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, PR China
| | - Yueqing Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, PR China
| | - Yu Han
- Hubei Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, PR China
| | - Jing Wei
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, PR China
| | - Long Wu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, PR China.
| |
Collapse
|
8
|
Wu Y, Liang R, Chen W, Wang C, Xing D. The development of biosensors for alkaline phosphatase activity detection based on a phosphorylated DNA probe. Talanta 2024; 270:125622. [PMID: 38215586 DOI: 10.1016/j.talanta.2024.125622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Alkaline phosphatase (ALP) is a zinc-containing metalloprotein that shows very great significance in clinical diagnosis, which can catalyze the hydrolysis of phosphorylated species. ALP has the potential to serve as a valuable biomarker for detecting liver dysfunction and bone diseases. On the other hand, ALP is an efficient biocatalyst to amplify detection signals in the enzyme-linked assay. It has always been a major research focus to develop novel biosensors that can detect ALP activity with high selectivity and sensitivity. There have been numerous reports on the development of biosensors to determine ALP activity using a phosphorylated DNA probe. Among them, various beneficial strategies, such as λ exonuclease-mediated cleavage reaction, terminal deoxynucleotidyl transferase-triggered DNA polymerization, and Klenow fragment polymerase-catalyzed elongation, are employed to generate amplified and more intuitive signal. This review discusses and summarizes the development and advances of biosensors for ALP activity detection that use a well-designed phosphorylated DNA probe, aiming to provide some guidelines for the design of more sophisticated sensing strategies that exhibit improved sensitivity, selectivity, and adaptability in detecting ALP activity.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Li H, Chen J, Xu W, Huang B, Peng C, Cai H, Hou R, Wen K, Li L, Dong B, Wang Z. A facile fluorescence microplate immunoassay based on an in situ fluorogenic reaction for the detection of two highly toxic anticoagulant rodenticides in food and biological matrix. Food Chem 2024; 437:137792. [PMID: 37866338 DOI: 10.1016/j.foodchem.2023.137792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Bromadiolone and brodifacoum, the most frequently used anticoagulant rodenticides, are highly toxic and pose a threat to public health by causing food poisoning incidents. Here, we developed a fluorescence microplate immunoassay for facile and sensitive detection of bromadiolone and brodifacoum by introducing three commercial chemicals (p-phenylenediamine, polyethyleneimine, H2O2) as a new substrate of horseradish peroxidase and then generating fluorescence signals based on an in situ fluorogenic reaction (detection time within 75 min). This assay exhibited higher efficiency in generating fluorescence signals, thereby exhibiting a 6-fold improvement in sensitivity compared with colorimetric ELISA. The limit of detection was 0.23-0.28 ng/mL (ng/g) for bromadiolone and 0.34-0.61 ng/mL (ng/g) for brodifacoum in corn and human serum, with recovery ratios higher than 82.3 %. These satisfactory results illustrated our proposed assay was a potential tool for food analysis and poisoning diagnosis caused by bromadiolone and brodifacoum.
Collapse
Affiliation(s)
- Hongfang Li
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Jie Chen
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Wenqing Xu
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Baowei Huang
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Chuanyi Peng
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Huimei Cai
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Ruyan Hou
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Lin Li
- College of Animal Science and Technology, Anhui Agricultural University, 230036 Hefei, China.
| | - Baolei Dong
- College of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China.
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
10
|
Wang X, Kong F, Liu Y, Lv S, Zhang K, Sun S, Liu J, Wang M, Cai X, Jin H, Yan S, Luo J. 17β-estradiol biosensors based on different bioreceptors and their applications. Front Bioeng Biotechnol 2024; 12:1347625. [PMID: 38357703 PMCID: PMC10864596 DOI: 10.3389/fbioe.2024.1347625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
17β-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design. Furthermore, Biosensors can quickly and accurately obtain detection results with only a small sampling amount, which greatly meets the detection of the environment, food safety, medicine safety, and human body. This review focuses on previous studies of biosensors for detecting E2 and divides them into non-biometric sensors, enzyme biosensors, antibody biosensors, and aptamer biosensors according to different bioreceptors. The advantages, disadvantages, and design points of various bioreceptors for E2 detection are analyzed and summarized. Additionally, applications of different bioreceptors of E2 detection are presented and highlight the field of environmental monitoring, food and medicine safety, and disease detection in recent years. Finally, the development of E2 detection by biosensor is prospected.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, China
| | - Shi Yan
- Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Han Z, Wang N, Lv Y, Fu Q, Wang G, Su X. A novel self-assembled dual-emissive ratiometric fluorescent nanoprobe for alkaline phosphatase sensing. Anal Chim Acta 2024; 1287:342146. [PMID: 38182401 DOI: 10.1016/j.aca.2023.342146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alkaline phosphatase (ALP) is widely found in various organs and tissues of the human body which could assist in the verification of the presence of various diseases through its content in the blood. In the past few years, many analytical methods for ALP activity assays have been explored. However, a simple and economical method with high sensitivity and specificity also remains great challenge. Therefore, the development of sensitive and efficient approach for ALP analysis is of great significance in biomedical studies. RESULTS Herein, we constructed a highly sensitive and label-free ratiometric fluorometric biosensing platform for the determination of ALP activity, which utilizing lysozyme(Ly)-functionalized 5-methyl-2-thiouracil(MTU)-modified gold nanoclusters (MTU-Ly@Au NC) and poly-dopamine (PDA) as signal indicators. Dopamine (DA) can self-polymerizes to form PDA under alkaline conditions that can further quenched the fluorescence of MTU-Ly@Au NC at 525 nm due to fluorescence resonance energy transfer (FRET) and absorption competition quenching (ACQ) effects. In this process, the PDA fluorescence intensity at 325 nm was nearly unchanged. After the addition of ALP, ascorbic acid (AA) which can alleviate the self-polymerization process of DA was generated from the substrate ascorbic acid 2-phosphate (AAP), thus changing ratiometric fluorescence intensity of I525/I325. Hence, by monitoring the fluorescence ratio (I525/I325), a ratiometric fluorescence biosensing platform for ALP was established with the linear calibration in the range of 0.5-8 U L-1 and the limit of detection of 0.157 U L-1. SIGNIFICANCE This work not only synthesized a novel fluorescence probe with simple preparation and low cost for ALP which has excellent anti-interference properties and selectivity. Furthermore, this biosensing platform was successfully applied for the determination of ALP activity in human serum samples. This work provided a potential tool for biomedical diagnostics in the future.
Collapse
Affiliation(s)
- Zhixuan Han
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingjie Fu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical University, Shenyang, 110034, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
12
|
Jiang X, Liu W, Li Y, Zhu W, Liu H, Wen Y, Bai R, Luo X, Zhang G, Zhao Y. WO 3 nanosheets with peroxidase-like activity and carbon dots based ratiometric fluorescent strategy for xanthine oxidase activity sensing and inhibitor screening. Talanta 2024; 267:125129. [PMID: 37666084 DOI: 10.1016/j.talanta.2023.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The abnormal level of xanthine oxidase (XOD) often causes pathological changes, which are related to a series of diseases. Herein, a novel and sensitive ratiometric fluorescent sensing platform based on WO3 nanosheets and carbon dots (CDs) was constructed to detect XOD activity for the first time. Under the catalytic oxidation of xanthine by XOD, hydrogen peroxide (H2O2) was generated. In the presence of H2O2, WO3 nanosheets were able to catalyze the oxidation of o-phenylenediamine to generate 2,3-diaminophenazine (DAP) with a yellow fluorescence signal at 570 nm due to its great peroxidase-like activity. The oxidation product DAP was capable of quenching the fluorescence of CDs at 430 nm through the inner filter effect. Therefore, the fluorescence intensity ratio F570/F430 can be used for quantitative analysis of XOD activity. This assay displayed good linear relationships in the range of 0.005-0.05 U/L and 0.5-40 U/L with a detection limit of 0.002 U/L. In addition, this ratiometric fluorescent sensing platform was successfully applied to the determination of XOD in human serum samples and XOD inhibitor screening, demonstrating significant potential in disease diagnosis and drug-screening applications.
Collapse
Affiliation(s)
- Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wanglisha Zhu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yulu Wen
- School of Science, Xihua University, Chengdu, 610039, China
| | - Ruyu Bai
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
13
|
Gao Z, Zhu A, Wu M, Du Y, Zhang Y, Zhang H, Ren C, Chen H. Colorimetric detection of alkaline phosphatase based on the off-on effect of light-responsive oxidase mimicking activity of covalent organic framework (Cu-TpBpy-COF) under near-neutral condition. Mikrochim Acta 2024; 191:93. [PMID: 38217686 DOI: 10.1007/s00604-023-06128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/15/2024]
Abstract
A colorimetric strategy has been developed for the detection of alkaline phosphatase (ALP) activity based on the off-on effect of the catalytic activity of light-responsive oxidase mimics covalent organic framework (Cu-TpBpy-COF) in near-neutral condition. Cu-TpBpy-COF can effectively catalyze the oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to form a blue oxidized product (oxTMB) with an absorption peak at 652 nm. Cu2+ is the active center of Cu-TpBpy-COF and pyrophosphate (PPi) can form a complex with Cu2+ to weaken the catalytic activity of Cu-TpBpy-COF. In the presence of ALP, PPi is hydrolyzed into orthophosphates (Pi) with low affinity to Cu2+, thus resulting in absorbance restoration. The absorbance at 652 nm is related to ALP activity in the linear range 10-150 U·L-1 with a detection limit of 7.17 U·L-1. The recoveries of ALP in serum samples are in the range 94.7~107.0% with relative standard deviations (RSD) lower than 5%. The decisive role of Cu2+ on the enhancing catalytic activities of Cu-TpBpy-COF in neutral condition was verified by TpBpy-COF and TpBD-COF as controls, in which the main difference between them is that TpBpy-COF contains pyridine nitrogen. Upon Cu2+ modification, Cu-TpBpy-COF has better catalytic activity than TpBpy-COF in a broader pH range because of the in situ generation of Cu+ under irradiation.
Collapse
Affiliation(s)
- Zixi Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ailing Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Mingfang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yongling Du
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
14
|
Feng Q, Zhou X, He C. NIR light-facilitated bone tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1925. [PMID: 37632228 DOI: 10.1002/wnan.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
15
|
Chen Y, Yan J, Wang X, Zhang S, Li J, Tang Y, Wang T. Fluorescent assay for alkaline phosphatase by integrating strand displacement amplification with DNAzyme-catalytic recycling cleavage of molecular beacons. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122984. [PMID: 37331255 DOI: 10.1016/j.saa.2023.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/14/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
A fluorescence sensing method for the quantification of alkaline phosphatase (ALP) was developed by integrating the strand displacement amplification with DNAzyme-catalytic recycling cleavage of molecular beacons. ALP can hydrolyze a 3'-phosphoralated primer into a 3'-hydroxy primer which can initiate the strand displacement amplification to produce the Mg2+-dependent DNAzyme. The DNAzyme can then catalyze the cleavage of the DNA molecular beacon labeled with FAM fluorophore at its 5'-end and BHQ1 quencher at its 3'-end, turning on the fluorescence of FAM fluorophore. The content of ALP in a sample can be deduced from the measured fluorescence intensity. Due to the cascading nature of its amplification strategy, the proposed method achieved sensitive and specific ALP detection in human serum samples. Its results were in good consistent with the corresponding values obtained by a commercial ALP detection kit. The limit of detection of the proposed method for ALP is about 0.015 U/L, lower than some methods recently reported in literature, demonstrating its potential for ALP detection in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yao Chen
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jin Yan
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Xiaozhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Siwei Zhang
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Jun Li
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Ying Tang
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Tong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
16
|
Liu S, Wang N, Li L, Liu Y. Capsulation of EBTAC into ZIF-8 for the development of a signal-on fluorescent biosensor to detect alkaline phosphatase. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6015-6020. [PMID: 37909146 DOI: 10.1039/d3ay01558k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diseases such as liver cancer, extrahepatic biliary obstruction and osteocarcinoma are closely associated with the abnormal level of alkaline phosphatase (ALP). Hence, it is essential to develop a convenient assay to detect ALP activity. Herein, a novel signal-on fluorescent biosensor on account of the fluorescence signal of the aggregation-induced emission (AIE) fluorochrome 2,2',2'',2'''-((ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(oxy))tetraacetic acid (EBTAC) encapsulated zeolitic imidazolate framework-8 (ZIF-8@EBTAC) was designed to monitor ALP. Due to the aggregation-induced emission of EBTAC, the synthetic ZIF-8@EBTAC shows robust fluorescence. Once pyrophosphate (ppi) was added, its complexation with Zn2+ in ZIF-8 triggered the collapse of the ZIF-8 framework, releasing encapsulated EBTAC molecules and restoring to free state, leading to the dramatical decrease in fluorescence. ALP could catalyze the hydrolysis of ppi to phosphate (pi), which is difficult to bind to Zn2+ and has little effect on the fluorescence of ZIF-8@EBTAC. Therefore, with the assistance of the substrate ppi, the ultimate fluorescence of ZIF-8@EBTAC was positively related with ALP activity. The constructed biosensor was able to monitor the ALP activity well from 0.01 to 100 U L-1, and a detection limit of 0.01 U L-1 was achieved. Based on the ability of EBTAC serving as a fluorescent probe with aggregation-induced luminescence properties, this proposed design can be applied to diverse targets and provide new ideas for the establishment of fluorescent biosensors.
Collapse
Affiliation(s)
- Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Nian Wang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Li Li
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Yi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, P. R. China
| |
Collapse
|
17
|
Chen X, Zhang C, Liu X, Dong Y, Meng H, Qin X, Jiang Z, Wei X. Low-noise fluorescent detection of cardiac troponin I in human serum based on surface acoustic wave separation. MICROSYSTEMS & NANOENGINEERING 2023; 9:141. [PMID: 37954038 PMCID: PMC10632424 DOI: 10.1038/s41378-023-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 11/14/2023]
Abstract
Acute myocardial infarction (AMI) is a life-threatening disease when sudden blockage of coronary artery occurs. As the most specific biomarker, cardiac troponin I (cTnI) is usually checked separately to diagnose or eliminate AMI, and achieving the accurate detection of cTnI is of great significance to patients' life and health. Compared with other methods, fluorescent detection has the advantages of simple operation, high sensitivity and wide applicability. However, due to the strong fluorescence interference of biological molecules in body fluids, it is often difficult to obtain high sensitivity. In order to solve this problem, in this study, surface acoustic wave separation is designed to purify the target to achieve more sensitive detection performance of fluorescent detection. Specifically, the interference of background noise is almost completely removed on a microfluidic chip by isolating microbeads through acoustic radiation force, on which the biomarkers are captured by the immobilized detection probe. And then, the concentration of cTnI in human serum is detected by the fluorescence intensity change of the isolated functionalized beads. By this way, the detection limit of our biosensor calculated by 3σ/K method is 44 pg/mL and 0.34 ng/mL in PBS buffer and human serum respectively. Finally, the reliability of this method has been validated by comparison with clinical tests from the nephelometric analyzer in hospital.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Chuanyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xianglian Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, 710032 China
| | - Hao Meng
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Xianming Qin
- School of Mechano-Electronic Engineering, Xidian University, Xi’an, 710071 China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
18
|
Li M, Ding C, Zhang D, Chen W, Yan Z, Chen Z, Guo Z, Guo L, Huang Y. Distinguishable Colorimetric Biosensor for Diagnosis of Prostate Cancer Bone Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303159. [PMID: 37840414 PMCID: PMC10646272 DOI: 10.1002/advs.202303159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Indexed: 10/17/2023]
Abstract
Castration-resistant prostate cancer (PCa) causes severe bone metastasis (BM), which significantly increases mortality in men with PCa. Imaging tests and radiometric scanning require long analysis times, expensive equipment, specialized personnel, and a slow turnaround. New visualization technologies are expected to solve the above problems. Nonetheless, existing visualization techniques barely meet the urgency for precise diagnosis because the human eyes cannot recognize and capture even slight variations in visual information. By using dye differentiated superposition enhancement colorimetric biosensors, an effective method to diagnose prostate cancer bone metastases (PCa-BM) with excellent accuracy for naked-eye quantitative detection of alkaline phosphatase (ALP) is developed. The biomarker ALP specific hydrolytic product ascorbic acid can be detected by rhodamine derivatives (Rd) as gold nanobipyramids (Au NBPs) are deposited and grown. Color-recombining enhancement effects between Rd and Au NBPs significantly improved abundance. The 150 U L-1 threshold between normal and abnormal can be identified by color. And with color enhancement effect and double signal response, the ALP index is visually measured to diagnose PCa-BM and provide handy treatment recommendations. Additionally, the proposed colorimetric sensing strategy can be used to diagnose other diseases.
Collapse
Affiliation(s)
- Ming Li
- Department of Urology & NephrologyThe First Affiliated Hospital of Ningbo University59 Liuting StreetNingboZhejiang315010China
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| | - Caiping Ding
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| | - Dong Zhang
- Department of Urology & NephrologyThe First Affiliated Hospital of Ningbo University59 Liuting StreetNingboZhejiang315010China
| | - Weiwei Chen
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| | - Zejun Yan
- Department of Urology & NephrologyThe First Affiliated Hospital of Ningbo University59 Liuting StreetNingboZhejiang315010China
| | - Zikang Chen
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsState Key Laboratory Base of Novel Functional Materials and Preparation ScienceSchool of Materials Science and Chemical EngineeringNingbo UniversityNingboZhejiang315211China
| | - Longhua Guo
- College of BiologicalChemical Sciences and EngineeringJiaxing UniversityJiaxingZhejiang314001China
| | - Youju Huang
- College of Material Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceDepartment Hangzhou Normal UniversityHangzhouZhejiang311121China
| |
Collapse
|
19
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
20
|
Ye T, Deng B, Bai L, Luo X, Yuan M, Cao H, Hao L, Wu X, Yin F, Li Z, Xu F. Butanol accelerated entropy-driven DNA walking machine for rapid and ultrasensitive determination of alkaline phosphatase activity. Talanta 2023; 265:124879. [PMID: 37392708 DOI: 10.1016/j.talanta.2023.124879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Alkaline phosphatase (ALP) as an important biomarker as well as an index for the pasteurization degree of dairy food. However, there is a dilemma between the sensitivity and time-cost of ALP determination based on nucleic acid amplification approach. Herein, an ultrasensitive and rapid detection method for the ALP assay was developed based on entropy-driven DNA machine. In our design, the ALP catalyzed dephosphorylation of detection probe, which inhibited the digestion effect of lambda exonuclease. The remaining probe as a linker to tether the walking strand proximity to the surface of track strand modified gold nanoparticle, activating entropy-driven DNA machine. Accompany with walking strand moving, a large amount of assembled dye-labelled strand dissociated from gold nanoparticle with fluorescence recovery. More importantly, to further improve the walking efficiency, butanol was introduced to accelerated the signal amplification at interface, which short the incubation time from several hours to 5 min. Under the optimum condition, the change of fluorescence intensity was proportion to the concentration of ALP in the range from 0.05 U L-1 to 5 U L-1 with an ultralow limit of detection of 2.07 × 10-3 U L-1 was achieved, which is superior to other reported methods. Furthermore, the proposed method also successfully applied for the spiked milk sample assay with satisfactory recovery in the range of 98.83%-103.00%. This work proposed a new strategy for the application of entropy-driven DNA machine in the field of rapid and ultrasensitive detection.
Collapse
Affiliation(s)
- Tai Ye
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bitao Deng
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Long Bai
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaorong Luo
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Min Yuan
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Cao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Liling Hao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiuxiu Wu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fengqin Yin
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zefan Li
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fei Xu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
21
|
Han Y, Wang Y, Zhang H, Zhao L, Qiu H. Facile synthesis of yellow-green fluorescent silicon nanoparticles and their application in detection of nitrophenol isomers. Talanta 2023; 257:124347. [PMID: 36801561 DOI: 10.1016/j.talanta.2023.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
A clear formation mechanism is essential for the controllable synthesis of nanomaterials with different optical properties, which is also one of the challenges facing the preparation of fluorescent silicon nanomaterials. In this work, a one-step room temperature synthesis method was established to prepare yellow-green fluorescent silicon nanoparticles (SiNPs). The obtained SiNPs exhibited excellent pH stability, salt tolerance, anti-photobleaching ability and biocompatibility. Based on X-ray photoelectron spectroscopy, transmission electron microscopy, ultra high performance liquid chromatography tandem mass spectrometry and other characterization data, the formation mechanism of the SiNPs was proposed, which provided a theoretical basis and important reference for the controllable preparation of SiNPs and other fluorescent nanomaterials. In addition, the obtained SiNPs illustrated excellent sensitivity for nitrophenol isomers, the linear range of o-nitrophenol, m-nitrophenol, p-nitrophenol was 0.05-600 μM, 20-600 μM and 0.01-600 μM under the λex and λem were set as 440 nm and 549 nm, and related limit detection was 16.7 nM, 6.7 μM and 3.3 nM, respectively. The developed SiNP-based sensor achieved satisfactory recoveries in detecting nitrophenol isomers in a river water sample, showing great promise in practical applications.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Wang
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Li K, Wang J, Liu L, Cao H, Yang X, Liu Y, Wang J, He S, Wei H, Yu CY. Pd(II)-based coordination polymer nanosheets for ratiometric colorimetric and photothermal dual-mode assay of serum alkaline phosphatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122802. [PMID: 37187151 DOI: 10.1016/j.saa.2023.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Fabrication of a multi-signal readout assay with high sensitivity and selectivity is highly desirable for clinical and biochemical analysis, but remains a challenge due to laborious procedures, large-scale instruments, and inadequate accuracy. Herein, a straightforward, rapid, and portable detection platform based on palladium(II) methylene blue (MB) coordination polymer nanosheets (PdMBCP NSs) was unveiled for the ratiometric dual-mode detection of alkaline phosphatase (ALP) with temperature and colorimetric signal readout properties. The sensing mechanism is the ALP-catalyzed generation of ascorbic acid for competitive binding and etching PdMBCP NSs to release free MB in a quantitive means for detection. Specifically, ALP addition led to the decrease of temperature signal readout from the decomposed PdMBCP NSs under 808 nm laser excitation, and simultaneous increase of the temperature from the generated MB with a 660 nm laser, together with the corresponding absorbance changes at both wavelengths. Notably, this ratiometric nanosensor exhibited a detection limit of 0.013 U/L (colorimetric) and 0.095 U/L (photothermal) within 10 min, respectively. The reliability and satisfactory sensing performance of the developed method were further confirmed by clinic serum samples. Therefore, this study provides a new insight for the development of dual-signal sensing platforms for convenient, universal, and accurate detection of ALP.
Collapse
Affiliation(s)
- Kailing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Li Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Hui Cao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xu Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
23
|
Li H, Zhang Z, Gan L, Fan D, Sun X, Qian Z, Liu X, Huang Y. Signal Amplification-Based Biosensors and Application in RNA Tumor Markers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094237. [PMID: 37177441 PMCID: PMC10180857 DOI: 10.3390/s23094237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Tumor markers are important substances for assessing cancer development. In recent years, RNA tumor markers have attracted significant attention, and studies have shown that their abnormal expression of post-transcriptional regulatory genes is associated with tumor progression. Therefore, RNA tumor markers are considered as potential targets in clinical diagnosis and prognosis. Many studies show that biosensors have good application prospects in the field of medical diagnosis. The application of biosensors in RNA tumor markers is developing rapidly. These sensors have the advantages of high sensitivity, excellent selectivity, and convenience. However, the detection abundance of RNA tumor markers is low. In order to improve the detection sensitivity, researchers have developed a variety of signal amplification strategies to enhance the detection signal. In this review, after a brief introduction of the sensing principles and designs of different biosensing platforms, we will summarize the latest research progress of electrochemical, photoelectrochemical, and fluorescent biosensors based on signal amplification strategies for detecting RNA tumor markers. This review provides a high sensitivity and good selectivity sensing platform for early-stage cancer research. It provides a new idea for the development of accurate, sensitive, and convenient biological analysis in the future, which can be used for the early diagnosis and monitoring of cancer and contribute to the reduction in the mortality rate.
Collapse
Affiliation(s)
- Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
24
|
Ferreira RDO, Guimarães ATB, Luz TMD, Rodrigues ASDL, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Charlie-Silva I, Durigon EL, Braz HLB, Arias AH, Santiago OC, Barceló D, Malafaia G. First report on the toxicity of SARS-CoV-2, alone and in combination with polyethylene microplastics in neotropical fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163617. [PMID: 37088384 PMCID: PMC10122543 DOI: 10.1016/j.scitotenv.2023.163617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.
Collapse
Affiliation(s)
- Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, 08034 Barcelona, Spain
| | | | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) Campus Araraquara, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Omar Cruz Santiago
- Multidisciplinary Postgraduate Program for Environmental Sciences, Universidad Autónoma de San Luis Potosí, Mexico
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
25
|
Jiang X, Li Y, Liu H, Zhang Q, Li D, Zhu W, He Y, Zhang G, Zhao Y. Carbon dots doped with nitrogen as an ultrasensitive fluorescent probe for thrombin activity monitoring and inhibitor screening. Talanta 2023; 259:124532. [PMID: 37054621 DOI: 10.1016/j.talanta.2023.124532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
A simple and sensitive fluorometric assay based on nitrogen-doped carbon dots (N-CDs) was developed for the determination of thrombin (TB) activity in human serum samples and living cells. The novel N-CDs were prepared by a facile one-pot hydrothermal method using 1,2-ethylenediamine and levodopa as precursors. Such N-CDs exhibited green fluorescence with excitation/emission peaks at 390/520 nm and a high fluorescence quantum yield of approximately 39.2%. H-D-Phenylalanyl-L-pipecolyl-Larginine-p-nitroaniline-dihydrochloride (S-2238) was hydrolyzed by TB to produce p-nitroaniline which was capable of quenching the fluorescence of N-CDs due to an inner filter effect. This assay was used to detect TB activity with a low detection limit of 11.3 fM. The proposed sensing method was then expanded to the TB inhibitor screening and exhibited excellent applicability. As a typical TB inhibitor, argatroban was determined in a concentration as low as 1.43 nM. The method has also been successfully employed for the determination of TB activity in living HeLa cells. This work showed significant potential for TB activity assay in clinical and biomedicine applications.
Collapse
Affiliation(s)
- Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Qin Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Dandan Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wanglisha Zhu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yanping He
- People's Hospital of Xinjin District, Chengdu Clinical Laboratory, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
26
|
Li J, Liu XP, Ye WQ, Xu ZR. Photothermal visual sensing of alkaline phosphatase based on the etching of Au@MnO 2 core-shell nanoparticles. J Colloid Interface Sci 2023; 641:568-576. [PMID: 36963250 DOI: 10.1016/j.jcis.2023.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Alkaline phosphatase (ALP), as a crucial enzyme involved in many physiological activities, is always used as one of the significant biomarkers in clinical diagnosis. Herein, a novel, simple, and effective photothermal quantitative method based on the etching of MnO2-coated gold nanoparticles (Au@MnO2 NPs) was established for ALP activity assay with a household thermometer-based visual readout. The photothermal effect of Au@MnO2 NPs is much higher than that of MnO2 NPs or Au NPs. The MnO2 shell of Au@MnO2 NPs can be etched by ascorbic acid, a product of ALP-catalyzed hydrolysis of 2-phospho-l-ascorbic acid. With the etching of Au@MnO2 NPs, the photothermal conversion efficiency decreased gradually, causing the decrease of the temperature increment of the solutions by degrees. A household thermometer, instead of large-scale and professional instruments, was used as a signal reader to realize the visual quantitative detection. The photothermal platform was used successfully for the determination of ALP with a wide linear range from 2.0 to 50 U/L and a detection limit as low as 0.75 U/L. Moreover, the inhibition efficiency of sodium vanadate for ALP activity was investigated, proving the photothermal quantitative method will be a potential platform for screening enzyme inhibitors. Such a sensitive, facile, and low-cost sensing assay provides a new prospect to develop platforms for point-of-care testing.
Collapse
Affiliation(s)
- Jin Li
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China; School of Pharmacy, Shenyang Medical College, Shenyang 110034, PR China
| | - Xiao-Peng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wen-Qi Ye
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
27
|
Geng F, Liu X, Wei T, Wang Z, Liu J, Shao C, Liu G, Xu M, Feng L. An alkaline phosphatase-induced immunosensor for SARS-CoV-2 N protein and cardiac troponin I based on the in situ fluorogenic self-assembly between N-heterocyclic boronic acids and alizarin red S. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 378:133121. [PMID: 36514318 PMCID: PMC9731814 DOI: 10.1016/j.snb.2022.133121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Alkaline phosphatase (ALP)-induced in situ fluorescent immunosensor is less investigated and reported. Herein, a high-performance ALP-labeled in situ fluorescent immunoassay platform was constructed. The developed platform was based on a fluorogenic self-assembly reaction between pyridineboronic acid (PyB(OH)2) and alizarin red S (ARS). We first used density functional theory (DFT) to theoretically calculate the changes of Gibbs free energy of the used chemicals before and after the combination and simulated the electrostatic potential on its' surfaces. The free ARS and PyB(OH)2 exist alone, neither emits no fluorescence. However, the ARS/PyB(OH)2 complex emits strong fluorescence, which could be effectively quenched by PPi based on the stronger affinity between PPi and PyB(OH)2 than that of ARS and PyB(OH)2. PyB(OH)2 coordinated with ARS again in the presence of ALP due to the ALP-catalyzed hydrolysis of PPi, and correspondingly, the fluorescence was restored. We chose cTnI and SARS-CoV-2 N protein as the model antigen to construct ALP-induced immunosensor, which exhibited a wide dynamic range of 0-175 ng/mL for cTnI and SARS-CoV-2 N protein with a low limit of detection (LOD) of 0.03 ng/mL and 0.17 ng/mL, respectively. Moreover, the proposed immunosensor was used to evaluate cTnI and SARS-CoV-2 N protein level in serum with satisfactory results. Consequently, the method laid the foundation for developing novel fluorescence-based ALP-labeled ELISA technologies in the early diagnosis of diseases.
Collapse
Affiliation(s)
- Fenghua Geng
- Key Laboratory of Coal Processing & Efficient Utilization of Ministry of Education, National Engineering Research Center of Coal Preparation & Purification; School of Chemical Engineering & Technology, China University of Mining & Technology, Xuzhou 221116, China
- Henan Key Laboratory of Biomolecular Recognition & Sensing, College of Chemistry & Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing & Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Xiaoxue Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Tingwen Wei
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Zaixue Wang
- Key Laboratory of Coal Processing & Efficient Utilization of Ministry of Education, National Engineering Research Center of Coal Preparation & Purification; School of Chemical Engineering & Technology, China University of Mining & Technology, Xuzhou 221116, China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Congying Shao
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Gen Liu
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition & Sensing, College of Chemistry & Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing & Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Li Feng
- Key Laboratory of Coal Processing & Efficient Utilization of Ministry of Education, National Engineering Research Center of Coal Preparation & Purification; School of Chemical Engineering & Technology, China University of Mining & Technology, Xuzhou 221116, China
| |
Collapse
|
28
|
Lu D, Qin M, Zhao Y, Li H, Luo L, Ding C, Cheng P, Su M, Li H, Song Y, Li J. Supramolecular Photonic Hydrogel for High-Sensitivity Alkaline Phosphatase Detection via Synergistic Driving Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206461. [PMID: 36587969 DOI: 10.1002/smll.202206461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Structurally-colored photonic hydrogels which are fabricated by introducing hydrogels into thin films or photonic crystal structures are promising candidates for biosensing. Generally, the design of photonic hydrogel biosensors is based on the sensor-analyte interactions induced charge variation within the hydrogel matrix, or chemically grafting binding sites onto the polymer chains, to achieve significant volume change and color variation of the photonic hydrogel. However, relatively low anti-interference capability or complicated synthesis hinder the facile and low-cost fabrication of high-performance photonic hydrogel biosensors. Here, a facilely prepared supramolecular photonic hydrogel biosensor is developed for high-sensitivity detection of alkaline phosphatase (ALP), which is an extensively considered clinical biomarker for a variety of diseases. Responding to ALP results in the broken supramolecular crosslinking and thus increased lattice distancing of the photonic hydrogel driven by synergistic repulsive force between nanoparticles embedded in photonic crystal structure and osmotic swelling pressure. The biosensor shows sensitivity of 7.3 nm spectral shift per mU mL-1 ALP, with detection limit of 0.52 mU mL-1 . High-accuracy colorimetric detection can be realized via a smartphone, promoting point-of-care sensing and timely diagnosis of related pathological conditions.
Collapse
Affiliation(s)
- Dengfeng Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yonghang Zhao
- College of Computer Science and Technology, Jilin University, Changchun, 130012, P. R. China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huiying Li
- College of Computer Science and Technology, Jilin University, Changchun, 130012, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
29
|
Rational synthesis of carbon dots with phosphate ester group for direct mapping of endogenous alkaline phosphatase and polarity monitoring in living cells. J Colloid Interface Sci 2023; 640:626-636. [PMID: 36889060 DOI: 10.1016/j.jcis.2023.02.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Carbon dots (CDs) have been extensively employed in biomolecule imaging. However, the imaging of biological enzymes with CDs has not been reported, which greatly limits their application in biological imaging. Herein, for the first time, a new type of fluorescent CDs is elaborately designed to realize the direct mapping of alkaline phosphatase (ALP) in cells. The obtained phosphorus and nitrogen co-doped CDs (P, N-CDs) generate specific structures including xanthene oxide and phosphate ester, thereby enabling P, N-CDs to be exclusively cleaved by ALP without auxiliary media. The fluorescence intensity of P, N-CDs can be specifically turned on in the presence of ALP, making them powerful probes for sensitive sensing of ALP activity with a detection limit of 1.27 U·L-1. Meanwhile, P, N-CDs possessing electron deficiency structure fulfill sensitive responding to polarity variations. The excellent photo-bleaching resistance and biocompatibility of the P, N-CDs are taken for directly mapping the intracellular endogenous ALP via turned-on fluorescence imaging, as well as real-time monitoring the polarity fluctuation in cells through ratiometric fluorescence imaging. The present work offers a new way to design and synthesize functional CDs for direct imaging of intracellular enzymes.
Collapse
|
30
|
Lu Z, Chen M, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Yin H, Zhou X, Ye J, Shen Y, Rao H. Machine Learning System To Monitor Hg 2+ and Sulfide Using a Polychromatic Fluorescence-Colorimetric Paper Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9800-9812. [PMID: 36750421 DOI: 10.1021/acsami.2c16565] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An optical monitoring device combining a smartphone with a polychromatic ratiometric fluorescence-colorimetric paper sensor was developed to detect Hg2+ and S2- in water and seafood. This monitoring included the detection of food deterioration and was made possible by processing the sensing data with a machine learning algorithm. The polychromatic fluorescence sensor was composed of blue fluorescent carbon quantum dots (CDs) (BU-CDs) and green and red fluorescent CdZnTe quantum dots (QDs) (named GN-QDs and RD-QDs, respectively). The experimental results and density functional theory (DFT) prove that the incorporation of Zn can improve the stability and quantum yield of CdZnTe QDs. According to the dynamic and static quenching mechanisms, GN-QDs and RD-QDs were quenched by Hg2+ and sulfide, respectively, but BU-CDs were not sensitive to them. The system colors change from green to red to blue as the concentration of the two detectors rises, and the limits of detection (LOD) were 0.002 and 1.488 μM, respectively. Meanwhile, the probe was combined with the hydrogel to construct a visual sensing intelligent test strip, which realized the monitoring of food freshness. In addition, a smartphone device assisted by multiple machine learning methods was used to text Hg2+ and sulfide in real samples. It can be concluded that the fabulous stability, sensitivity, and practicality exhibited by this sensing mechanism give it unlimited potential for assessing the contents of toxic and hazardous substances Hg2+ and sulfide.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Maoting Chen
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu 611130, P. R. China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen 518000, P. R. China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| |
Collapse
|
31
|
3D Printed Microfluidic Chemiluminescence PoC Device with Self-Powering and Integrated Incubating System: Validation via ALP Detection on Disposable µPADs. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
32
|
Yi J, Han X, Zhu Q, Wu L, Wang Y, Xue J, Lai X, Zhou H. A novel metal-organic framework of Co-hemin for portable and visual colorimetric detection of 2,4-dichlorophenoxyacetic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:63-69. [PMID: 36477090 DOI: 10.1039/d2ay01694j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-site quantitative analysis of 2,4-dichlorophenoxyacetic acid (2,4-D) is of significant importance for addressing increasing concerns about public health and environmental quality. Here, a novel metal-organic framework (MOF) of Co-hemin is synthesized and first used for on-site colorimetric monitoring of 2,4-D. 2,4-D as an inhibitor of alkaline phosphatase could specifically suppress the production of ascorbic acid, which restrained in situ etching of Co-hemin and further triggered the colorimetric response. In the colorimetric assay, Co-hemin displayed good oxidase-like activity without addition of H2O2, which could avoid the shortcomings of H2O2 such as toxicity and instability. The Co-hemin biosensor exhibited a relatively low detection limit of 33 ng mL-1 for 2,4-D by the UV method. Moreover, a smartphone based RGB analysis system for the sensitive detection of 2,4-D was developed, and exhibited a good linear relationship between the RGB model parameter and the concentration of 2,4-D. The operability and accuracy of the Co-hemin biosensor were confirmed by the quantitative determination of 2,4-D in real samples, such as serum and tap water. Also, the Co-hemin based colorimetric biosensor showed good selectivity and specificity. Moreover, the developed assays displayed good application in constructing complex logic gates. This work not only provided a portable and visual platform for on-site monitoring of 2,4-D, but also expanded application prospects in the field of complex biological analysis.
Collapse
Affiliation(s)
- Jintao Yi
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xianqin Han
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Qi Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Lingli Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Youtan Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jun Xue
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xiaoqi Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Hui Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| |
Collapse
|
33
|
Sun X, He W, Liu B. Water-soluble long afterglow carbon dots/silica composites for dual-channel detection of alkaline phosphatase and multi-level information anti-counterfeiting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5001-5011. [PMID: 36445329 DOI: 10.1039/d2ay01587k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water-soluble carbon dots/silica (CDs/SiO2) composites with an ultra-long lifetime of 846.9 ms and an ultra-high afterglow quantum yield of 12.1% were successfully obtained by incorporating CDs into a SiO2 network. Within the aqueous solution, the SiO2 layer isolates CDs from the surrounding oxygen. Meanwhile, hydrogen bonds and covalent bonds are formed between the CDs and SiO2, and these bonds restrict the movement and vibration of the CDs. Accordingly, the non-radiative inactivation rate of the triplet excitons of the CDs is reduced, thereby enhancing the room-temperature phosphorescence of the CDs and triggering thermally activated delayed fluorescence. The multiple properties of the material effectively protect the CDs from the external environment, making CDs/SiO2 emit a long afterglow in the solid and liquid phases. The prepared CDs/SiO2 composites have exceptional stability against strong oxidants, acids, bases, and polar solvents. The composites were successfully used in the dual-optical mode detection of alkaline phosphatase, as an anti-counterfeiting ink, and in multi-level information anti-counterfeiting and encryption.
Collapse
Affiliation(s)
- Xiangying Sun
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), NO. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
| | - Wei He
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), NO. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
| | - Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), NO. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
| |
Collapse
|
34
|
Intracellular infection-responsive release of NO and peptides for synergistic bacterial eradication. J Control Release 2022; 352:87-97. [PMID: 36243236 DOI: 10.1016/j.jconrel.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Bacteria have the ability to invade and survive in host cells to form intracellular bacteria (ICBs), and challenges remain in the intracellular delivery of sufficient antibiotics to remove ICBs. Herein, antimicrobial peptide of epsilon-poly-l-lysine (ePL) and nitric oxide (NO) donors are integrated into nanoparticles (NPs) for ICB treatment without using any antibiotics. ePL was grafted with dodecyl alcohol through ethyl dichlorophosphate to prepare ePL-C12, followed by conjugation of nitrate-functionalized NO donors to obtain ePL-C12NO. PNO/C NPs were prepared from mixtures of ePL-C12NO and ePL-C12 and the optimal ePL-C12NO ratio was 7% in terms of bactericidal effect and macrophage toxicity. Once being engulfed by bacteria-infected macrophages (BIMs), NPs are disintegrated when encountering with ICB-secreted phosphatase, and the NP degradation accelerates intracellular NO release in response to the elevated glutathione levels in BIMs. The selective and abrupt release of NO and ePL with different antimicrobial mechanisms exhibits synergistic eradication of ICBs and no apparent toxicity to macrophages. ICB-infected mice show persistent weight loss and 100% of mortality rate after treatment with ePL-C12 NPs for 7 days, while PNO/C treatment causes entire survival of infected mice and full recovery of body weights to normal values. ICB-infected mice are also accompanied with apparent hepatomegaly and splenomegaly, which are only eliminated by PNO/C treatment without associated any pathological abnormality. PNO/C treatment reduces bacterial burdens in livers (2.45 log), spleens (2.16 log) and kidneys (3.46 log) and restores hepatic and renal function to normal levels. Thus, this study provides a feasible strategy to selectively release NO and cationic peptides in response to intracellular infection-derived signals, achieving synergistic eradication of ICBs and function restoration of the main tissues.
Collapse
|
35
|
DNA-functionalized LnNP-MNP assemblies for dual-model sensing of alkaline phosphatase. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
DNAzyme-regulated CRISPR/Cas12a based fluorescent biosensor for sensitive detection of alkaline phosphatase activity and inhibition. Anal Chim Acta 2022; 1233:340518. [DOI: 10.1016/j.aca.2022.340518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
|
37
|
Feng S, Hu W, Pei F, Liu Z, Du B, Mu X, Liu B, Hao Q, Lei W, Tong Z. A Highly Sensitive Fluorescence and Screen-Printed Electrodes—Electrochemiluminescence Immunosensor for Ricin Detection Based on CdSe/ZnS QDs with Dual Signal. Toxins (Basel) 2022; 14:toxins14100710. [PMID: 36287978 PMCID: PMC9608998 DOI: 10.3390/toxins14100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
A sensitive dual-readout immunosensor for fluorescence and electrochemiluminescence (ECL) detection of ricin was established, which was combined with a streptavidin–biotin signal amplification system. CdSe/ZnS quantum dots with fine fluorescence and ECL properties were used as the dual-signal function probes of the sandwich immunocomplex. Under the optimum experimental conditions, the dual signal intensity increased significantly with the rise in ricin concentration. The fluorescence intensity of the senor exhibited a good liner relationship toward the ricin concentrations with 0.1~100 ng/mL and the limit of detection (LOD) was 81.7 pg/mL; taking ECL as the detection signal, the sensor showed a linear relationship with the ricin concentrations ranging from 0.01 ng/mL to 100 ng/mL and the LOD was 5.5 pg/mL. The constructed sensor with high sensitivity had been successfully applied to the detection of ricin in complex matrices with satisfactory recoveries. The proposed immunosensor model can be extended to the analysis and detection of others target proteins.
Collapse
Affiliation(s)
- Shasha Feng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (W.L.); (Z.T.)
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Correspondence: (W.L.); (Z.T.)
| |
Collapse
|
38
|
A highly sensitive method for the detection of alkaline phosphatase based on thioflavin T/G-quadruplex and strand displacement amplification. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
In situ fluorogenic reaction for ratiometric fluorescent detection of alkaline phosphatase activity. Anal Chim Acta 2022; 1230:340414. [DOI: 10.1016/j.aca.2022.340414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
|
40
|
Sen Ding S, Xiao Li M, Xiang Y, Tang J, Zhang Q, Huang M, Hui Zhao X, Wang J, Mei Li C. Synergistic effect-mediated fluorescence switching of nitrogen-doped carbon dots for visual detection of alkaline phosphatase. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Amani A, Shamloo A, Vatani P, Ebrahimi S. Particles Focusing and Separation by a Novel Inertial Microfluidic Device: Divergent Serpentine Microchannel. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ali Amani
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| | - Pouyan Vatani
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| |
Collapse
|
42
|
Zhu T, Chen J, Chai Q, Zeng S, Liu Y. Stable and sensitive sensor for alkaline phosphatase based on target-triggered wavelength tuning of fluorescent copper nanoclusters. Anal Chim Acta 2022; 1232:340453. [DOI: 10.1016/j.aca.2022.340453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/01/2022]
|
43
|
Attademo AM, Cuzziol Boccioni AP, Peltzer PM, Franco VG, Simoniello MF, Passeggi MCG, Lajmanovich RC. Effect of microplastics on the activity of carboxylesterase and phosphatase enzymes in Scinax squalirostris tadpoles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:718. [PMID: 36050604 DOI: 10.1007/s10661-022-10322-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are critical emerging pollutants around the world. There is a growing interest in the effects of MP ingestion, non-digestion, and toxicity on aquatic organisms. Amphibian tadpoles are the vertebrate group that has received the least attention regarding this issue. The aim of the present study was to determine the ingestion of polyethylene MPs by Scinax squalirostris tadpoles by atomic force microscopy (AFM) and to evaluate the activities of carboxylesterase (CbE, using 4-naphthyl butyrate-NB-, and 1-naphthyl acetate -NA- as substrates) and alkaline phosphatase (ALP) under MP exposure. Enzyme activities were analyzed spectrophotometrically at 2 and 10 days of exposure. Tadpoles were exposed to two different treatments during 10 days: a negative control (CO, dechlorinated water) and MP (60 mg L-1). AFM images of the digestive contents of tadpoles revealed the presence of MPs. After 10 days of MP exposure, CbE (NB) activity was significantly higher and CbE (NA) activity was significantly lower in MP treatments than in controls. ALP activity decreased in MP treatments after 2 and 10 days of exposure. The detection of MP particles in the intestinal contents and the effects on metabolic enzymes in a common frog species evidenced the potential health risk of MP to aquatic vertebrates. Thus, the differential response in enzymes and substrates demonstrate the need for considering the complex effects of contaminants and nutrients on ecosystems for ecotoxicological risk characterization.
Collapse
Affiliation(s)
- Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina.
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina.
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| | - Vanina G Franco
- Laboratorio de Física de Superficies e Interfaces, Instituto de Física del Litoral (LASUI-IFIS Litoral; CONICET-UNL), Güemes 3450, S3000, Santa Fe, Argentina
| | | | - Mario C G Passeggi
- Laboratorio de Física de Superficies e Interfaces, Instituto de Física del Litoral (LASUI-IFIS Litoral; CONICET-UNL), Güemes 3450, S3000, Santa Fe, Argentina
- Departamento de Física, Facultad de Ingeniería Química, Universidad Nacional del Litoral (FIQ-UNL), Santiago del Estero 2829, S3000, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| |
Collapse
|
44
|
Titi A, Touzani R, Moliterni A, Hadda TB, Messali M, Benabbes R, Berredjem M, Bouzina A, Al-Zaqri N, Taleb M, Zarrouk A, Warad I. Synthesis, structural, biocomputational modeling and antifungal activity of novel armed pyrazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Recent Advancements in Developments of Novel Fluorescent Probes: In Cellulo Recognitions of Alkaline Phosphatases. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alkaline phosphatase (ALP) is one of the vital phospho-ester bond cleaving biocatalysts that has inevitable significance in cellular systems, viz., early-stage osteoblast differentiation, cell integrity in tissues, bone mineralization, cancer biomarker, liver dysfunction, cellular osmotic pressure, protein folding and many more. Variation from optimal levels of ALP in intra and extracellular fluids can cause severe diseases, including death. Due to these reasons, ALP is considered as a vital biomarker for various preclinical and medical diagnosis. Fluorescence image-based diagnosis is the most widely used method, owing to its simplicity, robustness, non-invasive properties and excellent spatio-temporal resolution (up to the nM/pM level), as compared to conventional analytical techniques, such as the electroanalytical method, nuclear magnetic resonance (NMR) and high-performance liquid chromatography (HPLC). Most of the reviews reported for ALP’s recognition in the literature scarcely explain the structurally related, photophysical and biophysical parameters; and the sub-cellular localizations. Considering these facts, in order to enhance the opto-analytical parameters of fluorescence-based diagnostic materials at the cellular level, herein we have systematically documented recent developments in the opto-analytical capabilities of quencher-free probes for ALP, used in in vitro (biological buffers) to in cellulo conditions, along with in vivo models.
Collapse
|
46
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Wu D, Zhao Q, Sun J, Yang X. Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Chen W, Zhang Y, Di K, Liu C, Xia Y, Ding S, Shen H, Li Z. A Washing-Free and Easy-to-Operate Fluorescent Biosensor for Highly Efficient Detection of Breast Cancer-Derived Exosomes. Front Bioeng Biotechnol 2022; 10:945858. [PMID: 35837545 PMCID: PMC9273779 DOI: 10.3389/fbioe.2022.945858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Traditional detection methods for protein tumor markers in the early screening of breast cancer are restricted by complicated operation procedures and unstable reproducibility. As one of alternative emerging tumor markers, exosomes play an important role in diagnosing and treating cancers at the early stage due to traceability of their origins and great involvement in occurrence and development of cancers. Herein, a washing-free and efficient fluorescent biosensor has been proposed to realize simple and straightforward analysis of breast cancer cell-derived exosomes based on high affinity aptamers and G quadruplex-hemin (G4-hemin). The whole reaction process can be completed by several simple steps, which realizes washing-free and labor-saving. With simplified operation procedures and high repeatability, the linear detection range for this developed fluorescent biosensing strategy to breast cancer cell-derived exosomes is from 2.5 × 105 to 1.00 × 107 particles/ml, and the limit of detection is down to 0.54 × 105 particles/ml.
Collapse
Affiliation(s)
- Wenqin Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kaili Di
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chang Liu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanyan Xia
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| | - Han Shen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| |
Collapse
|
49
|
Wei Z, Lu W, Pan C, Ni J, Zhao H, Huang G, Wang C. Manipulating time-dependent size distribution of sulfur quantum dots and their fluorescence sensing for ascorbic acid. Dalton Trans 2022; 51:10290-10297. [PMID: 35748770 DOI: 10.1039/d2dt01584f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Unlike the previous commonly used strong alkaline solvent sodium hydroxide, we employ an eco-friendly solvent, ethanol, as a solvent for the preparation of ultra-small-sized sulfur quantum dots (SQDs). Ethanol can disperse bulk sulfur and allow sufficient transfer of large-sized sulfur to smaller-sized SQDs through a one-pot synthesis approach. The SQDs obtained from ethanol as the solvent displays superior photoluminescence properties to those in water and sodium hydroxide. By delicately controlling the reaction conditions, including the amount of bulk sulfur, the reaction time, and the proportion of sulfur to oxidizing reagent, highly blue emissive SQDs with a photoluminescence quantum yield (PLQY) of 7.04% with ultra-high stability for several months can be successfully prepared. Furthermore, we found out that the SQDs display a dynamic photoluminescence properties and varied particle sizes as the reaction time increases, which is possibly realized via the etching-aggregation process. Morevoer, the fluorescence of SQDs-72 can be effectively quenched by CoOOH nanosheets and recovered upon addition of ascorbic acid (AA) by consuming CoOOH nanosheets through the redox reaction, leading to fluorescence recovery. Therefore, a fluorescence "off-on" nanosensor for the detection of AA with a limit of detection (LOD) of 0.85 μM was constructed.
Collapse
Affiliation(s)
- Zitong Wei
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Wenyi Lu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Caiwen Pan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Jiping Ni
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Haiyun Zhao
- Shandong Institute for Food and Drug Control, Jinan, 250101, China
| | - Guoyong Huang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
| |
Collapse
|
50
|
Deng HH, Yang HJ, Huang KY, Zheng YJ, Xu YY, Peng HP, Liu YH, Chen W, Hong GL. Antenna effect of pyridoxal phosphate on the fluorescence of mitoxantrone-silicon nanoparticles and its application in alkaline phosphatase assay. Anal Bioanal Chem 2022; 414:4877-4884. [PMID: 35576012 DOI: 10.1007/s00216-022-04110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 11/01/2022]
Abstract
As a kind of sensing and imaging fluorescent probe with the merit of low toxicity, good stability, and environment-friendly, silicon nanoparticles (SiNPs) are currently attracting extensive research. In this work, we obtained mitoxantrone-SiNPs (MXT-SiNPs) with green emission by one-pot synthesis under mild temperature condition. The antenna based on pyridoxal phosphate (PLP) was designed for light-harvesting to enhance the luminescence of MXT-SiNPs and to establish a novel sensing strategy for alkaline phosphatase (ALP). PLP transfers the absorbed photon energy to MXT-SiNPs by forming Schiff base. When PLP is dephosphorized by ALP, the released free hydroxyl group reacts with aldehyde group to form internal hemiacetal, which leads to the failure of Schiff base formation. Based on the relationship between antenna formation ability and PLP hydrolysis degree, the activity of ALP can be measured. A good linear relationship was obtained from 0.2 to 3.0 U/L, with a limit of detection of 0.06 U/L. Furthermore, the sensing platform was successfully used to detect ALP in human serum with recovery of 97.6-106.2%. The rational design of antenna elements for fluorescent nanomaterials can not only provide a new pathway to manipulate the luminescence, but also provide a new direction for fluorescence sensing strategy.
Collapse
Affiliation(s)
- Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Hui-Jing Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Yi-Jing Zheng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Ying-Ying Xu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Yin-Huan Liu
- Department of Laboratory Medicine, Fuzhou Second Hospital, Fuzhou, 350007, Fujian, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China.
| | - Guo-Lin Hong
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, Fujian, China. .,Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| |
Collapse
|