1
|
Zhou S, Chino Y, Kasama T, Miyake R, Mitsuzawa S, Luan Y, Ahmad NB, Hibino H, Takai M. Biocompatible Core-Shell Microneedle Sensor Filled with Zwitterionic Polymer Hydrogel for Rapid Continuous Transdermal Monitoring. ACS NANO 2024; 18:26541-26559. [PMID: 39297515 PMCID: PMC11447902 DOI: 10.1021/acsnano.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 10/02/2024]
Abstract
Microneedle (MN)-based electrochemical biosensors hold promising potential for noninvasive continuous monitoring of interstitial fluid biomarkers. However, challenges, such as instability and biofouling, exist. This study proposes a design employing hollow MN to encapsulate a zwitterionic polymer hydrogel sensing layer with excellent biocompatibility and antifouling properties to address these issues. MN shell isolates the internal microporous sensing layer from subcutaneous friction, and the hydrogel filling leverages the MNs' three-dimensional structures, enabling high-dense loading of biorecognition elements. The hollow MNs are successfully fabricated from high-molecular-weight polylactic acid via drawing lithography, exhibiting sufficient strength for effective epidermis penetration. Additionally, a high-performance gold nanoconductive layer is successfully deposited inside the MN hollow channel, establishing a stable electrical connection between the polymer MN and the hydrogel sensing layer. To support the design, numerical simulations of position-based diffusive analyte solutes reveal fast-responsive electrochemical signals attributed to the high diffusion coefficient of the hydrogel and the concentrated structure of the hollow channel encapsulation. Experimental results and numerical simulations underscore the advantages of this design, showcasing rapid response, high sensitivity, long-term stability, and excellent antifouling properties. Fabricated MN sensors exhibited biosafety, feasibility, and effectiveness, with accurate and rapid in vivo glucose monitoring ability. This study emphasizes the significance of rational design, structural utilization, and micro-nanofabrication to unlock the untapped potential of MN biosensors.
Collapse
Affiliation(s)
- Shicheng Zhou
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yutaro Chino
- Sanyo
Chemical Industries, Ltd., Kyoto 605-0995, Japan
| | - Toshihiro Kasama
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society,
Nagoya University, Nagoya 236-0027, Japan
| | - Ryo Miyake
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | | | - Yinan Luan
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Norzahirah Binti Ahmad
- Division
of Glocal Pharmacology, Department of Pharmacology, Graduate School
of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Hibino
- Division
of Glocal Pharmacology, Department of Pharmacology, Graduate School
of Medicine, Osaka University, Osaka 565-0871, Japan
- AMED-CREST,
AMED, Osaka 565-0871, Japan
| | - Madoka Takai
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
2
|
Song C, Guo J, Wang Y, Xiang H, Yang Y. Electrochemical Glucose Sensors: Classification, Catalyst Innovation, and Sampling Mode Evolution. Biotechnol J 2024; 19:e202400349. [PMID: 39385538 DOI: 10.1002/biot.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Glucose sensors are essential tools for monitoring blood glucose concentration in diabetic patients. In recent years, with the increasing number of individuals suffering from diabetes, blood glucose monitoring has become extremely necessary, which expedites the iteration and upgrade of glucose sensors greatly. Currently, two main types of glucose sensors are available for blood glucose testing: enzyme-based glucose sensor (EBGS) and enzyme-free glucose sensor (EFGS). For EBGS, several progresses have been made to comprehensively improve detection performance, ranging from enhancing enzyme activity, thermostability, and electron transfer properties, to introducing new materials with superior properties. For EFGS, more and more new metallic materials and their oxides are being applied to further optimize its blood glucose monitoring. Here the latest progress of electrochemical glucose sensors, their manufacturing methods, electrode materials, electrochemical parameters, and applications were summarized, the development glucose sensors with various noninvasive sampling modes were also compared.
Collapse
Affiliation(s)
- Chenyang Song
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Jian Guo
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Yuhan Wang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Hongying Xiang
- Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yufeng Yang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| |
Collapse
|
3
|
Li C, Zhu W, Ma Y, Zheng H, Zhang X, Li D, Pu Z. A flexible glucose biosensor modified by reduced-swelling and conductive zwitterionic hydrogel enzyme membrane. Anal Bioanal Chem 2024; 416:4849-4860. [PMID: 39008068 DOI: 10.1007/s00216-024-05429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
This paper reports a flexible glucose biosensor which is modified by a reduced-swelling and conductive zwitterionic hydrogel enzyme membrane that contains two forms of chemical cross-links. One chemical cross-linking is induced by thermal initiators and forms the basal network of the hydrogel. Another cross-linking is achieved by the coordination interactions between the multivalent metal ion Al3+ and anionic group -COO- of zwitterionic poly-carboxy betaine (pCBMA), which significantly increase the cross-linking density of the zwitterionic hydrogel, improving the reduced-swelling property and reducing the pore size. The better reduced-swelling property and reduced diameters of pores within the zwitterionic hydrogel make less glucose oxidase (GOx) leakage, thus significantly improving the enzyme membrane's service life. By introducing the Al3+ and Cl-, the conductivity of the zwitterionic hydrogel is enhanced approximately 10.4-fold. According to the enhanced conductivity, the reduced-swelling property, and the high GOx loading capacity of the zwitterionic hydrogel, the sensitivity of the biosensor with GOx/pCBMA-Al3+ is significantly improved by 5 times and has a long service life. Finally, the proposed GOx/pCBMA-Al3+ biosensor was applied in non-invasive blood glucose detection on the human body, verifying the capability in practice.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Wangwang Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxiao Ma
- School of Future Technologies, Tianjin University, Tianjin, 300072, China
| | - Hao Zheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
4
|
Agiba AM, Elsayyad N, ElShagea HN, Metwalli MA, Mahmoudsalehi AO, Beigi-Boroujeni S, Lozano O, Aguirre-Soto A, Arreola-Ramirez JL, Segura-Medina P, Hamed RR. Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy. Pharmaceutics 2024; 16:1017. [PMID: 39204362 PMCID: PMC11359459 DOI: 10.3390/pharmaceutics16081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Nihal Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October for Modern Sciences and Arts University, Cairo 12451, Egypt;
| | - Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mahmoud A. Metwalli
- El Demerdash Hospital, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Amin Orash Mahmoudsalehi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Omar Lozano
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico;
- Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Jose Luis Arreola-Ramirez
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Patricia Segura-Medina
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt;
| |
Collapse
|
5
|
Anbuselvam B, Gunasekaran BM, Srinivasan S, Ezhilan M, Rajagopal V, Nesakumar N. Wearable biosensors in cardiovascular disease. Clin Chim Acta 2024; 561:119766. [PMID: 38857672 DOI: 10.1016/j.cca.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
This review provides a comprehensive overview of the latest advancements in wearable biosensors, emphasizing their applications in cardiovascular disease monitoring. Initially, the key sensing signals and biomarkers crucial for cardiovascular health, such as electrocardiogram, phonocardiography, pulse wave velocity, blood pressure, and specific biomarkers, are highlighted. Following this, advanced sensing techniques for cardiovascular disease monitoring are examined, including wearable electrophysiology devices, optical fibers, electrochemical sensors, and implantable cardiac devices. The review also delves into hydrogel-based wearable electrochemical biosensors, which detect biomarkers in sweat, interstitial fluids, saliva, and tears. Further attention is given to flexible electronics-based biosensors, including resistive, capacitive, and piezoelectric force sensors, as well as resistive and pyroelectric temperature sensors, flexible biochemical sensors, and sensor arrays. Moreover, the discussion extends to polymer-based wearable sensors, focusing on innovations in contact lens, textile-type, patch-type, and tattoo-type sensors. Finally, the review addresses the challenges associated with recent wearable biosensing technologies and explores future perspectives, highlighting potential groundbreaking avenues for transforming wearable sensing devices into advanced diagnostic tools with multifunctional capabilities for cardiovascular disease monitoring and other healthcare applications.
Collapse
Affiliation(s)
- Bhavadharani Anbuselvam
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Mechanical Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Madeshwari Ezhilan
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India.
| | - Venkatachalam Rajagopal
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
6
|
Wang Z, Xiao X, Wu W, Zhang X, Pang Y. Ultra-conformal epidermal antenna for multifunctional motion artifact-free sensing and point-of-care monitoring. Biosens Bioelectron 2024; 253:116150. [PMID: 38422815 DOI: 10.1016/j.bios.2024.116150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Accurate acquisition of physiological and physical information from human tissue is essential for health monitoring, disease prevention and treatment. The existing antennas with traditional rigid or flexible substrates are susceptible to motion artifacts in wearable applications due to the miniaturization limitation and lack of proper adhesion and conformal interfaces with the skin. Recent advances in wearable radio frequency (RF) bioelectronics directly drawn on the skin are a promising solution for future skin-interfaced devices. Herein, we present a first-of-its kind epidermal antenna architecture with skin as the antenna substrate, which is ultra-low profile, ultra-conformal, ultra-compact, and simple fabrication without specialized equipment. The radiation unit and ground of antenna are drawn directly on the skin with the strong adhesion and ultra conformality. Therefore, this RF device is highly adaptable to motion. As a proof-of- feasibility, epidermal antenna can be freely drawn on demand at different locations on the skin for the development of temperature sensor, skin hydration sensor, strain sensor, glucose sensor and other devices. An epidermal antenna-based temperature sensor can offer accurate and real-time monitoring of human body temperature changes in the ultra-wideband (UWB) range. The results during the monitoring of hydration level with and without stretching show that the epidermal antenna drawn on the skin is motion artifact-free. We also designed an epidermal antenna array employing a horseshoe-shaped configuration for the precise identification of various gestures. In addition, the non-invasive blood glucose level (BGL) monitoring results during the in-vivo experiments report high correlation between the epidermal antenna responses and BGLs, without any time hysteresis. After the prediction of BGL by BP network, all the predicted BGL values are fallen 100% into the clinically acceptable zones. Together, these results show that epidermal antenna offers a promising new approach for biosensing platform.
Collapse
Affiliation(s)
- Zengxiang Wang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Xia Xiao
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China.
| | - Wenqi Wu
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaofeng Zhang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Yanwei Pang
- School of Electrical and Information Engineering, Tianjin Key Laboratory of Brain-Inspired Intelligence Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
7
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
8
|
Zhu C, Zheng J, Fu J. Electrospinning Nanofibers as Stretchable Sensors for Wearable Devices. Macromol Biosci 2024; 24:e2300274. [PMID: 37653597 DOI: 10.1002/mabi.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Wearable devices attract great attention in intelligent medicine, electronic skin, artificial intelligence robots, and so on. However, boundedness of traditional sensors based on rigid materials unconstrained self-multilayer structure assembly and dense substrate in stretchability and permeability limits their applications. The network structure of the elastomeric nanofibers gives them excellent air permeability and stretchability. By introducing metal nanofillers, intrinsic conductive polymers, carbon materials, and other methods to construct conductive paths, stretchable conductors can be effectively prepared by elastomeric nanofibers, showing great potential in the field of flexible sensors. This perspective briefly introduces the representative preparations of conductive thermoplastic polyurethane, nylon, and hydrogel nanofibers by electrospinning and the application of integrated electronic devices in biological signal detection. The main challenge is to unify the stretchability and conductivity of the fiber structure.
Collapse
Affiliation(s)
- Canjie Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| |
Collapse
|
9
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
10
|
Tianyi S, Yulong Z, Yanzhen J, Chen CJ, Liu JT. Micro interstitial fluid extraction and detection device integrated with the optimal extraction conditions for noninvasive glucose monitoring. Biosens Bioelectron 2023; 237:115515. [PMID: 37481866 DOI: 10.1016/j.bios.2023.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Interstitial fluid glucose sensors have promising prospects in noninvasive glucose monitoring. However, the commonly used method of extracting interstitial fluid, reverse iontophoresis (RI), still remains to be optimized to solve problems such as insufficient extraction flux and skin irritation. To find the optimal RI conditions, in this study we explored the effects of multiple factors such as current frequency, duration, duty cycle and their interactions on extraction with the design of experiments (DOE) method. A multifunctional extraction and detection device was designed to control extraction conditions and measure the surface water content of the extraction electrode in situ and real time. A micro glucose monitoring device (MicroTED) combined with a cheap and flexible paper-based electrode was developed under the determined optimal extraction conditions. In on-body continuous glucose monitoring tests carried out to verify the performance of the device, the optimized conditions can facilitate stable extraction of up to 1.0 mg without any skin discomfort. The mean Pearson correlation coefficient between the measurement results of MicroTED and commercial glucometer is above 0.9. In the Clarke error grid analysis, all data points fell within Clarke error grid areas A and B, demonstrating the feasibility of further clinical application of the device.
Collapse
Affiliation(s)
- Sun Tianyi
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Yulong
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yanzhen
- Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Leung HMC, Forlenza GP, Prioleau TO, Zhou X. Noninvasive Glucose Sensing In Vivo. SENSORS (BASEL, SWITZERLAND) 2023; 23:7057. [PMID: 37631595 PMCID: PMC10458980 DOI: 10.3390/s23167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Blood glucose monitoring is an essential aspect of disease management for individuals with diabetes. Unfortunately, traditional methods require collecting a blood sample and thus are invasive and inconvenient. Recent developments in minimally invasive continuous glucose monitors have provided a more convenient alternative for people with diabetes to track their glucose levels 24/7. Despite this progress, many challenges remain to establish a noninvasive monitoring technique that works accurately and reliably in the wild. This review encompasses the current advancements in noninvasive glucose sensing technology in vivo, delves into the common challenges faced by these systems, and offers an insightful outlook on existing and future solutions.
Collapse
Affiliation(s)
- Ho Man Colman Leung
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| | - Gregory P. Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | | - Xia Zhou
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
12
|
Li J, Liu J, Wu Z, Shang X, Li Y, Huo W, Huang X. Fully printed and self-compensated bioresorbable electrochemical devices based on galvanic coupling for continuous glucose monitoring. SCIENCE ADVANCES 2023; 9:eadi3839. [PMID: 37467335 PMCID: PMC10355816 DOI: 10.1126/sciadv.adi3839] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Real-time glucose monitoring conventionally involves non-bioresorbable semi-implantable glucose sensors, causing infection and pain during removal. Despite bioresorbable electronics serves as excellent alternatives, the bioresorbable sensor dissolves in aqueous environments with interferential biomolecules. Here, the theories to achieve stable electrode potential and accurate electrochemical detection using bioresorbable materials have been proposed, resulting in a fully printed bioresorbable electrochemical device. The adverse effect caused by material degradation has been overcome by a molybdenum-tungsten reference electrode that offers stable potential through galvanic-coupling and self-compensation modules. In vitro and in vivo glucose monitoring has been conducted for 7 and 5 days, respectively, followed by full degradation within 2 months. The device offers a glucose detection range of 0 to 25 millimolars and a sensitivity of 0.2458 microamperes per millimolar with anti-interference capability and biocompatibility, indicating the possibility of mass manufacturing high-performance bioresorbable electrochemical devices using printing and low-temperature water-sintering techniques. The mechanisms may be implemented developing more comprehensive bioresorbable sensors for chronic diseases.
Collapse
Affiliation(s)
- Jiameng Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jiayin Liu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ya Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Wenxing Huo
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou 310018, China
| |
Collapse
|
13
|
Yuan X, Ouaskioud O, Yin X, Li C, Ma P, Yang Y, Yang PF, Xie L, Ren L. Epidermal Wearable Biosensors for the Continuous Monitoring of Biomarkers of Chronic Disease in Interstitial Fluid. MICROMACHINES 2023; 14:1452. [PMID: 37512763 PMCID: PMC10385734 DOI: 10.3390/mi14071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Healthcare technology has allowed individuals to monitor and track various physiological and biological parameters. With the growing trend of the use of the internet of things and big data, wearable biosensors have shown great potential in gaining access to the human body, and providing additional functionality to analyze physiological and biochemical information, which has led to a better personalized and more efficient healthcare. In this review, we summarize the biomarkers in interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the application of epidermal wearable biosensors for the continuous monitoring of markers in clinical biology. In addition, the current needs, development prospects and challenges are briefly discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Oumaima Ouaskioud
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xu Yin
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pengyi Ma
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Peng-Fei Yang
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
14
|
Yang J, Luo R, Yang L, Wang X, Huang Y. Microneedle-Integrated Sensors for Extraction of Skin Interstitial Fluid and Metabolic Analysis. Int J Mol Sci 2023; 24:9882. [PMID: 37373027 DOI: 10.3390/ijms24129882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Skin interstitial fluid (ISF) has emerged as a fungible biofluid sample for blood serum and plasma for disease diagnosis and therapy. The sampling of skin ISF is highly desirable considering its easy accessibility, no damage to blood vessels, and reduced risk of infection. Particularly, skin ISF can be sampled using microneedle (MN)-based platforms in the skin tissues, which exhibit multiple advantages including minimal invasion of the skin tissues, less pain, ease of carrying, capacity for continuous monitoring, etc. In this review, we focus on the current development of microneedle-integrated transdermal sensors for collecting ISF and detecting specific disease biomarkers. Firstly, we discussed and classified microneedles according to their structural design, including solid MNs, hollow MNs, porous MNs, and coated MNs. Subsequently, we elaborate on the construction of MN-integrated sensors for metabolic analysis with highlights on the electrochemical, fluorescent, chemical chromogenic, immunodiagnostic, and molecular diagnostic MN-integrated sensors. Finally, we discuss the current challenges and future direction for developing MN-based platforms for ISF extraction and sensing applications.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lei Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
15
|
Ye R, Liu S, Zhu W, Li Y, Huang L, Zhang G, Zhang Y. Synthesis, Characterization, Properties, and Biomedical Application of Chitosan-Based Hydrogels. Polymers (Basel) 2023; 15:2482. [PMID: 37299281 PMCID: PMC10255636 DOI: 10.3390/polym15112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.
Collapse
Affiliation(s)
- Ruixi Ye
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Siyu Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Wenkai Zhu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, China;
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
16
|
VURAL B, ULUDAĞ İ, İNCE B, ÖZYURT C, ÖZTÜRK F, SEZGİNTÜRK MK. Fluid-based wearable sensors: a turning point in personalized healthcare. Turk J Chem 2023; 47:944-967. [PMID: 38173754 PMCID: PMC10760819 DOI: 10.55730/1300-0527.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/31/2023] [Accepted: 05/22/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, it has become very popular to develop wearable devices that can monitor biomarkers to analyze the health status of the human body more comprehensively and accurately. Wearable sensors, specially designed for home care services, show great promise with their ease of use, especially during pandemic periods. Scientists have conducted many innovative studies on new wearable sensors that can noninvasively and simultaneously monitor biochemical indicators in body fluids for disease prediction, diagnosis, and management. Using noninvasive electrochemical sensors, biomarkers can be detected in tears, saliva, perspiration, and skin interstitial fluid (ISF). In this review, biofluids used for noninvasive wearable sensor detection under four main headings, saliva, sweat, tears, and ISF-based wearable sensors, were examined in detail. This report analyzes nearly 50 recent articles from 2017 to 2023. Based on current research, this review also discusses the evolution of wearable sensors, potential implementation challenges, and future prospects.
Collapse
Affiliation(s)
- Berfin VURAL
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - İnci ULUDAĞ
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Bahar İNCE
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Canan ÖZYURT
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Funda ÖZTÜRK
- Department of Chemistry, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Mustafa Kemal SEZGİNTÜRK
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| |
Collapse
|
17
|
De la Paz E, Saha T, Del Caño R, Seker S, Kshirsagar N, Wang J. Non-invasive monitoring of interstitial fluid lactate through an epidermal iontophoretic device. Talanta 2023; 254:124122. [PMID: 36459870 DOI: 10.1016/j.talanta.2022.124122] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The development of a non-invasive sensing technology that allows collection of interstitial fluid (ISF) lactate and its subsequent analysis without exertion requirement, could enable lactate monitoring from rested individuals. Here, we describe a wearable, soft epidermal adhesive patch that integrates a reverse iontophoretic (RI) system, and an amperometric lactate biosensor placed on the anodic electrode with a porous hydrogel reservoir, for simultaneous ISF lactate extraction and quantification via electrochemical sensing, respectively. The iontophoretic system includes agarose hydrogels for preventing skin electrocution, while a porous polyvinyl alcohol-based hydrogel facilitates the effective transport of lactate from skin to the biosensor. The flexible skin-worn device tested on healthy individuals at rest showed rapid lactate collection from the ISF after 10 min of reverse iontophoresis with no evidence of discomfort or irritation to the skin. Detailed characterization of the enzymatic biosensor before and during on-body trials along with relevant control experiments confirmed the efficient extraction and selective detection of ISF lactate. Such an epidermal technology represents the first demonstration of an all-in-one platform that integrates non-invasive collection and subsequent analysis of lactate from iontophoretically extracted ISF toward point-of-care operation.
Collapse
Affiliation(s)
- Ernesto De la Paz
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA
| | - Tamoghna Saha
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA
| | - Rafael Del Caño
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA; Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, E-14014, Spain
| | - Sumeyye Seker
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA
| | - Nikhil Kshirsagar
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Hakala TA, Zschaechner LK, Vänskä RT, Nurminen TA, Wardale M, Morina J, Boeva ZA, Saukkonen R, Alakoskela JM, Pettersson-Fernholm K, Hæggström E, Bobacka J, García Pérez A. Pilot study in human healthy volunteers on the use of magnetohydrodynamics in needle-free continuous glucose monitoring. Sci Rep 2022; 12:18318. [PMID: 36351930 PMCID: PMC9646842 DOI: 10.1038/s41598-022-21424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
The benefits of continuous glucose monitoring (CGM) in diabetes management are extensively documented. Yet, the broader adoption of CGM systems is limited by their cost and invasiveness. Current CGM devices, requiring implantation or the use of hypodermic needles, fail to offer a convenient solution. We have demonstrated that magnetohydrodynamics (MHD) is effective at extracting dermal interstitial fluid (ISF) containing glucose, without the use of needles. Here we present the first study of ISF sampling with MHD for glucose monitoring in humans. We conducted 10 glucose tolerance tests on 5 healthy volunteers and obtained a significant correlation between the concentration of glucose in ISF samples extracted with MHD and capillary blood glucose samples. Upon calibration and time lag removal, the data indicate a Mean Absolute Relative Difference (MARD) of 12.9% and Precision Absolute Relative Difference of 13.1%. In view of these results, we discuss the potential value and limitations of MHD in needle-free glucose monitoring.
Collapse
Affiliation(s)
- Tuuli A. Hakala
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland
| | - Laura K. Zschaechner
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
| | - Risto T. Vänskä
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
| | | | - Melissa Wardale
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland
| | - Jonathan Morina
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland
| | - Zhanna A. Boeva
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland ,grid.13797.3b0000 0001 2235 8415Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Biskopsgatan 8, 20500 Turku/Åbo, Finland
| | - Reeta Saukkonen
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland
| | - Juha-Matti Alakoskela
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland ,Skin and Allergy Hospital, Meilahdentie 2, 00250 Helsinki, Finland
| | - Kim Pettersson-Fernholm
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland ,grid.15485.3d0000 0000 9950 5666Nefrologian Poliklinikka, Helsinki University Hospital, Haartmaninkatu 4, 00029 Helsinki, Finland
| | - Edward Hæggström
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
| | - Johan Bobacka
- Glucomodicum Ltd, A.I. Virtasen Aukio 1, 00560 Helsinki, Finland ,grid.13797.3b0000 0001 2235 8415Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Biskopsgatan 8, 20500 Turku/Åbo, Finland
| | | |
Collapse
|
19
|
Orbay S, Kocaturk O, Sanyal R, Sanyal A. Molecularly Imprinted Polymer-Coated Inorganic Nanoparticles: Fabrication and Biomedical Applications. MICROMACHINES 2022; 13:1464. [PMID: 36144087 PMCID: PMC9501141 DOI: 10.3390/mi13091464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) continue to gain increasing attention as functional materials due to their unique characteristics such as higher stability, simple preparation, robustness, better binding capacity, and low cost. In particular, MIP-coated inorganic nanoparticles have emerged as a promising platform for various biomedical applications ranging from drug delivery to bioimaging. The integration of MIPs with inorganic nanomaterials such as silica (SiO2), iron oxide (Fe3O4), gold (Au), silver (Ag), and quantum dots (QDs) combines several attributes from both components to yield highly multifunctional materials. These materials with a multicomponent hierarchical structure composed of an inorganic core and an imprinted polymer shell exhibit enhanced properties and new functionalities. This review aims to provide a general overview of key recent advances in the fabrication of MIPs-coated inorganic nanoparticles and highlight their biomedical applications, including drug delivery, biosensor, bioimaging, and bioseparation.
Collapse
Affiliation(s)
- Sinem Orbay
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Rana Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|