1
|
Huo M, Li Y, Wu Y, Xie S, Chen D. Enzyme-free biosensor for ultrasensitive detection of mecA gene utilizing electrochemically controlled atom transfer radical polymerization triggered by copper nanoflowers enriched on DNA polymers. Talanta 2025; 284:127231. [PMID: 39577384 DOI: 10.1016/j.talanta.2024.127231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Herein, an ultrasensitive electrochemical biosensor is constructed to detect mecA gene by utilizing electrochemically controlled atom transfer radical polymerization (eATRP) triggered by copper nanoflowers enriched on DNA polymers. Firstly, specific capture and enrichment of mecA gene is achieved by using magnetic separation system, effectively weakening the interference of the complex matrix. Next, enzyme-free hybridization chain reaction is triggered in the presence of mecA gene to form long DNA polymers containing numerous active sites for subsequent binding to streptavidin-copper hybrid nanoflowers (SA@Cu HNFs). Then, numerous Cu(I) afforded by the reduction and dissolution of collected SA@Cu HNFs, as catalysts and signal transduction modulators, are applied to promote the click reaction between azide-modified DNA probes on the electrode surfaces and propargyl 2-bromoisobutyrate. Finally, plentiful electroactive polymers are continually grown in situ via eATRP, significantly boosting the signal output. Under optimal conditions, the biosensor can detect mecA gene as low as 0.06 fM, with a linear range from 0.1 fM to 10 pM. Moreover, the biosensor is high selective, and suitable for mecA gene detection in actual environment and food samples. Due to its ultra-sensitivity and cost-effectiveness, the developed strategy can achieve other genes detection by simply substituting the recognition element of target.
Collapse
Affiliation(s)
- Mengyue Huo
- State Key Laboratory of Agricultural Microbiology Core Facility, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China
| | - Yi Li
- State Key Laboratory of Agricultural Microbiology Core Facility, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China
| | - Yongshan Wu
- State Key Laboratory of Agricultural Microbiology Core Facility, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuyu Xie
- State Key Laboratory of Agricultural Microbiology Core Facility, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, 430070, China.
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Zhu X, Cheng C, Qin X, Wang Y. β-cyclodextrin imprinted film embedded with methylene blue: A host-guest sensitive electrochemical strategy for PFAS detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136870. [PMID: 39706023 DOI: 10.1016/j.jhazmat.2024.136870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have raised significant concerns; however, their accurate detection in aqueous environments remains a major challenge. In this study, a host-guest molecularly imprinted polymer-based electrochemical sensor with enhanced antifouling properties were developed using β-cyclodextrin embedded with methylene blue (βCD-MB MIP). This sensor demonstrated sensitive and selective quantification of perfluorooctanoic acid (PFOA) in real water samples. The βCD-MB MIP was fabricated by electro-polymerizing βCD and MB in the presence of the target molecule, PFOA, where βCD served as the functional monomer and MB as the signaling probe. The incorporation of βCD endowed the MIP with a stable hydration layer, promoting hydrophilicity and inhibiting fouling, while ensuring effective electron transfer from MB, resulting in significant current responses and outstanding antifouling performance. This sensor exhibits excellent sensing capabilities towards PFOA with a detection limit of 1.57 pg mL-1, covering a wide concentration range from 4.14 ng mL-1 to 41.4 mg mL-1. It also displayed high selectivity for PFOA with an imprint factor of 6.5, which is five to seven times higher than that of other perfluorinated analogs. This study introduces an innovative platform for the rapid quantification of PFAS using redox-active MIPs and sets the groundwork for developing integrated sensors for continuous PFAS monitoring in water.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chen Cheng
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingao Qin
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Qin X, Zhu X, Wang Y. Fouling-Free electrochemical strategy based on vertically-aligned peptide layer for cardiac troponin I sensitive detection in human serum. Anal Chim Acta 2024; 1317:342866. [PMID: 39030026 DOI: 10.1016/j.aca.2024.342866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Cardiac troponin I (CTnI) is demonstrated as one of the most promising disease biomarkers for early diagnosing acute myocardial infarction (AMI). To date, electrochemical immunosensors have been extensively studied in the field of cTnI determination. But highly accurate and sensitive cTnI detection by this method is still a challenge due to non-specific adsorption on electrode interfaces in complex human serum. As a result, it is necessary to develop an antifouling electrochemical immunosensor with high sensitivity for the detection of cTnI. RESULTS In this work, an antifouling electrochemical immunosensor was constructed based on vertically-aligned peptide layer consisting of Au nanoparticles (AuNPs) and amphiphilic CEAK16 peptide (CEAK16@AuNPs) for sensitive and accurate detection of cTnI in human serum. The vertically-aligned CEAK16@AuNPs interface provided a stable hydration layer originated from attraction of water molecules by amino acids on the hydrophilic side of the CEAK16, which effectively reduced non-specific adsorption and enhanced electron transfer rate. The cTnI immunosensor possessed great analytical performance with a wide range from 1 fg mL-1 to 1 μg mL-1 and a low detection limit of 0.28 fg mL-1 (S/N = 3). Additionally, the proposed CEAK16@AuNPs sensing interface showed excellent long-term antifouling performance and electrochemical activity that preserved 80 % of the initial signal after 20-days exposure in human serum samples. Consequently, the cTnI immunosensor displayed excellent detection accuracy compared to clinical methods and owned good selectivity, stability and reproducibility. SIGNIFICANCE The development of this strategy provides a versatile tool for accurate quantitative cTnI analysis in real human serum, thus helping to achieve early AMI diagnosis effectively and holding the promising potentials for other immunosensor in disease diagnosis.
Collapse
Affiliation(s)
- Xingao Qin
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaoyu Zhu
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Seo SB, Lee J, Kim E, Lim J, Jang S, Son SU, Jeong Y, Kang T, Jung J, Lee KG, Lee SW, Kim K, Lim EK. On-site detection of methicillin-resistant Staphylococcus aureus (MRSA) utilizing G-quadruplex based isothermal exponential amplification reaction (GQ-EXPAR). Talanta 2024; 275:126073. [PMID: 38688085 DOI: 10.1016/j.talanta.2024.126073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has a high incidence in infectious hospitals and communities, highlighting the need for early on-site detection due to its resistance to methicillin antibiotics. The present study introduces a highly sensitive detection system for mecA, a crucial methicillin marker, utilizing an RCA-based isothermal exponential amplification reaction. The G-quadruplex-based isothermal exponential amplification reaction (GQ-EXPAR) method designs probes to establish G-quadruplex secondary structures incorporating thioflavin T for fluorescence. The system, unlike conventional genetic detection methods, works with portable isothermal PCR devices (isoQuark), facilitating on-site detection. A detection limit of 0.1 fmol was demonstrated using synthetic DNA, and effective detection was proven using thermal lysis. The study also validated the detection of targets swabbed from surfaces within bacterial 3D nanostructures using the GQ-EXPAR method. After applying complementary sequences to the padlock probe for the target, the GQ-EXPAR method can be used on various targets. The developed method could facilitate rapid and accurate diagnostics within MRSA strains.
Collapse
Affiliation(s)
- Seung Beom Seo
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jina Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process, Incheon National University, Incheon, 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Medical Device Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Chungcheongbuk-do, 28160, Republic of Korea
| | - Soojin Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Seong Uk Son
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Yeonwoo Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Taejeoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyoung G Lee
- Center for Nanobio Develpment, National NanoFab Center (NNFC), Daejeon, 34141, Republic of Korea
| | | | - Kyujung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan, 46241, Republic of Korea.
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Sun P, Niu K, Du H, Li R, Chen J, Lu X. Ultrasensitive rapid detection of antibiotic resistance genes by electrochemical ratiometric genosensor based on 2D monolayer Ti 3C 2@AuNPs. Biosens Bioelectron 2023; 240:115643. [PMID: 37651949 DOI: 10.1016/j.bios.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
As an important emerging pollutant, antibiotic resistance genes (ARGs) monitoring is crucial to protect the ecological environment and public health, but its rapid and accurate detection is still a major challenge. In this study, a new single-labeled dual-signal output ratiometric electrochemical genosensor (E-DNA) was developed for the rapid and highly sensitive detection of ARGs using a synergistic signal amplification strategy of T3C2@Au nanoparticles (T3C2@AuNPs) and isothermal strand displacement polymerase reaction (ISDPR). Specially, two-dimensional monolayer T3C2 nanosheets loaded with uniformly gold nanoparticles were prepared and used as the sensing platform of the E-DNA sensor. Benefiting from excellent conductivity and large specific surface area of Ti3C2@AuNPs, the probe immobilization capacity of the E-DNA sensor is doubled, and electrochemical response signals of the E-DNA sensor were significantly improved. The proposed single-labeled dual-signal output ratiometric sensing strategy exhibits three to six times higher sensitivity for the sul2 gene than the single-signal sensing strategy, which significantly reduces cost meanwhile retaining the advantages of high sensitivity and reliability offered by conventional dual-labeled ratiometric sensors. Coupled with ISDPR amplification technology, the E-DNA sensor has a wider linear range from 10 fM to 10 nM and a limit of detection as low as 2.04 fM (S/N=3). More importantly, the E-DNA sensor demonstrates excellent specificity, good stability and reproducibility for target ARGs detection in real water samples. The proposed new sensing strategy provides a highly sensitive and versatile tool for the rapid and accurate quantitative analysis of various ARGs in environmental water samples.
Collapse
Affiliation(s)
- Pengcheng Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Dalian Minzu University, College of Mechanical and Electronic Engineering, Dalian, 116600, PR China
| | - Kai Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Haiying Du
- Dalian Minzu University, College of Mechanical and Electronic Engineering, Dalian, 116600, PR China.
| | - Ruixin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.
| |
Collapse
|
6
|
Liu L, Zou Y, Xia T, Zhang J, Xiong M, Long L, Wang K, Hao N. A double-quenching paperclip ECL biosensing platform for ultrasensitive detection of antibiotic resistance genes (mecA) based on Ti 3C 2 MXene-Au NPs as a coreactant accelerator. Biosens Bioelectron 2023; 240:115651. [PMID: 37666010 DOI: 10.1016/j.bios.2023.115651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
The global spread of environmental biological pollutants, such as antibiotic-resistant bacteria and their antibiotic resistance genes (ARGs), has emerged as a critical public health concern. It is imperative to address this pressing issue due to its potential implications for public health. Herein, a DNA paperclip probe with double-quenching function of target cyclic cleavage was proposed, and an electrochemiluminescence (ECL) biosensing platform was constructed using Ti3C2 MXene in-situ reduction growth of Au NPs (TCM-Au) as a coreactant accelerator, and applied to the sensitive detection of ARGs. Thanks to the excellent catalytic performance, large surface area and Au-S affinity of TCM-Au, the ECL performance of CdS QDs have been significantly improved. By cleverly utilizing the negative charge of the paperclip nucleic acid probe and its modification group, double-quenching of the ECL signal was achieved. This innovative approach, combined with target cyclic amplification, facilitated specific and sensitive detection of the mecA gene. This biosensing platform manifested highly selective and sensitive determination of mecA genes in the range of 10 fM to 100 nM and a low detection limit of 2.7 fM. The credible detectability and anti-interference were demonstrated in Yangtze river and Aeration tank outlet, indicating its promising application toward pollution monitoring of ARGs.
Collapse
Affiliation(s)
- Liqi Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Zou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tiantian Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiadong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
7
|
Liu F, Zhao J, Liu X, Zhen X, Feng Q, Gu Y, Yang G, Qu L, Zhu JJ. PEC-SERS Dual-Mode Detection of Foodborne Pathogens Based on Binding-Induced DNA Walker and C 3N 4/MXene-Au NPs Accelerator. Anal Chem 2023; 95:14297-14307. [PMID: 37718478 DOI: 10.1021/acs.analchem.3c02529] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In this paper, a photoelectrochemical (PEC)-surface-enhanced Raman scattering (SERS) dual-mode biosensor is constructed coupled with a dual-recognition binding-induced DNA walker with a carbon nitride nanosheet (C3N4)/MXene-gold nanoparticles (C/M-Au NPs) accelerator, which is reliable and capable for sensitive and accurate detection of Staphylococcus aureus (S. aureus). Initially, a photoactive heterostructure is formed by combining C3N4 and MXene via a simple electrostatic self-assembly as they possess well-matched band-edge energy levels. Subsequently, in situ growth of gold nanoparticles on the formed surface results in better PEC performance and SERS activity, because of the synergistic effects of surface plasmon resonance and Schottky barrier. Furthermore, a three-dimensional, bipedal, and dual-recognition binding-induced DNA walker is introduced with the formation of Pb2+-dependent DNAzyme. In the presence of S. aureus, a significant quantity of intermediate DNA (I-DNA) is generated, which can open the hairpin structure of Methylene Blue-tagged hairpin DNA (H-MB) on the electrode surface, thereby enabling the switch of signals for the quantitative determination of S. aureus. The constructed PEC-SERS dual-mode biosensor that can be mutually verified under one reaction effectively addresses the problem of the low detection accuracy of traditional sensors. Experimental results revealed that the effective combination of PEC and SERS is achieved for amplification detection of S. aureus with a detection range of 5-108 CFU/mL (PEC) and 10-108 CFU/mL (SERS), and a detection of limit of 0.70 CFU/mL (PEC) and 1.35 CFU/mL (SERS), respectively. Therefore, this study offers a novel and effective dual-mode sensing strategy, which has important implications for bioanalysis and health monitoring.
Collapse
Affiliation(s)
- Fanglei Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jiayi Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinyu Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xi Zhen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yingqiu Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guohai Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
8
|
Hu X, Qin W, Yuan R, Zhang L, Wang L, Ding K, Liu R, Huang W, Zhang H, Luo Y. Programmable molecular circuit discriminates multidrug-resistant bacteria. Mater Today Bio 2022; 16:100379. [PMID: 36042850 PMCID: PMC9420371 DOI: 10.1016/j.mtbio.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022] Open
Abstract
Recognizing multidrug-resistant (MDR) bacteria with high accuracy and precision from clinical samples has long been a difficulty. For reliable detection of MDR bacteria, we investigated a programmable molecular circuit called the Background-free isothermal circuital kit (BRICK). The BRICK method provides a near-zero background signal by integrating four inherent modules equivalent to the conversion, amplification, separation, and reading modules. Interference elimination is largely owing to a molybdenum disulfide nanosheets-based fluorescence nanoswitch and non-specific suppression mediated by molecular inhibitors. In less than 70 min, an accurate distinction of various MDR bacteria was achieved without bacterial lysis. The BRICK technique detected 6.73 CFU/mL of methicillin-resistant Staphylococcus aureus in clinical samples in a proof-of-concept trial. By simply reprogramming the sequence panel, such a high signal-to-noise characteristic has been proven in the four other superbugs. The proposed BRICK method can provide a universal platform for infection surveillance and environmental management thanks to its superior programmability.
Collapse
Affiliation(s)
- Xiaolin Hu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Weichao Qin
- Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
| | - Rui Yuan
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Liangliang Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Liangting Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Ke Ding
- Department of Oncology, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
| | - Ruining Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Wanyun Huang
- Life Science Laboratories, Biology Department, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA, 01002, USA
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
- Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, 2 Gaosuntang Road, Fuling District, Chongqing, 408099, China
| |
Collapse
|