1
|
Zhao H, Chen C, Wang Y, Liu J, Lu J, Zhai J, Li R, Lu N. A paper-based SERS/colorimetry substrate for reliable detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125731. [PMID: 39824014 DOI: 10.1016/j.saa.2025.125731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
For on-site analysis, the combination of surface enhanced Raman scattering (SERS) and colorimetry, as a dual-mode detection, can effectively improve the accuracy of detection, and reduce the influence of instrument fluctuation, which greatly improves the accuracy and reliability of the results. However, the preparation of SERS/colorimetry substrates are usually time-consuming and costly, which limits their practical applications. In this paper, a hydrophobic paper-based SERS/colorimetry substrate can be prepared by a simple spraying method. The hydrophobicity is introduced by the structures formed with polydimethylsiloxane and polymethylmethacrylate, which leads to high detection sensitivity due to its enrichment effect. Moreover, the electrostatic interaction between Ag nanoparticles and the analytes further enhances the performance of SERS and colorimetry in detection of thiram and aspartame. It also provides a new method for the detection of aspartame with colorimetry. Finally, the detection limits of SERS and colorimetry for thiram and aspartame are 0.1 mg/L and 0.1 g/L, 1 mg/L and 0.1 g/L, respectively. The paper-based SERS/colorimetry substrate makes the results more reliable through dual-mode detection, which shows great potential in the detection of real samples.
Collapse
Affiliation(s)
- Hongkun Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chunning Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yalei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jiaqi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jiaxin Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jingtong Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Rui Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
2
|
Murugaperumal P, Nallathambi S. A comprehensive review on colorimetric and fluorometric investigations of dual sensing chemosensors for Cu 2+ and Fe 3+ ions from the year 2017 to 2023. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125193. [PMID: 39340942 DOI: 10.1016/j.saa.2024.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Dual sensing chemosensors for copper(II) and iron(III) ions are molecules or compounds designed to selectively detect and differentiate between these specific metal ions. Because metal ions like copper(II) and iron(III) are essential to so many industrial, biological, and environmental processes, their detection and measurement have become increasingly important. In this work, a novel dual-sensing chemosensor that combines high selectivity and sensitivity is presented. It is intended to detect copper(II) (Cu2+) and iron (III)(Fe3+) ions concurrently. The chemosensor combines two different recognition components into one platform and achieves dual-mode detection by combining optical and electrochemical sensing approaches. Using a dual sensing chemosensors for two cations can save money and time compared to preparing two separate chemosensors to sense each of those cations separately. We often use various techniques, including spectroscopy, fluorescence, and electrochemistry, to monitor and measure the changes induced by the interaction between the chemosensors and the metal ions. Discussions have been held on the excitation and emission wavelengths, media used in the spectroscopic measurements, binding constant with coordination binding mode, detection mechanism, and detection limit (LOD). This extensive review paper investigates colorimetric and fluorometric dual sensing analysis for Cu2+ and Fe3+ ions which includes more than sixty papers from the year of 2017 to 2023.
Collapse
Affiliation(s)
| | - Sengottuvelan Nallathambi
- Department of Chemistry, Centre for Distance and Online Education (CDOE), Alagappa University, Karaikudi 630003, India.
| |
Collapse
|
3
|
Guo C, Cui E, Xu X, Yang D. Ionophore-based nanospheres enable selective and sensitive fluorescence detection of copper ions. Talanta 2025; 281:126855. [PMID: 39265420 DOI: 10.1016/j.talanta.2024.126855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
A novel ionophore-based fluorescent nanosensor has been successfully fabricated for the sensitive and selective detection of Cu2+ ions. The nanosensor was constructed through self-assembly of amphiphilic block copolymers, incorporating elesclomol as a Cu2+ ionophore and long-chain dialkylcarbocyanines (DiD) as a fluorescent dye. This design exhibits an "ON/OFF" fluorescence response, where Cu2⁺ ions are selectively sequestered within the nanosensors, resulting in fluorescence quenching of DiD. This strategy enables rapid and highly selective Cu2⁺ sensing with remarkable fluorescence quenching efficiency (up to 93.5 %) and an exceptionally low detection limit of 28.6 nM. The linear detection range extends over two orders of magnitude (0.05-10 μM). Furthermore, the feasibility of this nanosensor for practical applications was confirmed through successful determination of Cu2+ in real water and beer samples, with excellent recovery rates. This nanosensor offers advantages of simplicity, rapidity, and cost-effectiveness, holding significant potential for sensitive and selective Cu2+ detection in various biological and environmental samples.
Collapse
Affiliation(s)
- Chao Guo
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Enna Cui
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiaonan Xu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Dongzhi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Wang B, Han Y, Zhang L, Chen Z, Zhang W, Ren M, Shi J, Xu X, Yang Y. Surface-enhanced Raman scattering based on noble metal nanoassemblies for detecting harmful substances in food. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39388195 DOI: 10.1080/10408398.2024.2413656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Residues of harmful substances in food can severely damage human health. The content of these substances in food is generally low, making detection difficult. Surface-enhanced Raman scattering (SERS), based on noble metal nanomaterials, mainly gold (Au) and silver (Ag), has exhibited excellent capabilities for trace detection of various substances. Noble metal nanoassemblies, in particular, have extraordinary flexibility and tunable optical properties, which cannot be offered by single nanoparticles (NPs). These nanoassemblies, with their various morphologies synthesized using NPs through artificially induced self-assembly or template-driven preparation, can significantly enhance the local electric field and create "hot spots" due to the gaps between adjacent NPs. Consequently, the SERS properties of NPs become more prominent, leading to improved performance in the trace detection of various substances and detection limits that are considerably lower than the current relevant standards. Noble metal nanoassemblies show promising potential in ensuring food safety. This review discusses the synthesis methods and SERS properties of noble metal nanoassemblies and then concentrates on their application in detecting biotoxins, drug residues, illegal additives, and heavy metals. The study provides valuable references for further research into the application of nanoassemblies in food safety detection.
Collapse
Affiliation(s)
- Baojun Wang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zikuo Chen
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
5
|
Jiang H, Chang W, Zhu X, Liu G, Liu K, Chen W, Wang H, Qin P. Development of a Colorimetric and SERS Dual-Signal Platform via dCas9-Mediated Chain Assembly of Bifunctional Au@Pt Nanozymes for Ultrasensitive and Robust Salmonella Assay. Anal Chem 2024; 96:12684-12691. [PMID: 39037392 DOI: 10.1021/acs.analchem.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Timely screening for harmful pathogens is a great challenge in emergencies where traditional culture methods suffer from long assay time and alternative methods are limited by poor accuracy and low robustness. Herein, we present a dCas9-mediated colorimetric and surface-enhanced Raman scattering (SERS) dual-signal platform (dCas9-CSD) to address this challenge. Strategically, the platform used dCas9 to accurately recognize the repetitive sequences in amplicons produced by loop-mediated isothermal amplification (LAMP), forming nucleic acid frameworks that assemble numerous bifunctional gold-platinum (Au@Pt) nanozymes into chains on the surface of streptavidin-magnetic beads (SA-MB). The collected Au@Pt converted colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) via its Pt shell and then enhanced the Raman signal of oxTMB by its Au core. Therefore, the presence of Salmonella could be dexterously converted into cross-validated colorimetric and SERS signals, providing more reliable conclusions. Notably, dCas9-mediated secondary recognition of amplicons reduced background signal caused by nontarget amplification, and two-round signal amplification consisting of LAMP reaction and Au@Pt catalysis greatly improved the sensitivity. With this design, Salmonella as low as 1 CFU/mL could be detected within 50 min by colorimetric and SERS modes. The robustness of dCas9-CSD was further confirmed by various real samples such as lake water, cabbage, milk, orange juice, beer, and eggs. This work provides a promising point-of-need tool for pathogen detection.
Collapse
Affiliation(s)
- Han Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei Chang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, PR China
| | - Xiaofan Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Gang Liu
- Environmental Protection Monitoring Station, Anhui Provincial Lake Chaohu Administration, Chaohu 238000, PR China
| | - Kaiyong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hua Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, PR China
| | - Panzhu Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| |
Collapse
|
6
|
Shao T, Xu J, Zhong H, Hu Y, Chen J. A stable and flexible Au@Ag NPs/PVA SERS platform for thiram residue detection on rough surface. Talanta 2024; 274:126008. [PMID: 38599117 DOI: 10.1016/j.talanta.2024.126008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates have gained great attention in analysis field as they offer a fast, non-destructive, and highly sensitive platform for in-situ detection. In this work, we present a facile one-pot strategy for synthesizing gold-cored silver shell nanoparticles (Au@Ag NPs) in the polyvinyl alcohol (PVA) colloid. With no other reducing agents, PVA can serve as both reducing and stabilizing agents for forming Au@Ag NPs. Besides, PVA acts as a scaffold to maintain SERS "hot-spots" by preventing nanoparticle aggregation. By using this flexible Au@Ag NPs/PVA colloid, the analytes can be extracted from rough surfaces for SERS measurements with excellent sensitivity, repeatability and stability. The SERS activity of the Au@Ag NPs/PVA remained at 89.8% even after 120 days of storage at room temperature in sealed air atmosphere. The selective detection of thiram residues on the surface of fruits and vegetables was successfully achieved. The limits of detection for thiram residues on apple and tomato surfaces were measured to be 0.58 and 0.56 ng cm-2, respectively, with recovery rate ranging from 91% to 107%. This work demonstrates the immense application potential of SERS colloid platform in the fields of food safety and environmental analysis.
Collapse
Affiliation(s)
- Tao Shao
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China
| | - Jinsong Xu
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China
| | - Hang Zhong
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China
| | - Yi Hu
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China
| | - Jun Chen
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China.
| |
Collapse
|
7
|
Zhang T, Wu H, Qiu C, Wang M, Wang H, Zhu S, Xu Y, Huang Q, Li S. Ultrasensitive Hierarchical AuNRs@SiO 2@Ag SERS Probes for Enrichment and Detection of Insulin and C-Peptide in Serum. Int J Nanomedicine 2024; 19:6281-6293. [PMID: 38919772 PMCID: PMC11198011 DOI: 10.2147/ijn.s462601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Insulin and C-peptide played crucial roles as clinical indicators for diabetes and certain liver diseases. However, there has been limited research on the simultaneous detection of insulin and C-peptide in trace serum. It is necessary to develop a novel method with high sensitivity and specificity for detecting insulin and C-peptide simultaneously. Methods A core-shell-satellites hierarchical structured nanocomposite was fabricated as SERS biosensor using a simple wet-chemical method, employing 4-MBA and DTNB for recognition and antibodies for specific capture. Gold nanorods (Au NRs) were modified with Raman reporter molecules and silver nanoparticles (Ag NPs), creating SERS tags with high sensitivity for detecting insulin and C-peptide. Antibody-modified commercial carboxylated magnetic bead@antibody served as the capture probes. Target materials were captured by probes and combined with SERS tags, forming a "sandwich" composite structure for subsequent detection. Results Under optimized conditions, the nanocomposite fabricated could be used to detect simultaneously for insulin and C-peptide with the detection limit of 4.29 × 10-5 pM and 1.76 × 10-10 nM in serum. The insulin concentration (4.29 × 10-5-4.29 pM) showed a strong linear correlation with the SERS intensity at 1075 cm-1, with high recoveries (96.4-105.3%) and low RSD (0.8%-10.0%) in detecting human serum samples. Meanwhile, the C-peptide concentration (1.76 × 10-10-1.76 × 10-3 nM) also showed a specific linear correlation with the SERS intensity at 1333 cm-1, with recoveries 85.4%-105.0% and RSD 1.7%-10.8%. Conclusion This breakthrough provided a novel, sensitive, convenient and stable approach for clinical diagnosis of diabetes and certain liver diseases. Overall, our findings presented a significant contribution to the field of biomedical research, opening up new possibilities for improved diagnosis and monitoring of diabetes and liver diseases.
Collapse
Affiliation(s)
- Tong Zhang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Chuzhou Center for Disease Control and Prevention, Chuzhou City, Anhui, 239000, People’s Republic of China
| | - Han Wu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Chenling Qiu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Mingxin Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Haiting Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Shunhua Zhu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu, 221004, People’s Republic of China
| | - Yinhai Xu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Qingli Huang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu, 221004, People’s Republic of China
| | - Shibao Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| |
Collapse
|
8
|
Chen L, Peng RQ, Deng W, Huang JA, Li D. All-in-One Electrokinetic Strategy Coupled with a Miniaturized Chip for SERS Detection of Multipesticides. Anal Chem 2024; 96:9834-9841. [PMID: 38832651 DOI: 10.1021/acs.analchem.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Complexed and tiresome pretreatment processes have significantly impeded in-field analysis of environmental specimens. Herein, an all-in-one sample separation and enrichment strategy based on a compact charge-selective capture/nanoconfined enrichment (CSC/NCE) device is exploited for marker-free surface-enhanced Raman spectroscopy (SERS) detection of charged pesticides in matrix specimens. This tactic incorporating in situ separations, seizing, and nanoconfined enhancement can greatly elevate the effectiveness of sample pretreatment. Importantly, CSC/NCE with excellent adsorption performances and excellent plasmonic features facilitates concentration and signal amplification of electrically charged pesticides. With the introduction of an electric field on this integrated CSC/NCE, the matrix effect in samples could be significantly eradicated, and a distinct SERS response is witnessed for targeted analytes. Accurate quantification of multipesticides is achieved by synergizing the CSC/NCE chip and chemometrics, and the contents found by the CSC/NCE-based sensing strategy agree with those obtained from chromatography assays with relative deviations lower than 10%. The facile and versatile all-in-one tactic infused in a compact chip exhibits enormous potential for field-test application in chemical measurement and food safety.
Collapse
Affiliation(s)
- Lu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Rui-Qi Peng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Jian-An Huang
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
9
|
Li T, Zhang J, Bu P, Wu H, Guo J, Guo J. Multi-modal nanoprobe-enabled biosensing platforms: a critical review. NANOSCALE 2024; 16:3784-3816. [PMID: 38323860 DOI: 10.1039/d3nr03726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Nanomaterials show great potential for applications in biosensing due to their unique physical, chemical, and biological properties. However, the single-modal signal sensing mechanism greatly limits the development of single-modal nanoprobes and their related sensors. Multi-modal nanoprobes can realize the output of fluorescence, colorimetric, electrochemical, and magnetic signals through composite nanomaterials, which can effectively compensate for the defects of single-modal nanoprobes. Following the multi-modal nanoprobes, multi-modal biosensors break through the performance limitation of the current single-modal signal and realize multi-modal signal reading. Herein, the current status and classification of multi-modal nanoprobes are provided. Moreover, the multi-modal signal sensing mechanisms and the working principle of multi-modal biosensing platforms are discussed in detail. We also focus on the applications in pharmaceutical detection, food and environmental fields. Finally, we highlight this field's challenges and development prospects to create potential enlightenment.
Collapse
Affiliation(s)
- Tong Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiani Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengzhi Bu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoping Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong, University, Shanghai, China.
| |
Collapse
|
10
|
Chen L, Guan Y, Zheng S, Fodjo EK, Deng W, Li D. Identification and Detection of Intracellular Reactive Sulfur Species Using a Reaction-Mediated Dual-Recognition Strategy. Anal Chem 2023; 95:12427-12434. [PMID: 37560995 DOI: 10.1021/acs.analchem.3c02094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Reactive sulfur species (RSS) are emerging as a potential key gasotransmitter in diverse physiological processes linking two signaling molecules H2S and SO2. However, the exact roles of H2S and SO2 remain unclear. A major hurdle is the shortage of accurate and robust approaches for sensing of H2S and SO2 in biological systems. Herein, we report a reaction-mediated dual-recognition strategy-based nanosensor, silver nanoparticles (AgNPs)-loaded MIL-101 (Fe) (ALM) hybrids, for the simultaneous detection of H2S and SO2 in a living cell. Upon exposure to H2S, AgNPs can be oxidized to form Ag2S, causing a decrease of surface enhanced Raman spectroscopy (SERS) signals of p,p'-dimercaptoazobenzene. Moreover, SO2 reacts with the amino moiety of MIL-101 to form charge-transfer complexes, resulting in an increment of fluorescent (FL) intensity. The ALM with dual-modal signals can simultaneously analyze H2S and SO2 at a concentration as low as 2.8 × 10-6 and 0.003 μM, respectively. Most importantly, the ALM sensing platform enables targeting mitochondria and detection multiple RSS simultaneously in living cells under external stimulation, as well as displays indiscernible crosstalk between SERS and FL signals, which is very beneficial for the comprehension of physiological issues related with RSS.
Collapse
Affiliation(s)
- Li Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Yue Guan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Siqing Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Essy Kouadio Fodjo
- Laboratory of Constitution and Reaction of Matter, UFR SSMT, Felix Houphouet Boigny University, 22 BP 582, Abidjan 22, Cote d'Ivoire
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
11
|
Wang X, Liu S, Zhou J, Zhang S, Hou C, Huo D. Colorimetric detection of Cu 2+ based on the inhibition strategy for etching reaction of AgNCs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122229. [PMID: 36527967 DOI: 10.1016/j.saa.2022.122229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In this study, an efficient and simple colorimetric method for sensing of Cu2+ was established using inhibition effect of Cu2+ to the etching reaction of silver nanocubes (AgNCs) induced by H2O2. The etching reaction of AgNCs changes its morphology and absorbance with the visual appearance from yellow to colorless. On the contrary, the presence of Cu2+ can significantly inhibit the etching progress. Thus Cu2+ induces the obvious absorbance enhancement compared with AgNCs/H2O2 system. This design realizes colorimetric detection of Cu2+ based on the inhibition effect of etching reaction using AgNCs nanoprobe. The colorimetric response of AgNCs nanoprobe in ΔAbs417.5 shows the linearity with the increasing concentrations of Cu2+ from 0.01 to 40 μM with good selectivity. The concentration limit of Cu2+ efficaciously discriminated by the naked eye is as low as 0.01 μM. Furthermore, the Euclidean distance (ED) of the difference map in RGB change before and after response with Cu2+ is applied for further visualization recognition of Cu2+. All the above results indicate the outstanding practicability and accuracy of the proposed assay for Cu2+ sensing.
Collapse
Affiliation(s)
- Xianfeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Shasha Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jun Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China
| | - Suyi Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
12
|
Highly sensitive gold nanoparticles-modified silver nanorod arrays for determination of methyl viologen. Mikrochim Acta 2022; 189:479. [DOI: 10.1007/s00604-022-05590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
|
13
|
Dual stimulus-responsive core-satellite SERS nanoprobes for reactive oxygen species sensing during autophagy. Talanta 2022; 250:123712. [DOI: 10.1016/j.talanta.2022.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
|
14
|
Raman Spectroscopy for Food Quality Assurance and Safety Monitoring: A Review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Brezestean IA, Tosa N, Falamas A, Cuibus D, Muntean CM, Bende A, Cozar B, Berghian-Grosan C, Farcău C. Silver Nanoparticle Films Obtained by Convective Self-Assembly for Surface-Enhanced Raman Spectroscopy Analyses of the Pesticides Thiabendazole and Endosulfan. Front Chem 2022; 10:915337. [PMID: 35844660 PMCID: PMC9277229 DOI: 10.3389/fchem.2022.915337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Pesticides pose a great threat to human health and their rapid detection has become an urgent public safety issue engaging the scientific community to search for fast and reliable detection techniques. In this context, Surface Enhanced Raman Spectroscopy (SERS) has emerged as a valuable detection and analysis tool due to its high sensitivity and selectivity, proving its suitability for the food industry and environmental monitoring applications. Here, we report on the fabrication of colloidal silver nanoparticle (AgNP) films by convective self-assembly (CSA) on solid planar substrate and their use for the SERS analyses of two types of pesticides, the fungicide thiabendazole (TBZ) and the insecticide α-endosulfan (α-ES). Electron microscopy shows that these nanoparticle films are dense, highly compact, and uniform across several mm2 areas. The SERS efficiency of the fabricated AgNP films is evaluated using a well-known Raman probe, p-aminothiophenol, for multiple excitation laser lines (532 nm, 633 nm, and 785 nm). The films exhibit the largest SERS enhancement factors for 785 nm excitation, reaching values larger than 105. Thiabendazole could be readily adsorbed on the AgNPs without any sample surface functionalization and detected down to 10−6 M, reaching the sub-ppm range. Endosulfan, a challenging analyte with poor affinity to metal surfaces, was captured near the metal surface by using self-assembled alkane thiol monolayers (hexanethiol and octanethiol), as demonstrated by the thorough vibrational band analysis, and supported by density functional theory (DFT) calculations. In addition, principal component analysis (PCA) based on SERS spectra offers significant leverage in discrimination of the molecules anchored onto the metallic nanostructured surface. This present study demonstrates the utility of self-assembled colloidal nanoparticle films as SERS substrates for a broad range of analytes (para-aminothiophenol, thiabendazole, α-endosulfan, and alkanethiols) and contributes to the development of SERS-based sensors for pesticides detection, identification and monitoring.
Collapse
Affiliation(s)
- I A Brezestean
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania.,Biomolecular Physics Department, Babes-Bolyai University, Cluj-Napoca, Romania
| | - N Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - A Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - D Cuibus
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - C M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - A Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - B Cozar
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - C Berghian-Grosan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - C Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
16
|
The effectiveness of silver nanoparticles as a clean-up material for water polluted with bacteria DNA conveying antibiotics resistance genes: Effect of different molar concentrations and competing ions. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Wang X, Xia Z, Fodjo EK, Deng W, Li D. A dual-responsive nanozyme sensor with ultra-high sensitivity and ultra-low cross-interference towards metabolic biomarker monitoring. J Mater Chem B 2022; 10:3023-3031. [PMID: 35352076 DOI: 10.1039/d1tb02796d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accurate, sensitive and selective detection of metabolic biomarkers in biofluids are of vital significance for health self-monitoring and chronic disease prevention. Here, for the first time, a smart dual-responsive nanozyme sensor (DNS) was developed for simultaneous analysis of glucose and caffeine utilizing stimuli-responsive yolk-shell gold nanoparticles (GNPs)-embedded MIL-53 (Al) (GNPs@MIL-53) structures. After the introduction of glucose, GNPs@MIL-53 displays excellent glucose oxidase (GOx)-like activity to induce the conversion of glucose to gluconic acid and H2O2. H2O2 can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) with the generation a bright-blue color, enabling in-field visualization and surface enhanced Raman scattering (SERS) detection of glucose. Upon the addition of caffeine, 2-aminoterephthalic acid modified MIL-53 can react with the caffeine to form intermolecular hydrogen-bonded complexes, leading to strong cyan fluorescence and significant Raman enhancements. The DNS with multi-channel signal outputs can simultaneously determine glucose and caffeine at concentrations of as low as 3 × 10-8 M and 1.2 × 10-11 M, respectively. Importantly, the DNS-based analytical system not only enables visual discrimination and accurate assay of glucose and caffeine in biofluids, but also exhibits negligible cross-interference between glucose and caffeine determination. The combined characteristics of high selectivity, enhanced accuracy and superior quantitative performance make our platform suitable for the point-of-care monitoring of chronic-disease-related metabolic biomarkers.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Zhaoping Xia
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Essy Kouadio Fodjo
- Laboratory of Physical Chemistry, UFR SSMT, Felix Houphouet Boigny University, 22 BP 582 Abidjan 22, Côte d'Ivoire
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| |
Collapse
|
18
|
Li XJ, Li YT, Gu HX, Xue PF, Qin LX, Han S. A wearable screen-printed SERS array sensor on fire-retardant fibre gloves for on-site environmental emergency monitoring. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:781-788. [PMID: 35083987 DOI: 10.1039/d1ay01981c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glove-based wearable sensors can offer the potential ability to a fast and on-site environmental threat assessment, which is crucial for timely and informed incident management. In this study, an on-demand surface-enhanced Raman scattering (SERS) array sensor has been patterned on fire-retardant fibre gloves via the screen-printing technique in large batches. The screen-printed ink contains one-pot synthesized silver nanoparticle and molybdenum disulfide nanocomposite (Ag/MoS2), and polyanionic cellulose (PAC) as a new adhesive agent. Rhodamine 6G (R6G) was employed as an initial probe molecule to systematically evaluate the performance of the resulting sensor. The results suggest that the fabricated fire-retardant screen-printed SERS array sensor displays high reproducibility and stability at 250 °C, with the lower detection limit of 10-13 M for R6G. The spot-to-spot SERS signals show that the intensity variation was less than 10%. Besides, the SERS signals can be maintained over 7 weeks. Further investigation was then successfully carried out to detect polycyclic aromatic hydrocarbons (PAHs), which are commonly used as flammable chemicals. In our perception, this wearable fire-retardant screen-printed SERS array sensor would be an ideal candidate for practical on-site environmental emergency monitoring due to its fire-retardant capability and timely measurement on a portable carrier.
Collapse
Affiliation(s)
- Xue-Jian Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Yuan-Ting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Hai-Xin Gu
- Shanghai Fire Research Institute of MEM, 601 Second South Zhongshan Road, Shanghai 200032, P.R. China
| | - Peng-Fei Xue
- DuPont China Holding Co., Ltd., No. 255 Dongyu Road, Shanghai 200124, P. R. China
| | - Li-Xia Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China.
| |
Collapse
|
19
|
Gou L, Zeng X, Du H, Li L, Tian Y, Hou X, Wu L. Sensitive detection of trace 4-methylimidazole utilizing a derivatization reaction-based ratiometric surface-enhanced Raman scattering platform. Talanta 2022; 237:122925. [PMID: 34736662 DOI: 10.1016/j.talanta.2021.122925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Herein, a facile and fast surface-enhanced Raman scattering (SERS) method with ratiometric strategy was developed for detection of 4-methylimidazole (4-MI). Via a chemical derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, 4-MI could be converted to SERS-sensitive species. The SERS intensity ratio between the peaks at 1243 cm-1 and 1110 cm-1 (I1243/I1110) was used for the quantification of 4-MI. In addition, the method sensitivity was further improved by the aggregation of beta-cyclodextrin-modified Ag nanoparticles (beta-CD-AgNPs). Under the optimal conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for 4-MI were 1.7 nM (S/N = 3) and 5.7 nM (S/N = 10), respectively. The relative standard deviation (RSD) for 0.5 μM 4-MI was 8.2% (n = 20). This method was successfully used for the determination of 4-MI in cola samples with recoveries ranging from 92% to 106%. The present method is convenient, sensitive, selective, reliable and may have a promising application in determination of the compounds with an imidazole ring containing active hydrogen atoms.
Collapse
Affiliation(s)
- Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaoliang Zeng
- State Grid Sichuan Electric Power Research Institute, Chengdu, Sichuan, 610041, China
| | - Huan Du
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yunfei Tian
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
20
|
Xu G, Zhang Q, Gao C, Ma L, Song P, Xia L. A label-free SERS sensor for the detection of Hg2+ based on phenylacetylene functionalized Ag nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Huang HJ, Shiao MH, Lin YW, Lin BJ, Su J, Lin YS, Chang HW. Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing. NANOMATERIALS 2021; 11:nano11071736. [PMID: 34209414 PMCID: PMC8307875 DOI: 10.3390/nano11071736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
The effects of Au cores in Ag shells in enhancing surface-enhanced Raman scattering (SERS) were evaluated with samples of various Au/Ag ratios. High-density Ag shell/Au core dendritic nanoforests (Au@Ag-DNFs) on silicon (Au@Ag-DNFs/Si) were synthesized using the fluoride-assisted Galvanic replacement reaction method. The synthesized Au@Ag-DNFs/Si samples were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, reflection spectroscopy, X-ray diffraction, and Raman spectroscopy. The ultraviolet-visible extinction spectrum exhibited increased extinction induced by the addition of Ag when creating the metal DNFs layer. The pure Ag DNFs exhibited high optical extinction of visible light, but low SERS response compared with Au@Ag DNFs. The Au core (with high refractive index real part) in Au@Ag DNFs maintained a long-leaf structure that focused the illumination light, resulting in the apparent SERS enhancement of the Ag coverage.
Collapse
Affiliation(s)
- Hung Ji Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan; (H.J.H.); (M.-H.S.); (J.S.)
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan; (H.J.H.); (M.-H.S.); (J.S.)
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua 500207, Taiwan;
| | - Bei-Ju Lin
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan;
| | - James Su
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan; (H.J.H.); (M.-H.S.); (J.S.)
| | - Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan;
- Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli 360001, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: (Y.-S.L.); (H.-W.C.); Tel.: +886-37-382199 (Y.-S.L.); +886-37-382216 (H.-W.C.)
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan;
- Correspondence: (Y.-S.L.); (H.-W.C.); Tel.: +886-37-382199 (Y.-S.L.); +886-37-382216 (H.-W.C.)
| |
Collapse
|
22
|
Zhu W, Hutchison JA, Dong M, Li M. Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health. ACS Sens 2021; 6:1704-1716. [PMID: 33939402 DOI: 10.1021/acssensors.1c00393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sensitive and selective detection of biomarkers for human health remains one of the grand challenges of the analytical sciences. Compared to established methods (colorimetric, (chemi) luminescent), surface-enhanced Raman spectroscopy (SERS) is an emerging alternative with enormous potential for ultrasensitive biological detection. Indeed even attomolar (10-18 M) detection limits are possible for SERS due to an orders-of-magnitude boosting of Raman signals at the surface of metallic nanostructures by surface plasmons. However, challenges remain for SERS assays of large biomolecules, as the largest enhancements require the biomarker to enter a "hot spot" nanogap between metal nanostructures. The frequency-shift SERS method has gained popularity in recent years as an alternative assay that overcomes this drawback. It measures frequency shifts in intense SERS peaks of a Raman reporter during binding events on biomolecules (protein coupling, DNA hybridization, etc.) driven by mechanical transduction, charge transfer, or local electric field effects. As such, it retains the excellent multiplexing capability of SERS, with multiple analytes being identifiable by a spectral fingerprint in a single read-out. Meanwhile, like refractive index surface plasmon resonance methods, frequency-shift SERS measures the shift of an intense signal rather than resolving a peak above noise, easing spectroscopic resolution requirements. SERS frequency-shift assays have proved particularly suitable for sensing large, highly charged biomolecules that alter hydrogen-bonding networks upon specific binding. Herein we discuss the frequency-shift SERS method and promising applications in (multiplex) biomarker sensing as well as extensions to ion and gas sensing and much more.
Collapse
Affiliation(s)
- Wenfeng Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - James Andell Hutchison
- School of Chemistry, University of Melbourne, 30 Flemington Road, Parkville 3052, Victoria, Australia
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Liu L, Li D, Deng W. Stimuli-responsive microgels with fluorescent and SERS activities for water and temperature sensing. Biosens Bioelectron 2021; 180:113138. [PMID: 33706159 DOI: 10.1016/j.bios.2021.113138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022]
Abstract
Design and application of stimulus-responsive microgels is still in its infancy but is an exhilarating topic in controllable sensing device. Here, we have fabricated a dual-responsive platform capable of both sensitive on-spot fluorescence analysis and reliable surface-enhanced Raman scattering (SERS) quantification of water and temperature by in-situ encapsulating 4,4'-dimercaptoazobenzene (DMAB), meso-formyl-1,3,5,7-tetramethyl pyrromethene fluoroborate (FPF) probe and Ag nanoparticles (AgNPs) into polyvinyl alcohol (PVA) microgels. The smart microgels exhibit ultra-sensitive (detection limit 10-4% v/v) and reversible response towards water due to the liner relationship between network volume and SERS performance of the microgels. Furthermore, the presence of water triggers the conversion of FPF to aldehyde hydrate, facilitating visual assay of trace water in matrix samples through the enhanced fluorescence signals. Interestingly, the SERS signals can be precisely tuned by the thermo-sensitive microgels substrate, thus achieving the temperature monitoring from 32 to 50 °C. The microgels-based sensor has fast-response (2 min), excellent stability, and enables accurate and reliable response of water in organic solvent and pharmaceutical products. As a smart and flexible sensor, the hybrid microgels will facilitate the field of POC analysis, as well as molecular recognition in the future.
Collapse
Affiliation(s)
- Lulu Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China.
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| |
Collapse
|
24
|
Gao R, Li D, Zheng S, Gu H, Deng W. Colorimetric/fluorescent/Raman trimodal sensing of zinc ions with complexation-mediated Au nanorod. Talanta 2021; 225:121975. [PMID: 33592723 DOI: 10.1016/j.talanta.2020.121975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022]
Abstract
Accurate and selective in-field detection of metal ions in complex media has gained wide interests due to the complexed matrices and weak affinity towards sensing surface. Herein, we develop a first trimodal method for sensing of Zn2+ in complex matrices by stimuli-responsive N-[6-piperazinyl-2-pyridinyl]-N-(2-pyridinylmethyl)-2-Pyridinemethanamine dithiocarbamates (DPY) modified gold nanorods (GNRs-DPY). The presence of Zn2+ triggers the aggregation of GNRs-DPY, leading to increment of color and fluorescence intensity of the sensing system, which could be visually discerned with bare eye. Moreover, the intensive electromagnetic enhancement among "hot spots" of GNRs, generated during self-aggregation of the GNRs-DPY caused by Zn2+, lowers the detection limit of SERS assay to 6 × 10-3 pM. It is noteworthy that GNRs-DPY based sensing platform not only enables distinguishing Zn2+ from Cd2+, with simplicity and rapidity, but also demonstrates as trimodal nanoprobe for sensitive and selective quantitative determination of Zn2+ in different matrices. Therefore, the GNRs-DPY provides a new strategy for accurate and credible on-spot determination of Zn2+ in complicated specimens, as well as offering multiple applications in point-of-care monitoring.
Collapse
Affiliation(s)
- Rui Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China.
| | - Siqing Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Haixin Gu
- Shanghai Fire Research Institute of MEM, 918 Minjing Road, Shanghai, 200438, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| |
Collapse
|
25
|
Wang Q, Wang J, Li M, Ge Z, Zhang X, Luan L, Li P, Xu W. Size-dependent surface enhanced Raman scattering activity of plasmonic AuNS@AgNCs for rapid and sensitive detection of Butyl benzyl phthalate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119131. [PMID: 33279408 DOI: 10.1016/j.saa.2020.119131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Phthalate plasticizers (PAEs) are heavily applied to plastic products and poses severe threat to human health. Herein, it is especially urgent to find a stable and reliable method for detecting PAEs. In this report, a Surface Enhanced Raman Scatting (SERS) strategy coupled with plasmonic core-shell Au nanospheres@Ag nanocubes (AuNS@AgNCs) as substrates were employed for the rapid and sensitive detection of Butyl benzyl phthalate (BBP) in liquor samples, and plasmonic core-shell AuNS@AgNCs tend to perform richer localized surface plasmon resonance (LSPR) than AuNS. In this work, different sizes AuNS@AgNCs comprised of Au nanospheres as core and Ag nanocubes as shells were synthesized. Based on this, we then investigated the SERS activity of BBP and crystal violet (CV) reached a maximum level when the thickness of Ag coating shell arrived in a threshold, and even very low signal of trace BBP dissolved in liquor sample can be detected in existence of the plasmonic AuNS@AgNCs active substrate of 50 nm. The sensitivity and repeatability of the optimized size AuNs@AgNCs have been estimated and limits of detection (LOD) was 10-9 M for BBP. In addition, finite difference time domain (FDTD) electromagnetic simulations also performed in great agreement with our experimental results.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Juan Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Man Li
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zipan Ge
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Xiang Zhang
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Longlong Luan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Anhui, Hefei 230009, China
| | - Pan Li
- Institute of Health & Medical Technology Hefei Institutes of Physical Science, CAS, Hefei 230021, China.
| | - Weiping Xu
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
26
|
Feng H, Fu Q, Du W, Zhu R, Ge X, Wang C, Li Q, Su L, Yang H, Song J. Quantitative Assessment of Copper(II) in Wilson's Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. ACS NANO 2021; 15:3402-3414. [PMID: 33508938 DOI: 10.1021/acsnano.0c10407] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cu2+ is closely related to the occurrence and development of Wilson's disease (WD), and quantitative detection of various copper indicators (especially liver Cu2 and urinary Cu2+) is the key step for the early diagnosis of WD in the clinic. However, the clinic Cu2+ detection approach was mainly based on testing the liver tissue through combined invasive liver biopsy and the ICP-MS method, which is painful for the patient and limited in determining WD status in real-time. Herein, we rationally designed a type of Cu2+-activated nanoprobe based on nanogapped gold nanoparticles (AuNNP) and poly(N-isopropylacrylamide) (PNIPAM) to simultaneously quantify the liver Cu2+ content and urinary Cu2+ in WD by photoacoustic (PA) imaging and ratiometric surface-enhanced Raman scattering (SERS), respectively. In the nanoprobe, one Raman molecule of 2-naphthylthiol (NAT) was placed in the nanogap of AuNNP. PNIPAM and the other Raman molecule mercaptobenzonitrile (MBN) were coated on the AuNNP surface, named AuNNP-NAT@MBN/PNIPAM. Cu2+ can efficiently coordinate with the chelator PNIPAM and lead to aggregation of the nanoprobe, resulting in the absorption red-shift and increased PA performance of the nanoprobe in the NIR-II window. Meanwhile, the SERS signal at 2223 cm-1 of MBN is amplified, while the SERS signal at 1378 cm-1 of NAT remains stable, generating a ratiometric SERS I2223/I1378 signal. Both NIR-II PA1250 nm and SERS I2223/I1378 signals of the nanoprobe show a linear relationship with the concentration of Cu2+. The nanoprobe was successfully applied for in vivo quantitative detection of liver Cu2+ of WD mice through NIR-II PA imaging and accurate quantification of urinary Cu2+ of WD patients by ratiometric SERS. We anticipate that the activatable nanoprobe might be applied for assisting an early, precise diagnosis of WD in the clinic in the future.
Collapse
Affiliation(s)
- Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wei Du
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
27
|
Guerrini L, Alvarez-Puebla RA. Surface-Enhanced Raman Scattering Sensing of Transition Metal Ions in Waters. ACS OMEGA 2021; 6:1054-1063. [PMID: 33490764 PMCID: PMC7818113 DOI: 10.1021/acsomega.0c05261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 05/27/2023]
Abstract
In this mini-review, we provide a coherent discussion on the sensing schemes exploited in the surface-enhanced Raman scattering (SERS) analysis of transition metal ions in waters. A critical approach was used where illustrative examples are selected to discuss key drawbacks and challenges associated with various experimental configurations and the employed enhancing substrates.
Collapse
Affiliation(s)
- Luca Guerrini
- Universitat
Rovira i Virgili, Department of Physical
and Inorganic Chemistry, Carrer Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, Department of Physical
and Inorganic Chemistry, Carrer Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluis
Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
28
|
Cao W, Luo Y, Li J, Qian A, Wang Q, Wang X, Duan L, Wu Y, Han C. Detection of benzo[a]pyrene with silver nanorod substrate in river water and soil based on surface-enhanced raman scattering. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Hwang EY, Lee JH, Lim DW. Anisotropic Bimetallic Core–Satellite–Poly(aniline) Nanohybrids for Detection of Autoantibodies. Macromol Rapid Commun 2020; 41:e2000331. [DOI: 10.1002/marc.202000331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Eun Young Hwang
- Department of Bionano Engineering Department of Bionanotechnology Hanyang University Ansan 15588 Republic of Korea
| | - Jae Hee Lee
- Department of Bionano Engineering Department of Bionanotechnology Hanyang University Ansan 15588 Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering Department of Bionanotechnology Hanyang University Ansan 15588 Republic of Korea
| |
Collapse
|