1
|
Campuzano S, Pedrero M, Barderas R, Pingarrón JM. Breaking barriers in electrochemical biosensing using bioinspired peptide and phage probes. Anal Bioanal Chem 2024; 416:7225-7247. [PMID: 38639792 PMCID: PMC11584481 DOI: 10.1007/s00216-024-05294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Electrochemical biosensing continues to advance tirelessly, overcoming barriers that have kept it from leaving research laboratories for many years. Among them, its compromised performance in complex biological matrices due to fouling or receptor stability issues, the limitations in determining toxic and small analytes, and its use, conditioned to the commercial availability of commercial receptors and the exploration of natural molecular interactions, deserved to be highlighted. To address these challenges, in addition to the intrinsic properties of electrochemical biosensing, its coupling with biomimetic materials has played a fundamental role, among which bioinspired phage and peptide probes stand out. The versatility in design and employment of these probes has opened an unimaginable plethora of possibilities for electrochemical biosensing, improving their performance far beyond the development of highly sensitive and selective devices. The state of the art offers robust electroanalytical biotools, capable of operating in complex samples and with exciting opportunities to discover and determine targets regardless of their toxicity and size, the commercial availability of bioreceptors, and prior knowledge of molecular interactions. With all this in mind, this review offers a panoramic, novel, and updated vision of both the tremendous advances and opportunities offered by the combination of electrochemical biosensors with bioinspired phage and peptide probes and the challenges and research efforts that are envisioned in the immediate future.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain.
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| |
Collapse
|
2
|
Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn't always better in biosensor research and development. Biosens Bioelectron 2024; 264:116670. [PMID: 39151260 DOI: 10.1016/j.bios.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Biosensor research has long focused on achieving the lowest possible Limits of Detection (LOD), driving significant advances in sensitivity and opening up new possibilities in analysis. However, this intense focus on low LODs may not always meet the practical needs or suit the actual uses of these devices. While technological improvements are impressive, they can sometimes overlook important factors such as detection range, ease of use, and market readiness, which are vital for biosensors to be effective in real-world applications. This review advocates for a balanced approach to biosensor development, emphasizing the need to align technological advancements with practical utility. We delve into various applications, including the detection of cancer biomarkers, pathology-related biomarkers, and illicit drugs, illustrating the critical role of LOD within these contexts. By considering clinical needs and broader design aspects like cost-effectiveness, sustainability, and regulatory compliance, we argue that integrating technical progress with practicality will enhance the impact of biosensors. Such an approach ensures that biosensors are not only technically sound but also widely useable and beneficial in real-world applications. Addressing the diverse analytical parameters alongside user expectations and market demands will likely maximize the real-world impact of biosensors.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Izmir, Turkiye.
| | | |
Collapse
|
3
|
Gong L, Liang J, Zhang Y, Zhang M, Ao H, Yang T. An antifouling electrochemical biosensor using self-signal for Salmonella typhimurium direct detection in food sample. Food Chem 2024; 452:139536. [PMID: 38723569 DOI: 10.1016/j.foodchem.2024.139536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Eating food contaminated by foodborne pathogens can lead to illness. The development of electrochemical sensors for pathogen detection has received widespread attention. However, the analytical performance of electrochemical sensors is inevitably affected by the non-specific adsorption of molecules in the sample. Moreover, the external signal probes might be affected by the complex components in the sample accompanied with signal suppression. This work presents an electrochemical aptasensor for Salmonella typhimurium detection based on the self-signal of poly-xanthurenic acid and the antifouling ability of chondroitin sulfate. The detection time was 60 min. The linear range was from 101 to 107 CFU/mL, and the detection limit was 3 CFU/mL. The biosensors presented good repeatability and storage stability. And the biosensors has been successfully applied in milk and orange juice. This strategy is expected to be applied in the design of other antifouling biosensors, to achieve rapid detection of pathogens and ensure food safety.
Collapse
Affiliation(s)
- Liangke Gong
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Jianwei Liang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yu Zhang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Mengyao Zhang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Huan Ao
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Tao Yang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China.
| |
Collapse
|
4
|
Li Y, Wei Z, Guo S, Zhan Y, Fan GC, Luo X. Design of U-shaped peptides with long-lasting antifouling efficacy: Toward a feasible electrochemical aptasensor for robust detection in human serum. Anal Chim Acta 2024; 1318:342953. [PMID: 39067928 DOI: 10.1016/j.aca.2024.342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Developing biosensors with antifouling properties is essential for accurately detecting low-concentration biomarkers in complex biological matrix, which is imperative for effective disease diagnosis and treatment. Herein, an antifouling electrochemical aptasensor qualifying for probing targets in human serum was explored based on newly-devised peptides that could form inverted U-shaped structures with long-term stability. RESULTS The inverted U-shaped peptides (U-Pep) with two terminals of thiol groups grafted onto the Au-modified electrode showcase superior antifouling properties in terms of high stability against enzymatic hydrolysis and long acting against biofouling in actual biofluids. The construction of the outlined antifouling electrochemical aptasensor just involved the fabrication of Au-deposited poly(3,4 ethylenedioxythiophene) (Au/PEDOT) modified electrode, followed by one-step co-incubation in the peptides and the aptamer probes with the Au/PEDOT electrode. Taking a typical biomarker of alpha-fetoprotein (AFP) for detection, this elegant antifouling aptasenor demonstrated a nice response for probing the target AFP with a low detection limit of 0.27 pg/mL and a wide linear scope of 1.0 pg/mL to 1.0 μg/mL, and furthermore qualified for assaying of AFP in human serum samples with satisfactory accuracy and feasibility. SIGNIFICANCE This engineering strategy of U-Pep with long-lasting antifouling efficacy opens a new horizon for high-performance antifouling biosensors suitable for detection in complex bifluids, and it could spark more inspiration for a follow-up exploration of other featured antifouling biomaterials.
Collapse
Affiliation(s)
- Yanxin Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Wei
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuyue Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yinan Zhan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
5
|
Lin X, Cai F, Lin J, Zhang K, Lin Y. Digital multimeter-based portable photoelectrochemical immunoassay with enzyme-catalyzed precipitation for screening carbohydrate antigen 125. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4619-4625. [PMID: 38920338 DOI: 10.1039/d4ay00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The degree of the carbohydrate antigen 125 (CA-125) level in serum is positively correlated with the severity of ovarian cancer. In this study, a facile photoelectrochemical (PEC) immunoassay was devised for sensitive detection of CA-125 employing enzyme-catalyzed precipitation to weaken the photocurrent of hollow porous In2O3 nanotubes incorporating CdS nanoparticles. Upon the addition of the target analyte, horseradish peroxidase (HRP) enriches as a result of the formation of the sandwich immunocomplex, which can catalyze the conversion of 4-chloro1-naphthol (4-CN) to benzo-4-chlorohexadienone (4-CD) employing H2O2 as a cofactor. The as-produced insoluble precipitate acts as an obstacle to hinder the absorption of visible light by photoactive materials, thereby resulting in a decrease in photocurrent. Moreover, the weakened signal can be easily read out by a digital multimeter (DMM), advancing the convenience of the detection system. The preliminary analysis data indicate that the PEC immunoassay shows an efficient response to CA-125 levels ranging from 0.1 to 100 U mL-1 with a limit of detection (LOD) as low as 0.046 U mL-1 (S/N = 3). Most importantly, the proposed portable method has shown satisfactory performance in terms of selectivity, reproducibility, stability, and analysis in complex biological matrices.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Fan Cai
- College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian, PR China
| | - Jia Lin
- The Academy of Rehabilitation Industry, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, Fujian, PR China.
| | - Kunmu Zhang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350000, Fujian, PR China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, College of Integrative Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, Fujian, PR China.
| |
Collapse
|
6
|
Liu L, Xiong H, Wang X, Jiang H. Gold nanomaterials: important vectors in biosensing of breast cancer biomarkers. Anal Bioanal Chem 2024; 416:3869-3885. [PMID: 38277010 DOI: 10.1007/s00216-024-05151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women worldwide, and its incidence is increasing every year. Early diagnosis and treatment are critical to improve the curability and prognosis of patients. However, existing detection methods often suffer from insufficient sensitivity and specificity, which limits their clinical application. Fortunately, the rapid development of nanotechnology offers new possibilities for diagnosing BC. For example, the unique physicochemical properties of gold nanomaterials (Au NMs), such as fascinating optical properties and quantum size effect, along with excellent biocompatibility and modifiability, enable them to manifest great potential in the field of biosensing, especially in the detection of BC biomarkers. Through fine surface modification and functionalization, Au NMs can accurately bind to specific antibodies, nucleic acids, and other biomolecules, thus achieving sensitive and precise detection of specific biomarkers. Here, we focus on the research progress of Au NMs as a key biosensing vector in BC biomarker detection. From four major perspectives of early diagnosis, prognostic evaluation, risk prediction, and bioimaging applications, we have thoroughly analyzed the broad application of Au NMs in BC biomarker detection and prospectively addressed its possible future trends. We hope this review will provide more comprehensive ideas for future researchers and promote the further development of this field.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
7
|
Mei X, Zeng Z, Xu W, Yang H, Zheng Y, Gao H, Wu C, Zheng Y, Xu Q, Wang G, Xu Y, Wu A. Sandwich-type electrochemical immunosensing of CA125 by using nanoribbon-like Ti 3C 2T x MXenes and toluidine blue/UIO-66-NH 2. ANAL SCI 2024; 40:1081-1087. [PMID: 38578575 DOI: 10.1007/s44211-024-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 04/06/2024]
Abstract
CA125 (carbohydrate antigen 125) is an important biomarker of ovarian cancer, so developing effective method for its detection is of great significance. In the present work, a novel sandwich-like electrochemical immunosensor (STEM) of CA125 was constructed by preparing nanoribbon-like Ti3C2Tx MXenes (Ti3C2TxNR) to immobilize primary antibody (PAb) of CA125 and UIO-66-NH2 MOFs structure to immobilize second antibody (SAb) and electroactive toluidine blue (Tb) probe. In this designed STEM assay, the as-prepared Ti3C2TxNR nanohybrid offers the advantages in large surface area and conductivity as carrier, and UIO-66-NH2 provided an ideal platform to accommodate SAb and a large number of Tb molecules as signal amplifier. In the presence of CA125, the peak currents of Tb from the formed STEM structure increase with the increase of CA125 level. After optimizing the related control conditions, a wide linear range (0.2-150.0 U mL-1) and a very low detection limit (0.05 U mL-1) of CA125 were achieved. It's thus expected the developed STEM strategy has important applications for the detection of CA125.
Collapse
Affiliation(s)
- Xuqiao Mei
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Zhenhua Zeng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Wenxin Xu
- Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou Health Vocational College, Zhangzhou, Fujian, China
| | - Huicong Yang
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yuanhai Zheng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Haimin Gao
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Chuncai Wu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yanping Zheng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Qiaoli Xu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Guowei Wang
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yuhuang Xu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Ayang Wu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
8
|
Muslihati A, Septiani NLW, Gumilar G, Nugraha N, Wasisto HS, Yuliarto B. Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomater Sci Eng 2024; 10:2041-2061. [PMID: 38526408 DOI: 10.1021/acsbiomaterials.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.
Collapse
Affiliation(s)
- Atqiya Muslihati
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Nugraha Nugraha
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | | | - Brian Yuliarto
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
9
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
10
|
Xia J, Zhong S, Hu X, Koh K, Chen H. Perspectives and trends in advanced optical and electrochemical biosensors based on engineered peptides. Mikrochim Acta 2023; 190:327. [PMID: 37495747 DOI: 10.1007/s00604-023-05907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
With the advancement of life medicine, in vitro diagnostics (IVD) technology has become an auxiliary tool for early diagnosis of diseases. However, biosensors for IVD now face some disadvantages such as poor targeting, significant antifouling properties, low density of recognized molecules, and poor stability. In recent years, peptides have been demonstrated to have various functions in unnatural biological systems, such as targeting properties, antifouling properties, and self-assembly properties, which indicates that peptides can be engineered. These properties of peptides, combined with their good biocompatibility, can be well applied to the design of biosensors to solve the problems mentioned above. This review provides an overview of the properties of engineered functional peptides and their applications in enhancing biosensor performance, mainly in the field of optics and electrochemistry.
Collapse
Affiliation(s)
- Junjie Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Suyun Zhong
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
11
|
Hu C, Qin Z, Fu J, Gao Q, Chen C, Tan CS, Li S. Aptamer-based carbohydrate antigen 125 sensor with molybdenum disulfide functional hybrid materials. Anal Biochem 2023:115213. [PMID: 37355027 DOI: 10.1016/j.ab.2023.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Epithelial ovarian cancer is a malignant tumor of the female reproductive system with insidious symptoms, aggressiveness, risk of metastasis, and high mortality. Carbohydrate antigen 125 (CA125), a standard biomarker for screening epithelial ovarian cancer, can be applied to track cancer progression and treatment response. Here, we constructed an aptamer-based electrochemical biosensor to achieve sensitive detection of CA125. Molybdenum disulfide (MoS2) was used as the stable layered substrate, combined with the irregular branched structure of gold nanoflowers (AuNFs) to provide the sensing interface with a large specific surface area by one-step electrodeposition AuNFs@MoS2. The simplified electrode modification step increased the stability of the electrode while ensuring excellent electrochemical performance and providing many sulfhydryl binding sites. Then, AuNFs@MoS2/CA125 aptamer/MCH sensor was designed for CA125 detection. Based on AuNFs@MoS2 electrode, CA125 aptamer with sulfhydryl as the sensitive layer was fixed on the electrode by gold sulfur bonds. 6-Mercapto-1-hexanol (MCH) was used to block the electrode and reduce the non-specific adsorption. Finally, DPV analysis was applied for CA125 detection with the range of 0.0001 U/mL to 500 U/mL. Our designed aptamer sensor showed reasonable specificity, reproducibility, and stability. Clinical sample testing also proved the consistency of our sensor with the gold standard in negative/positive judgment. This work demonstrated a novel strategy for integrating nanostructures and biocompatibility to build advanced cancer biomarker sensors with promising applications.
Collapse
Affiliation(s)
- Chang Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Tianjin International Engineering Institute, Tianjin University, Tianjin, 300072, China
| | - Ziyue Qin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jie Fu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qiya Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Cherie S Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
12
|
Wang D, Zhang X, Zhu X. Drug-Grafted DNA for Cancer Therapy. J Phys Chem B 2023. [PMID: 37294640 DOI: 10.1021/acs.jpcb.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the development of solid-phase synthesis and DNA nanotechnology, DNA-based drug delivery systems have seen large advancements over the past decades. By combining various drugs (small-molecular drugs, oligonucleotides, peptides, and proteins) with DNA technology, drug-grafted DNA has demonstrated great potential as a promising platform in recent years, in which complementary properties of both components have been discovered; for instance, the synthesis of amphiphilic drug-grafted DNA has enabled the production of DNA nanomedicines for gene therapy and chemotherapy. Through the design of linkages between drug and DNA parts, stimuli-responsiveness can be instilled, which has boosted the application of drug-grafted DNA in various biomedical applications such as cancer therapy. This review discusses the progress of various drug-grafted DNA therapeutic agents, exploring the synthetic techniques and anticancer applications afforded through the combination of drug and nucleic acids.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| | - Xinyue Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| |
Collapse
|
13
|
Arya SS, Dias SB, Jelinek HF, Hadjileontiadis LJ, Pappa AM. The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics? Biosens Bioelectron 2023; 235:115387. [PMID: 37229842 DOI: 10.1016/j.bios.2023.115387] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of "point-of-care" (POC) diagnostics is finally showcased.
Collapse
Affiliation(s)
- Sagar S Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Interdisciplinary Center for Human Performance, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal.
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK.
| |
Collapse
|
14
|
Yang X, Chen P, Zhang X, Zhou H, Song Z, Yang W, Luo X. An electrochemical biosensor for HER2 detection in complex biological media based on two antifouling materials of designed recognizing peptide and PEG. Anal Chim Acta 2023; 1252:341075. [PMID: 36935142 DOI: 10.1016/j.aca.2023.341075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
A simple tactic for electrochemical determination of a typical biomarker for breast cancer, human epidermal growth factor receptor 2 (HER2), was presented via the construction of a low fouling sensing interface functionalized with polyethylene glycol (PEG) and peptide. The HER2 biosensor was developed based on an electrode modified by the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and Au nanoparticles (AuNPs) as the sensing substrate, and followed by the immobilization of an antifouling PEG and a peptide with both recognizing and antifouling properties. Thanks to the combined antifouling effect of the PEG and peptide, and the specific recognizing ability of the peptide to the target HER2, the developed electrochemical biosensor exhibited strong antifouling performances in complex biofluids, such as human blood and serum, and it was capable of assaying target HER2 within a very wide linear range (1.0 pg mL-1 to 1.0 μg mL-1), with an ultralow limit of detection (0.44 pg mL-1). The combination of two kinds of antifouling biomaterials (PEG and peptide) offered an effective strategy for the development of low fouling sensing platforms suitable for practical assay in complex biotic environments.
Collapse
Affiliation(s)
- Xiqin Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ping Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Hao Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Wenlong Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
15
|
Sadeghi M, Sadeghi S, Naghib SM, Garshasbi HR. A Comprehensive Review on Electrochemical Nano Biosensors for Precise Detection of Blood-Based Oncomarkers in Breast Cancer. BIOSENSORS 2023; 13:bios13040481. [PMID: 37185556 PMCID: PMC10136762 DOI: 10.3390/bios13040481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Breast cancer (BC), one of the most common and life-threatening cancers, has the highest incidence rate among women. Early diagnosis of BC oncomarkers is considered the most effective strategy for detecting and treating BC. Finding the type and stage of BC in women as soon as possible is one of the greatest ways to stop its incidence and negative effects on medical treatment. The development of biosensors for early, sensitive, and selective detection of oncomarkers has recently attracted much attention. An electrochemical nano biosensor (EN) is a very suitable option for a powerful tool for cancer diagnosis. This comprehensive review provides information about the prevalence and pathobiology of BC, recent advances in clinically available BC oncomarkers, and the most common electrochemical nano biosensors for point-of-care (POC) detection of various BC oncomarkers using nanomaterial-based signal amplification techniques.
Collapse
Affiliation(s)
- Mahdi Sadeghi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
16
|
Song Y, Tang W, Han L, Liu Y, Shen C, Yin X, Ouyang B, Su Y, Guo X. Integration of nanomaterial sensing layers on printable organic field effect transistors for highly sensitive and stable biochemical signal conversion. NANOSCALE 2023; 15:5537-5559. [PMID: 36880412 DOI: 10.1039/d2nr05863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic field effect transistor (OFET) devices are one of the most popular candidates for the development of biochemical sensors due to their merits of being flexible and highly customizable for low-cost large-area manufacturing. This review describes the key points in constructing an extended-gate type OFET (EGOFET) biochemical sensor with high sensitivity and stability. The structure and working mechanism of OFET biochemical sensors are described firstly, emphasizing the importance of critical material and device engineering to higher biochemical sensing capabilities. Next, printable materials used to construct sensing electrodes (SEs) with high sensitivity and stability are presented with a focus on novel nanomaterials. Then, methods of obtaining printable OFET devices with steep subthreshold swing (SS) for high transconductance efficiency are introduced. Finally, approaches for the integration of OFETs and SEs to form portable biochemical sensor chips are introduced, followed by several demonstrations of sensory systems. This review will provide guidelines for optimizing the design and manufacturing of OFET biochemical sensors and accelerating the movement of OFET biochemical sensors from the laboratory to the marketplace.
Collapse
Affiliation(s)
- Yawen Song
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Han
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chaochao Shen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaokuan Yin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bang Ouyang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Huang Y, Wu H, Xie N, Zhang X, Zou Z, Deng M, Cheng W, Guo X, Ding S, Guo B. Conductive Antifouling Sensing Coating: A Bionic Design Inspired by Natural Cell Membrane. Adv Healthc Mater 2023; 12:e2202790. [PMID: 36709050 DOI: 10.1002/adhm.202202790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/15/2023] [Indexed: 01/30/2023]
Abstract
Constructing antifouling coatings for biosensing interfaces is a major hurdle in driving their practical application. Inspired by the excellent antifouling properties of natural cell membranes, a conductive biomimetic antifouling interface coating is proposed, which highly mimics the excellent antifouling properties of biofilms while overcoming the low conductivity defects of conventional coatings. Polyethylene glycol-Au gel is selected as the support structure and electron transfer layer, on which phospholipids and ampholytes are applied to construct a hydration layer for antifouling. The coating maintains promisingly low adsorption in biological matrices such as whole blood, serum, and urine, and has been utilized to construct multimodal clinical assay systems that provide favorable concordance with clinical results. Thus, this conductive bio-coating breaks the last barrier of biosensors toward practical applications and possesses extremely significant application value.
Collapse
Affiliation(s)
- Yi Huang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ning Xie
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xuewen Zhang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhenyang Zou
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Meng Deng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
18
|
Li R, Zhang D, Li X, Qi H. Sensitive and selective electrogenerated chemiluminescence aptasensing method for the determination of dopamine based on target-induced conformational displacement. Bioelectrochemistry 2022; 146:108148. [DOI: 10.1016/j.bioelechem.2022.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
|
19
|
Ni Y, Ouyang H, Yu L, Ling C, Zhu Z, He A, Liu R. Label-free electrochemical aptasensor based on magnetic α-Fe2O3/Fe3O4 heterogeneous hollow nanorods for the detection of cancer antigen 125. Bioelectrochemistry 2022; 148:108255. [DOI: 10.1016/j.bioelechem.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
|
20
|
Zhang F, Fan L, Liu Z, Han Y, Guo Y. A label-free electrochemical aptasensor for the detection of cancer antigen 125 based on nickel hexacyanoferrate nanocubes/polydopamine functionalized graphene. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Chang W, Wang J, Zhang J, Ling Q, Li Y, Wang J. High Performance Gold Nanorods@DNA Self-Assembled Drug-Loading System for Cancer Thermo-Chemotherapy in the Second Near-Infrared Optical Window. Pharmaceutics 2022; 14:pharmaceutics14051110. [PMID: 35631696 PMCID: PMC9145609 DOI: 10.3390/pharmaceutics14051110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
In terms of synergistic cancer therapy, biological nanomaterials with a second near-infrared (NIR-II) window response can greatly increase photothermal effects and photoacoustic imaging performance. Herein, we report a novel stimuli-responsive multifunctional drug-loading system which was constructed by integrating miniature gold nanorods (GNR) as the NIR-II photothermal nanorods and cyclic ternary aptamer (CTA) composition as a carrier for chemotherapy drugs. In this system, doxorubicin hydrochloride (DOX, a chemotherapy drug) binds to the G-C base pairs of the CTA, which exhibited a controlled release behavior based on the instability of G-C base pairs in the slightly acidic tumor microenvironment. Upon the 1064 nm (NIR-II biowindow) laser irradiation, the strong photothermal and promoted cargo release properties endow gold nanorods@CTA (GNR@CTA) nanoparticles displaying excellent synergistic anti-cancer effect. Moreover, the GNR@CTA of NIR also possesses thermal imaging and photoacoustic (PA) imaging properties due to the strong NIR region absorbance. This work enables to obtaining a stimuli-responsive “all-in-one” nanocarrier, which are promising candidate for bimodal imaging diagnosis and chemo-photothermal synergistic therapy.
Collapse
Affiliation(s)
- Wei Chang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Faculty of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Junfeng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
| | - Jing Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
| | - Qing Ling
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Faculty of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (J.W.); Tel.: +86-(13)-055-271-587 (Y.L.); +86-(13)-055-165-161-176 (J.W.)
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Correspondence: (Y.L.); (J.W.); Tel.: +86-(13)-055-271-587 (Y.L.); +86-(13)-055-165-161-176 (J.W.)
| |
Collapse
|