1
|
Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A, Alahmed FK. MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract 2024; 262:155572. [PMID: 39226804 DOI: 10.1016/j.prp.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Alia Alshammrani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Satheesh Kumar G
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Poland
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Farah Khaled Alahmed
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| |
Collapse
|
2
|
Kim J, Son HY, Lee S, Rho HW, Kim R, Jeong H, Park C, Mun B, Moon Y, Jeong E, Lim EK, Haam S. Deep learning-assisted monitoring of trastuzumab efficacy in HER2-Overexpressing breast cancer via SERS immunoassays of tumor-derived urinary exosomal biomarkers. Biosens Bioelectron 2024; 258:116347. [PMID: 38723332 DOI: 10.1016/j.bios.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Monitoring drug efficacy is significant in the current concept of companion diagnostics in metastatic breast cancer. Trastuzumab, a drug targeting human epidermal growth factor receptor 2 (HER2), is an effective treatment for metastatic breast cancer. However, some patients develop resistance to this therapy; therefore, monitoring its efficacy is essential. Here, we describe a deep learning-assisted monitoring of trastuzumab efficacy based on a surface-enhanced Raman spectroscopy (SERS) immunoassay against HER2-overexpressing mouse urinary exosomes. Individual Raman reporters bearing the desired SERS tag and exosome capture substrate were prepared for the SERS immunoassay; SERS tag signals were collected to prepare deep learning training data. Using this deep learning algorithm, various complicated mixtures of SERS tags were successfully quantified and classified. Exosomal antigen levels of five types of cell-derived exosomes were determined using SERS-deep learning analysis and compared with those obtained via quantitative reverse transcription polymerase chain reaction and western blot analysis. Finally, drug efficacy was monitored via SERS-deep learning analysis using urinary exosomes from trastuzumab-treated mice. Use of this monitoring system should allow proactive responses to any treatment-resistant issues.
Collapse
Affiliation(s)
- Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Hye Young Son
- Department of Radiology, Yonsei University, Seoul, 03772, Republic of Korea; Severance Biomedical Science Institute, Yonsei University, Seoul, 03772, Republic of Korea; YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, 03772, Republic of Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology, Yonsei University, Seoul, 03772, Republic of Korea
| | - Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Yesol Moon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Eunji Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seoul, 120-749, Republic of Korea.
| |
Collapse
|
3
|
Liu X, Jia Y, Zheng C. Recent progress in Surface-Enhanced Raman Spectroscopy detection of biomarkers in liquid biopsy for breast cancer. Front Oncol 2024; 14:1400498. [PMID: 39040452 PMCID: PMC11260621 DOI: 10.3389/fonc.2024.1400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women globally and a leading cause of cancer-related mortality. However, current detection methods, such as X-rays, ultrasound, CT scans, MRI, and mammography, have their limitations. Recently, with the advancements in precision medicine and technologies like artificial intelligence, liquid biopsy, specifically utilizing Surface-Enhanced Raman Spectroscopy (SERS), has emerged as a promising approach to detect breast cancer. Liquid biopsy, as a minimally invasive technique, can provide a temporal reflection of breast cancer occurrence and progression, along with a spatial representation of overall tumor information. SERS has been extensively employed for biomarker detection, owing to its numerous advantages such as high sensitivity, minimal sample requirements, strong multi-detection ability, and controllable background interference. This paper presents a comprehensive review of the latest research on the application of SERS in the detection of breast cancer biomarkers, including exosomes, circulating tumor cells (CTCs), miRNA, proteins and others. The aim of this review is to provide valuable insights into the potential of SERS technology for early breast cancer diagnosis.
Collapse
Affiliation(s)
- Xiaobei Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yining Jia
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| |
Collapse
|
4
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
5
|
Yang H, Chen D, Zhang Y, Yuan P, Xie N, Dai Z. MiRNA and mRNA-Controlled Double-Cascaded Amplifying Circuit Nanosensor for Accurate Discrimination of Breast Cancers in Living Cells, Animals, and Organoids. Anal Chem 2024; 96:4154-4162. [PMID: 38426698 DOI: 10.1021/acs.analchem.3c05085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Metastasis is the leading cause of death in patients with breast cancer. Detecting high-risk breast cancer, including micrometastasis, at an early stage is vital for customizing the right and efficient therapies. In this study, we propose an enzyme-free isothermal cascade amplification-based DNA logic circuit in situ biomineralization nanosensor, HDNAzyme@ZIF-8, for simultaneous imaging of multidimensional biomarkers in live cells. Taking miR-21 and Ki-67 mRNA as the dual detection targets achieved sensitive logic operations and molecular recognition through the cascade hybridization chain reaction and DNAzyme. The HDNAzyme@ZIF-8 nanosensor has the ability to accurately differentiate breast cancer cells and their subtypes by comparing their relative fluorescence intensities. Of note, our nanosensor can also achieve visualization within breast cancer organoids, faithfully recapitulating the functional characteristics of parental tumor. Overall, the combination of these techniques offers a universal strategy for detecting cancers with high sensitivity and holds vast potential in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Huihui Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Peixiu Yuan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Wang Y, Fang L, Wang Y, Xiong Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300668. [PMID: 38072672 PMCID: PMC10870035 DOI: 10.1002/advs.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/08/2023] [Indexed: 02/17/2024]
Abstract
Early clinical diagnosis, effective intraoperative guidance, and an accurate prognosis can lead to timely and effective medical treatment. The current conventional clinical methods have several limitations. Therefore, there is a need to develop faster and more reliable clinical detection, treatment, and monitoring methods to enhance their clinical applications. Raman spectroscopy is noninvasive and provides highly specific information about the molecular structure and biochemical composition of analytes in a rapid and accurate manner. It has a wide range of applications in biomedicine, materials, and clinical settings. This review primarily focuses on the application of Raman spectroscopy in clinical medicine. The advantages and limitations of Raman spectroscopy over traditional clinical methods are discussed. In addition, the advantages of combining Raman spectroscopy with machine learning, nanoparticles, and probes are demonstrated, thereby extending its applicability to different clinical phases. Examples of the clinical applications of Raman spectroscopy over the last 3 years are also integrated. Finally, various prospective approaches based on Raman spectroscopy in clinical studies are surveyed, and current challenges are discussed.
Collapse
Affiliation(s)
- Yumei Wang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
7
|
Issatayeva A, Farnesi E, Cialla-May D, Schmitt M, Rizzi FMA, Milanese D, Selleri S, Cucinotta A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024; 267:125198. [PMID: 37722343 DOI: 10.1016/j.talanta.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Genomic biomarkers of cancer are based on changes in nucleic acids, which include abnormal expression levels of some miRNAs, point mutations in DNA sequences, and altered levels of DNA methylation. The presence of tumor-related nucleic acids in body fluids (blood, saliva, or urine) makes it possible to achieve a non-invasive early-stage cancer diagnosis. Currently existing techniques for the discovery of nucleic acids require complex, time-consuming, costly assays and have limited multiplexing abilities. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that is able to provide molecular specificity combined with trace sensitivity. SERS has gained research attention as a tool for the detection of nucleic acids because of its promising potential: label-free SERS can decrease the complexity of assays currently used with fluorescence-based detection due to the absence of the label, while labeled SERS may outperform the gold standard in terms of the multiplexing ability. The first papers about SERS-based methods for the measurement of genomic biomarkers were written in 2008, and since then, more than 150 papers have been published. The aim of this paper is to review and evaluate the proposed SERS-based methods in terms of their level of development and their potential for liquid biopsy application, as well as to contribute to their further evolution by attracting research attention to the field. This goal will be reached by grouping, on the basis of their experimental protocol, all the published manuscripts on the topic and evaluating each group in terms of its limit of detection and applicability to real body fluids. Thus, the methods are classified according to their working principles into five main groups, including capture-based, displacement-based, sandwich-based, enzyme-assisted, and specialized protocols.
Collapse
Affiliation(s)
- Aizhan Issatayeva
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy.
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Daniel Milanese
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Stefano Selleri
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Annamaria Cucinotta
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| |
Collapse
|
8
|
Moro G, Fratte CD, Normanno N, Polo F, Cinti S. Point-of-Care Testing for the Detection of MicroRNAs: Towards Liquid Biopsy on a Chip. Angew Chem Int Ed Engl 2023; 62:e202309135. [PMID: 37672490 DOI: 10.1002/anie.202309135] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Point-of-care (PoC) testing is revolutionizing the healthcare sector improving patient care in daily hospital practice and allowing reaching even remote geographical areas. In the frame of cancer management, the design and validation of PoC enabling the non-invasive, rapid detection of cancer markers is urgently required to implement liquid biopsy in clinical practice. Therefore, focusing on stable blood-based markers with high-specificity, such as microRNAs, is of crucial importance. In this work, we highlight the potential impact of circulating microRNAs detection on cancer management and the crucial role of PoC testing devices, especially for low-income countries. A detailed discussion about the challenges that should be faced to promote the technological transfer and clinical use of these tools has been added, to provide the readers with a complete overview of potentialities and current limitations.
Collapse
Affiliation(s)
- Giulia Moro
- Department of Pharmacy, University of Naples Federico II, Via Montesano 9, 80131, Naples, Italy
| | - Chiara Dalle Fratte
- Department of Medical Biotechnology and Translational Medicine, Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan "Statale", Via Vanvitelli 32, 20133, Milan, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori (IRCCS), Fondazione Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
- European Centre for Living Technology (ECLT), Ca' Foscari University of Venice Ca' Bottacin, 30124, Venice, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via Montesano 9, 80131, Naples, Italy
| |
Collapse
|
9
|
Lu Y, Yu Y, Wang Y, Zhou W, Cheng Z, Yu L, Zheng S, Gao R. A micro-nano interface integrated SERS-based microfluidic sensor for miRNA detection using DNAzyme walker amplification. Anal Chim Acta 2023; 1283:341957. [PMID: 37977782 DOI: 10.1016/j.aca.2023.341957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Precise and specific miRNA detection plays a vital role in exploring development mechanisms of cancer disease, thereby it can significantly improve relevant prevention and treatment strategies. RESULTS In this work, a surface-enhanced Raman spectroscopy (SERS)-based microfluidic chip has been devised with a microcone array SERS substrate (MCASS) for the miR-141 detection. This substrate excels in unique SERS activity and large surface area for DNA oligonucleotide modification. As the presence of miR-141, the DNAzyme walker induced cleavage reaction took place on the finely designed and prepared dual DNA conjugated SERS nanoprobes. The SERS nanoprobes can anchor on MCASS by the DNA hybridization that achieved an impressive detection limit in the femtomolar level. SIGNIFICANCE With this integrated SERS-based microfluidic chip, we provided a miRNA detection strategy using DNAzyme walker amplification technology. It is believed that this strategy could be a powerful tool for miRNA detection and related cancer screening test.
Collapse
Affiliation(s)
- Yang Lu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yiyue Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yeru Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wenbo Zhou
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ziyi Cheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Liandong Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, 571199, China.
| | - Rongke Gao
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
10
|
Mun B, Kim R, Jeong H, Kang B, Kim J, Son HY, Lim J, Rho HW, Lim EK, Haam S. An immuno-magnetophoresis-based microfluidic chip to isolate and detect HER2-Positive cancer-derived exosomes via multiple separation. Biosens Bioelectron 2023; 239:115592. [PMID: 37603987 DOI: 10.1016/j.bios.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Exosomes are useful for cancer diagnosis and monitoring. However, clinical samples contain impurities that complicate direct analyses of cancer-derived exosomes. Therefore, a microfluidic chip-based magnetically labeled exosome isolation system (MEIS-chip) was developed as a lab-on-a-chip platform for human epidermal growth factor receptor 2 (HER2)-positive cancer diagnosis and monitoring. Various magnetic nanoclusters (MNCs) were synthesized with different degrees of magnetization, and antibodies were introduced to capture HER2-overexpressing and common exosomes using immunoaffinity. MNC-bonded exosomes were separated into different exits according to their magnetization degrees. The MEIS-chip efficiently separated HER2-overexpressing exosomes from common exosomes that did not contain disease-related information. The simultaneous separation of HER2-and non-HER2-overexpressing exosomes provided a means of analyzing high-purity HER2-overexpressing exosomes while minimizing the contribution of non-target exosomes, reducing misdiagnosis risk. Notably, common exosomes served as a negative control for monitoring real-time changes in HER2 expression. These findings support the application of MEIS-chip for cancer diagnosis and treatment monitoring via effective exosome isolation.
Collapse
Affiliation(s)
- Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byunghoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Young Son
- Department of Radiology College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Medical Device Development Center, Osong Medical innovation foundation, 123, Osongsaengmyeong-ro, Chungcheongbuk-do, 28160, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Huang S, Li B, Mu P, Zhang W, Liu Y, Xiao Q. Highly sensitive detection of microRNA-21 by nitrogen-doped carbon dots-based ratio fluorescent probe via nuclease-assisted rolling circle amplification strategy. Anal Chim Acta 2023; 1273:341533. [PMID: 37423665 DOI: 10.1016/j.aca.2023.341533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
Highly sensitive and selective detection of microRNA-21 (miRNA-21) in biological samples is critical for the disease diagnosis and cancer treatment. In this study, a nitrogen-doped carbon dots (N-CDs)-based ratio fluorescence sensing strategy was constructed for miRNA-21 detection with high sensitivity and excellent specificity. Bright-blue N-CDs (λex/λem = 378 nm/460 nm) were synthesized by facile one-step microwave-assisted pyrolysis method by using uric acid as the single precursor, and the absolute fluorescence quantum yield and fluorescence lifetime of N-CDs were 35.8% and 5.54 ns separately. The padlock probe hybridized with miRNA-21 firstly and then was cyclized by T4 RNA ligase 2 to form a circular template. At the present of dNTPs and phi29 DNA polymerase, the oligonucleotide sequence in miRNA-21 was prolonged to hybridize with the surplus oligonucleotide sequences in circular template, generating long and reduplicated oligonucleotide sequences containing abundant guanine nucleotides. Separate G-quadruplex sequences were generated after the addition of Nt.BbvCI nicking endonuclease, and then hemin bound with G-quadruplex sequence to construct the G-quadruplex DNAzyme. Such G-quadruplex DNAzyme catalyzed the redox reaction of o-phenylenediamine (OPD) with H2O2, finally producing the yellowish-brown 2,3-diaminophenazine (DAP) (λem = 562 nm). Due to the inner filter effect between N-CDs and DAP, the ratio fluorescence signal of DAP with N-CDs was utilized for sensitive detection of miRNA-21 with detection limit of 0.87 pM. Such approach has practical feasibility and excellent specificity for miRNA-21 analysis during highly homological miRNA family in HeLa cell lysates and human serum samples.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China.
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Wenqian Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China; State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
12
|
Sun Y, Wang Y, Fang L, Xu T. Signal differentiation models for multiple microRNA detection: a critical review. Anal Bioanal Chem 2023. [PMID: 36864312 DOI: 10.1007/s00216-023-04626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, single-stranded non-coding RNAs which have critical functions in various biological processes. Increasing evidence suggested that abnormal miRNA expression was closely related to many human diseases, and they are projected to be very promising biomarkers for non-invasive diagnosis. Multiplex detection of aberrant miRNAs has great advantages including improved detection efficiency and enhanced diagnostic precision. Traditional miRNA detection methods do not meet the requirements of high sensitivity or multiplexing. Some new techniques have opened novel paths to solve analytical challenges of multiple miRNA detection. Herein, we give a critical overview of the current multiplex strategies for the simultaneous detection of miRNAs from the perspective of two different signal differentiation models, including label differentiation and space differentiation. Meanwhile, recent advances of signal amplification strategies integrated into multiplex miRNA methods are also discussed. We hope this review provides the reader with future perspectives on multiplex miRNA strategies in biochemical research and clinical diagnostics.
Collapse
Affiliation(s)
- Yue Sun
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yinan Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
13
|
Sun Z, Li J, Yang Y, Tong Y, Li H, Wang C, Du L, Jiang Y. Ratiometric Fluorescent Biosensor Based on Self-Assembled Fluorescent Gold Nanoparticles and Duplex-Specific Nuclease-Assisted Signal Amplification for Sensitive Detection of Exosomal miRNA. Bioconjug Chem 2022; 33:1698-1706. [PMID: 35960898 DOI: 10.1021/acs.bioconjchem.2c00309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sensitive detection of cancer-associated exosomal microRNAs shows enormous potential in cancer diagnosis. Herein, a ratiometric fluorescent biosensor based on self-assembled fluorescent gold nanoparticles (Au NPs) and duplex-specific nuclease (DSN)-assisted signal amplification was fabricated for sensitive detection of colorectal cancer (CRC)-associated exosomal miR-92a-3p. In this biosensing system, the hairpin DNA modified with sulfhydryl and fluorescent dye Atto-425 at both ends is conjugated to fluorescent Au NPs through Au-S bonds, resulting in the quenching of Atto-425. The miR-92a-3p can open the hairpin of DNA and forms an miR-92a-3p/DNA heteroduplex, triggering the specific cleavage of DSN for the DNA in the heteroduplex. As a result, Atto-425 leaves the fluorescent Au NPs and recovers the fluorescence emission. The released miR-92a-3p can hybridize with another hairpin DNA and lead to a stronger fluorescence recovery of Atto-425 to form a signal amplification cycle. The stable fluorescence of Au NPs and the changing fluorescence of Atto-425 constitute a ratiometric fluorescent system reflecting the concentration of miR-92a-3p. This biosensor exhibits excellent specificity and can distinguish CRC patients from healthy individuals by detecting miR-92a-3p extracted from clinical exosome samples, showing the potential in CRC diagnosis.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.,Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yufei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.,Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| |
Collapse
|
14
|
Liu X, Papukashvili D, Wang Z, Liu Y, Chen X, Li J, Li Z, Hu L, Li Z, Rcheulishvili N, Lu X, Ma J. Potential utility of miRNAs for liquid biopsy in breast cancer. Front Oncol 2022; 12:940314. [PMID: 35992785 PMCID: PMC9386533 DOI: 10.3389/fonc.2022.940314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) remains the most prevalent malignancy due to its incidence rate, recurrence, and metastasis in women. Conventional strategies of cancer detection– mammography and tissue biopsy lack the capacity to detect the complete cancer genomic landscape. Besides, they often give false- positive or negative results. The presence of this and other disadvantages such as invasiveness, high-cost, and side effects necessitates developing new strategies to overcome the BC burden. Liquid biopsy (LB) has been brought to the fore owing to its early detection, screening, prognosis, simplicity of the technique, and efficient monitoring. Remarkably, microRNAs (miRNAs)– gene expression regulators seem to play a major role as biomarkers detected in the samples of LB. Particularly, miR-21 and miR-155 among other possible candidates seem to serve as favorable biomarkers in the diagnosis and prognosis of BC. Hence, this review will assess the potential utility of miRNAs as biomarkers and will highlight certain promising candidates for the LB approach in the diagnosis and management of BC that may optimize the patient outcome.
Collapse
Affiliation(s)
- Xiangrong Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Wang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoxia Chen
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jianrong Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhiyuan Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Linjie Hu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zheng Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| |
Collapse
|
15
|
Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel) 2022; 14:2052. [PMID: 35565189 PMCID: PMC9105073 DOI: 10.3390/cancers14092052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however, they have limitations. With the development of novel techniques, such as personalized medicine and genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and microfluidic devices.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
16
|
Park J, Kim J, Park C, Lim JW, Yeom M, Song D, Kim E, Haam S. A flap endonuclease 1-assisted universal viral nucleic acid sensing system using surface-enhanced Raman scattering. Analyst 2022; 147:5028-5037. [DOI: 10.1039/d2an01123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flap endonuclease 1 recognizes a specific DNA structure and cleaves Raman tag-labeled probe molecules in a target-specific manner. With SERS-based sensing, the developed detection approach produces sensitive, quantitative, and multiplexable signals.
Collapse
Affiliation(s)
- Joowon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Woo Lim
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoo Yeom
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Daesub Song
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|