1
|
Mao Z, Deng A, Jin X, Zhou T, Zhang S, Li M, Lv W, Huang L, Zhong H, Wang S, Shi Y, Zhang L, Liao Q, Fu R, Huang G. Highly Specific and Rapid Multiplex Identification of Candida Species Using Digital Microfluidics Integrated with a Semi-Nested Genoarray. Anal Chem 2024; 96:18797-18805. [PMID: 39548967 DOI: 10.1021/acs.analchem.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Candida species are the most common cause of fungal infections around the world, associated with superficial and even deep-seated infections. In clinical practice, there is great significance in identifying different Candida species because of their respective characteristics. However, current technologies have difficulty in onsite species identification due to long turnover time, high cost of reagents and instruments, or limited detection performance. We developed a semi-nested recombinase polymerase amplification (RPA) genoarray as well as an integrated system for highly specific identification of four Candida species with a simple design of primers, high detection sensitivity, fast turnover time, and good cost-effectiveness. The system constructed to perform the assay consists of a rapid sample processing module for nucleic acid release from fungal samples in 15 min and a digital microfluidic platform for precise and efficient detection reactions in 35 min. Therefore, our system could automatically identify specific Candida species, with a reagent consumption of only 2.5 μL of the RPA reaction mixture per target and no cross-reaction. Its detection sensitivity for four Candida species achieved 101-102 CFU/mL, which was 10-fold better than conventional RPA and even comparable to a common polymerase chain reaction. Evaluated by using cultured samples and 24 clinical samples, our system shows great applicability to onsite multiplex nucleic acid analysis.
Collapse
Affiliation(s)
- Zeyin Mao
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Anni Deng
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangyu Jin
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Tianqi Zhou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- School of Integrated Circuits and Electronics, Zhengzhou Research Institute, Beijing Institute of Technology, Beijing 100081, China
- Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Meng Li
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Wenqi Lv
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Leyang Huang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Zhong
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Shihong Wang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Yixuan Shi
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guoliang Huang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| |
Collapse
|
2
|
Lee JY, Jang H, Kim S, Kang T, Park SG, Lee MY. Nanoplasmonic microarray-based solid-phase amplification for highly sensitive and multiplexed molecular diagnostics: application for detecting SARS-CoV-2. Mikrochim Acta 2024; 191:715. [PMID: 39472332 PMCID: PMC11522150 DOI: 10.1007/s00604-024-06723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/21/2024] [Indexed: 11/02/2024]
Abstract
A novel approach is introduced using nanoplasmonic microarray-based solid-phase recombinase polymerase amplification (RPA) that offers high sensitivity and multiplexing capabilities for gene detection. Nanoplasmonic microarrays were developed through one-step immobilization of streptavidin/biotin primers and fine-tuning the amplicon size to achieve high plasmon-enhanced fluorescence (PEF) on the nanoplasmonic substrate, thereby improving sensitivity. The specificity and sensitivity of solid-phase RPA on nanoplasmonic microarrays was evaluated in detecting E, N, and RdRP genes of SARS-CoV-2. High specificity was achieved by minimizing primer-dimer formation and employing a stringent washing process and high sensitivity obtained with a limit of detection of four copies per reaction within 30 min. In clinical testing with nasopharyngeal swab samples (n = 30), the nanoplasmonic microarrays demonstrated a 100% consistency with the PCR results for detecting SARS-CoV-2, including differentiation of Omicron mutations BA.1 and BA.2. This approach overcomes the sensitivity issue of solid-phase amplification, as well as offers rapidity, high multiplexing capabilities, and simplified equipment by using isothermal reaction, making it a valuable tool for on-site molecular diagnostics.
Collapse
Affiliation(s)
- Ji Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-Ro, Jinju, Gyeongsangnam-Do, 52727, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.
| |
Collapse
|
3
|
Wang N, Dong X, Zhou Y, Zhu R, Liu L, Zhang L, Qiu X. A Low-Cost Handheld Centrifugal Microfluidic System for Multiplexed Visual Detection Based on Isothermal Amplification. SENSORS (BASEL, SWITZERLAND) 2024; 24:5028. [PMID: 39124075 PMCID: PMC11314988 DOI: 10.3390/s24155028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
A low-cost, handheld centrifugal microfluidic system for multiplexed visual detection based on recombinase polymerase amplification (RPA) was developed. A concise centrifugal microfluidic chip featuring four reaction units was developed to run multiplexed RPA amplification in parallel. Additionally, a significantly shrunk-size and cost-effective handheld companion device was developed, incorporating heating, optical, rotation, and sensing modules, to perform multiplexed amplification and visual detection. After one-time sample loading, the metered sample was equally distributed into four separate reactors with high-speed centrifugation. Non-contact heating was adopted for isothermal amplification. A tiny DC motor on top of the chip was used to drive steel beads inside reactors for active mixing. Another small DC motor, which was controlled by an elaborate locking strategy based on magnetic sensing, was adopted for centrifugation and positioning. Visual fluorescence detection was optimized from different sides, including material, surface properties, excitation light, and optical filters. With fluorescence intensity-based visual detection, the detection results could be directly observed through the eyes or with a smartphone. As a proof of concept, the handheld device could detect multiple targets, e.g., different genes of African swine fever virus (ASFV) with the comparable LOD (limit of detection) of 75 copies/test compared to the tube-based RPA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Adewusi OO, Waldner CL, Hanington PC, Hill JE, Freeman CN, Otto SJG. Laboratory tools for the direct detection of bacterial respiratory infections and antimicrobial resistance: a scoping review. J Vet Diagn Invest 2024; 36:400-417. [PMID: 38456288 PMCID: PMC11110769 DOI: 10.1177/10406387241235968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.
Collapse
Affiliation(s)
- Olufunto O. Adewusi
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Janet E. Hill
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Yang H, Zhang X, Li Y, Deng J, Liu Z, Chen Q, Zhang H. Design and application of a point-of-care testing system for triple detection of SARS-CoV-2, influenza A, and influenza B. Front Bioeng Biotechnol 2024; 12:1378709. [PMID: 38694623 PMCID: PMC11061352 DOI: 10.3389/fbioe.2024.1378709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
To mitigate the continued impact of SARS-CoV-2, influenza A, and influenza B viruses on human health, a smartphone-based point-of-care testing (POCT) system was designed to detect respiratory pathogens through a nucleic acid test. This compact, light-weight, highly automated, and universal system enables the differential diagnosis of SARS-CoV-2, influenza A, and influenza B in approximately 30 min in a single-tube reaction. Numerous hospitals and disease control and prevention center assessed the triple POCT system's detection threshold, sensitivity, specificity, and stability, and have concluded that all the assessments were comparable to those of fluorescent quantitative polymerase chain reaction (PCR)-based testing. The triple POCT system is suitable as an onsite rapid-diagnosis device, as well as for pathogen screening at airports and customs.
Collapse
Affiliation(s)
- Huan Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaoming Zhang
- General Hospital of Southern Theater Command, Guangzhou, China
| | - Yating Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
- General Hospital of Southern Theater Command, Guangzhou, China
| | - Jing Deng
- Beijing Genome Technology Co., Ltd., Beijing, China
| | - Zhongming Liu
- General Hospital of Southern Theater Command, Guangzhou, China
| | - Qiyue Chen
- Beijing Genome Technology Co., Ltd., Beijing, China
| | - Haiyan Zhang
- General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
6
|
Nguyen HA, Lee NY. Pipette-Free and Fully Integrated Paper Device Employing DNA Extraction, Isothermal Amplification, and Carmoisine-Based Colorimetric Detection for Determining Infectious Pathogens. SENSORS (BASEL, SWITZERLAND) 2023; 23:9112. [PMID: 38005500 PMCID: PMC10675313 DOI: 10.3390/s23229112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
A pipette-free and fully integrated device that can be used to accurately recognize the presence of infectious pathogens is an important and useful tool in point-of-care testing, particularly when aiming to decrease the unpredictable threats posed by disease outbreak. In this study, a paper device is developed to integrate the three main processes required for detecting infectious pathogens, including DNA extraction, loop-mediated isothermal amplification (LAMP), and detection. All key reagents, including sodium dodecyl sulfate (SDS), NaOH, LAMP reagents, and carmoisine, are placed on the paper device. The paper device is operated simply via sliding and folding without using any bulky equipment, and the results can be directly observed by the naked eye. The optimized concentrations of sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH), and carmoisine were found to be 0.1%, 0.1 M, and 0.5 mg/mL, respectively. The paper device was used to detect Enterococcus faecium at concentrations as low as 102 CFU/mL within 60 min. Also, E. faecium spiked in milk was successfully detected using the paper device, demonstrating the feasible application in real sample analysis.
Collapse
Affiliation(s)
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
7
|
Xiao Y, Zhang Z, Yin S, Ma X. Nanoplasmonic biosensors for precision medicine. Front Chem 2023; 11:1209744. [PMID: 37483272 PMCID: PMC10359043 DOI: 10.3389/fchem.2023.1209744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Nanoplasmonic biosensors have a huge boost for precision medicine, which allows doctors to better understand diseases at the molecular level and to improve the earlier diagnosis and develop treatment programs. Unlike traditional biosensors, nanoplasmonic biosensors meet the global health industry's need for low-cost, rapid and portable aspects, while offering multiplexing, high sensitivity and real-time detection. In this review, we describe the common detection schemes used based on localized plasmon resonance (LSPR) and highlight three sensing classes based on LSPR. Then, we present the recent applications of nanoplasmonic in other sensing methods such as isothermal amplification, CRISPR/Cas systems, lab on a chip and enzyme-linked immunosorbent assay. The advantages of nanoplasmonic-based integrated sensing for multiple methods are discussed. Finally, we review the current applications of nanoplasmonic biosensors in precision medicine, such as DNA mutation, vaccine evaluation and drug delivery. The obstacles faced by nanoplasmonic biosensors and the current countermeasures are discussed.
Collapse
Affiliation(s)
- Yiran Xiao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | | | - Shi Yin
- Briteley Institute of Life Sciences, Yantai, Shandong, China
| | - Xingyi Ma
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
- Biosen International, Jinan, Shandong, China
- Briteley Institute of Life Sciences, Yantai, Shandong, China
| |
Collapse
|
8
|
Kim TY, Kim S, Jung JH, Woo MA. Paper-Based Radial Flow Assay Integrated to Portable Isothermal Amplification Chip Platform for Colorimetric Detection of Target DNA. BIOCHIP JOURNAL 2023; 17:1-11. [PMID: 37363267 PMCID: PMC10134700 DOI: 10.1007/s13206-023-00101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/28/2023]
Abstract
A novel integrated detection system that introduces a paper-chip-based molecular detection strategy into a polydimethylsiloxane (PDMS) microchip and temperature control system was developed for on-site colorimetric detection of DNA. For the paper chip-based detection strategy, a padlock probe DNA (PLP)-mediated rolling circle amplification (RCA) reaction for signal amplification and a radial flow assay according to the Au-probe labeling strategy for visualization were optimized and applied for DNA detection. In the PDMS chip, the reactions for ligation of target-dependent PLP, RCA, and labeling were performed one-step under isothermal temperature in a single chamber, and one drop of the final reaction solution was loaded onto the paper chip to form a radial colorimetric signal. To create an optimal analysis environment, not only the optimization of molecular reactions for DNA detection but also the chamber shape of the PDMS chip and temperature control system were successfully verified. Our results indicate that a detection limit of 14.7 nM of DNA was achieved, and non-specific DNAs with a single-base mismatch at the target DNA were selectively discriminated. This integrated detection system can be applied not only for single nucleotide polymorphism identification, but also for pathogen gene detection. The adoption of inexpensive paper and PDMS chips allows the fabrication of cost-effective detection systems. Moreover, it is very suitable for operation in various resource-limited locations by adopting a highly portable and user-friendly detection method that minimizes the use of large and expensive equipment. Supplementary Information The online version contains supplementary material available at 10.1007/s13206-023-00101-7.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institution, Wanju-Gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896 Republic of Korea
| | - Sanha Kim
- Department of Pharmaceutical Engineering, Dankook University, Cheonan-si, Chungcheongnam-do 31116 Republic of Korea
| | - Jae Hwan Jung
- Department of Pharmaceutical Engineering, Dankook University, Cheonan-si, Chungcheongnam-do 31116 Republic of Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institution, Wanju-Gun, Jeollabuk-do 55365 Republic of Korea
| |
Collapse
|
9
|
Park DH, Choi MY, Choi JH. Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. BIOSENSORS 2022; 12:bios12121121. [PMID: 36551088 PMCID: PMC9776357 DOI: 10.3390/bios12121121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/28/2023]
Abstract
Recently, due to the coronavirus pandemic, the need for early diagnosis of infectious diseases, including viruses, is emerging. Though early diagnosis is essential to prevent infection and progression to severe illness, there are few technologies that accurately measure low concentrations of biomarkers. Plasmonic nanomaterials are attracting materials that can effectively amplify various signals, including fluorescence, Raman, and other optical and electromagnetic output. In this review, we introduce recently developed plasmonic nanobiosensors for measuring viral DNA/RNA as potential biomarkers of viral diseases. In addition, we discuss the future perspective of plasmonic nanobiosensors for DNA/RNA detection. This review is expected to help the early diagnosis and pathological interpretation of viruses and other diseases.
Collapse
|
10
|
Zhao Q, Yang H, Nie B, Luo Y, Shao J, Li G. Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3580-3590. [PMID: 34983178 DOI: 10.1021/acsami.1c22465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The metallic nanogap has been proved as an efficient architecture for surface-enhanced Raman scattering (SERS) applications. Although a lot of nanogap fabrication methods have been proposed in the last few decades, the economical and high-yield manufacturing of sub-10 nm gaps remains a challenge. Here, we present a convenient and cost-effective fabrication method for wafer-scale patterning of metallic nanogaps, which simply combines photolithographic metal patterning, swelling-induced nanocracking, and superimposition metal sputtering without requiring expensive nanofabrication equipment. By controlling the swelling time and metal deposition thickness, the gap size can be precisely defined, down to the sub-10 nm scale. Furthermore, we demonstrate that the fabricated nanogap array can be used as an excellent SERS substrate for molecule measurements and shows a high Raman enhancement factor of ∼108 and a high sensitivity for the detection of rhodamine 6G (R6G) molecules, even down to 10-14 M, indicating an extraordinary capability for single-molecule detection. Due to its high controllability and wafer-scale fabrication capability, this nanogap fabrication method offers a promising route for highly sensitive and economical SERS detections.
Collapse
Affiliation(s)
- Qiang Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huan Yang
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bangbang Nie
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongsong Luo
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinyou Shao
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Homayoonnia S, Lee Y, Andalib D, Rahman MS, Shin J, Kim K, Kim S. Micro/nanotechnology-inspired rapid diagnosis of respiratory infectious diseases. Biomed Eng Lett 2021; 11:335-365. [PMID: 34513114 PMCID: PMC8424173 DOI: 10.1007/s13534-021-00206-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
Humans have suffered from a variety of infectious diseases since a long time ago, and now a new infectious disease called COVID-19 is prevalent worldwide. The ongoing COVID-19 pandemic has led to research of the effective methods of diagnosing respiratory infectious diseases, which are important to reduce infection rate and help the spread of diseases be controlled. The onset of COVID-19 has led to the further development of existing diagnostic methods such as polymerase chain reaction, reverse transcription polymerase chain reaction, and loop-mediated isothermal amplification. Furthermore, this has contributed to the further development of micro/nanotechnology-based diagnostic methods, which have advantages of high-throughput testing, effectiveness in terms of cost and space, and portability compared to conventional diagnosis methods. Micro/nanotechnology-based diagnostic methods can be largely classified into (1) nanomaterials-based, (2) micromaterials-based, and (3) micro/nanodevice-based. This review paper describes how micro/nanotechnologies have been exploited to diagnose respiratory infectious diseases in each section. The research and development of micro/nanotechnology-based diagnostics should be further explored and advanced as new infectious diseases continue to emerge. Only a handful of micro/nanotechnology-based diagnostic methods has been commercialized so far and there still are opportunities to explore.
Collapse
Affiliation(s)
- Setareh Homayoonnia
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Yoonjung Lee
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Daniyal Andalib
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Md Sazzadur Rahman
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jaemyung Shin
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Seonghwan Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| |
Collapse
|