1
|
Wang Y, Zhang Q, Huang M, Ai G, Liu X, Zhang Y, Li R, Wu J. A colorimetric and SERS-based LFIA for sensitive and simultaneous detection of three stroke biomarkers: An ultra-fast and sensitive point-of-care testing platform. Talanta 2025; 283:127166. [PMID: 39509900 DOI: 10.1016/j.talanta.2024.127166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Stroke ranks as the second leading cause of disability and mortality globally. Biomarker detection represents a promising avenue for predicting disease severity and prognosis. The expression levels of metalloproteinase-9 (MMP-9), neuron-specific enolase (NSE), and N-terminal pro-brain natriuretic peptide (NT-pro BNP) in blood correlate with stroke severity. Hence, monitoring these biomarkers is crucial for stroke diagnosis and management. Point-of-care testing (POCT) offers on-site diagnostic capabilities, with lateral flow immunoassay (LFIA) being the most widely used method currently. However, traditional LFIA sensitivity requires enhancement. This study introduces an ultra-sensitive surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of the three stroke biomarkers using SERS immune tags. Bimetallic core-shell structured SERS immune tags leverage the advantages of two metals, ensuring stability and enhancing Raman signals through plasmon resonance. This development of a POCT based on SERS-based LFIA strips offers rapid, sensitive, and multiplex detection of stroke biomarkers. The limits of detection (LODs) for MMP-9, NSE, and NT-pro BNP were 0.00020 ng mL-1, 0.00016 ng mL-1, and 0.00012 ng mL-1, respectively. Furthermore, enzyme-linked immunosorbent assay (ELISA) validated the accuracy of SERS-based LFIA. Clinical sample analysis demonstrated consistency between outcomes obtained by SERS-based LFIA and ELISA. Thus, SERS-based LFIA presents a novel POCT approach for stroke diagnosis.
Collapse
Affiliation(s)
- Yutong Wang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Qianchun Zhang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qianxinan, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Mengping Huang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Ganggang Ai
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Xiaofeng Liu
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise, 533000, China
| | - Yuqi Zhang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China.
| | - Ran Li
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China.
| | - Jie Wu
- School of Public Health, Shenyang Medical College, Liaoning Medical Functional Food Professional Technology Innovation Center, Shenyang, 110034, China.
| |
Collapse
|
2
|
Li Y, Wang S, Li G, Zhang C, Zou L. A signal-on photoelectrochemical aptasensor based on WO 3/CdS heterojunction for the ultrasensitive detection of kanamycin. Bioelectrochemistry 2025; 161:108828. [PMID: 39317125 DOI: 10.1016/j.bioelechem.2024.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
In this study, a signal-on photoelectrochemical (PEC) aptasensor for the ultrasensitive determination of kanamycin (KANA) was constructed using WO3/CdS heterojunction as photoactive material. Firstly, WO3/CdS heterojunction with excellent photoelectric response was successfully prepared by simple co-precipitation method, resulting in a strong and stable initial photocurrent. In addition, amino modified aptamers were immobilized on the electrode surface by glutaraldehyde as biological recognition components. In the presence of the target KANA, it is specifically recognized and captured by the aptamers. More importantly, KANA can act as a signal amplifier to enhance the photocurrent due to the oxidation of KANA by photogenerated holes. Therefore, a signal-on PEC aptasensor based on WO3/CdS heterojunction with high selectivity was obtained for the detection of KANA. Under optimized experimental conditions, the PEC aptasensor demonstrated a wide linear range of 10 pM to 400 nM, with a detection limit of 6.77 pM. Meanwhile, the designed PEC aptasensor had been successfully utilized for the analytical examination of milk, fish, serum, and water samples.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shiang Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chi Zhang
- (Department of Orthopedics) The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Fu J, Wu T, Kuang X, Xu K, Ren X, Wu D, Ma H, Li F, Liu L, Wei Q. Dual-mode biosensor using Tb-Cu MOF@Au nanoenzyme to effectively quench the photocurrent of Bi 2O 3/Bi 2S 3/AgBiS 2 heterojunction and emit fluorescence for neuron-specific enolases detection. Talanta 2024; 277:126346. [PMID: 38897010 DOI: 10.1016/j.talanta.2024.126346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
A novel dual-mode biosensor was constructed for the ultrasensitive detection of neuron-specific enolase (NSE), utilizing Tb-Cu MOF@Au nanozyme as the signal label to effectively quench the photoelectrochemical (PEC) signals of Bi2O3/Bi2S3/AgBiS2 composites and initiate fluorescent (FL) signals. First, Bi2O3/Bi2S3/AgBiS2 heterojunction with excellent photoelectric activity was selected as the substrate material to provide a stable photocurrent. The well-matched energy levels significantly enhanced the separation and transfer of photogenerated carriers. Second, a strategy of consuming ascorbic acid (AA) by Tb-Cu MOF@Au nanozyme was introduced to improve the sensitivity of the PEC/FL biosensor. Tb-Cu MOF@Au not only could catalyze the oxidation of AA, but the steric effect further reduced the contact of AA with the substrate. More importantly, in the presence of H2O2, a significant fluorescence was produced from Tb3+ sensitized by the oxidation products of AA. Based on the above strategies, a highly stable and sensitive dual-mode biosensor was proposed for accurate NSE determination. Third, the developed dual-mode biosensor demonstrated excellent performance in detecting NSE. In this study, the PEC method demonstrated a wide detection range from 0.00005 to 200 ng/mL with a low detection limit of 20 fg/mL. The FL method exhibited a linear range from 0.001 to 200 ng/mL with a detection limit of 0.65 pg/mL. The designed biosensor showed potential practical implications in the accurate detection of disease markers.
Collapse
Affiliation(s)
- Junqiang Fu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Kun Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Faying Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, PR China.
| | - Lei Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Zu J, Xuan X, Zhang W, Li M, Jiang D, Li H. Wireless Gold/Boron-Nitrogen-Codoped Graphene-Based Antenna Immunosensor for the Rapid Detection of Neuron-Specific Enolase. Anal Chem 2024; 96:6826-6835. [PMID: 38640511 DOI: 10.1021/acs.analchem.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Tumor-marker immunosensors for rapid on-site detection have not yet been developed because of immunoreaction bottlenecks, such as shortening the reaction time and facilitating incubation. In this study, a gold-boron-nitrogen-codoped graphene (Au-BNG)-based immunosensor antenna was constructed for the rapid detection of neuron-specific enolase (NSE). A Au-BNG radiation electrode with dual functions of antibody protein fixation and signal transmission was developed for the first time. A radiation sample cell was constructed by embedding a radiation electrode into the groove of a poly(dimethylsiloxane) dielectric substrate. The constructed sense antenna achieves accurate detection of NSE with a range from 50 fg mL-1 to 40,000 pg mL-1 and a limit of detection of 10.99 fg mL-1, demonstrating excellent selectivity, stability, and reliability. The tumor-marker detection meter can provide NSE detection results as rapidly as within 2 min by using the new strategy of the microwave self-incubation of tumor markers. This antenna immunosensor is suitable for rapid detection in outpatient clinics and can be developed into household tumor-marker detectors, which would be significant in the early detection, long-term monitoring, and efficacy evaluation of tumors.
Collapse
Affiliation(s)
- Jiao Zu
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Xiuwei Xuan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Weihua Zhang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Daolian Jiang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| |
Collapse
|
5
|
Hu S, Xu L, Wu Y, Qin D, Deng B. Novel immunosensor based on electrochemiluminescence inner filter effect and static quenching between fibrillary Ag-MOGs and SiO 2@PANI@AuNPs for enabling the sensitive detection of neuron-specific enolase. Mikrochim Acta 2024; 191:204. [PMID: 38492076 DOI: 10.1007/s00604-024-06294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Metal-organic gels (MOGs) are unique supramolecular gels that are convenient to synthesize. In this work, a cathodic electrochemiluminescence (ECL) system based on Ag-MOGs as a luminophore and K2S2O8 as a co-reactor was developed. The ECL spectrum of the Ag-MOGs overlapped significantly with the strong UV-Vis spectrum of the SiO2@PANI@AuNPs, which effectively quenched the ECL luminescence of the Ag-MOGs. Relying on the inner filter effect between Ag-MOGs and SiO2@PANI@AuNPs, a novel ECL-IFE immunosensor was developed for the detection of neuron-specific enolase (NSE). Under optimal conditions, the ECL signal of the immunosensor displayed excellent linearity over the NSE concentration range of 10 fg/mL-100 ng/mL. The limit of detection (LOD) was 2.6 fg/mL (S/N = 3) with a correlation coefficient R2 of 0.9975. The ECL immunosensor also exhibited excellent stability and reproducibility for the detection of NSE. The results reported provide a feasible concept for the development analytical methods for the detection of other clinically relevant biomarkers.
Collapse
Affiliation(s)
- Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Lixin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China.
| |
Collapse
|
6
|
Liu H, Li C, Wang L, Fang L, Huang H, Deng J, Hu Y, Li M, Ran X, Li L, Zheng J. Photoelectrochemical sensor based on AuNPs@WO 3@TpPa-1-COF for quantification of DNA methylation levels. Mikrochim Acta 2024; 191:167. [PMID: 38418644 DOI: 10.1007/s00604-024-06235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
A "signal-off" photoelectrochemical (PEC) sensing platform has been designed for the ultrasensitive detection of DNA methylation levels and multiple methylated sites. The platform employs tungsten trioxide and TpPa-1-COF loaded by gold nanoparticle (AuNPs@WO3@TpPa-1-COF) composite material as the photoactive component and p-type reduced graphene (rGO) as an efficient quencher. The PEC signal of AuNPs@WO3@TpPa-1-COF composite is effectively quenched in the presence of p-type rGO, because p-type rGO can compete with AuNPs@WO3@TpPa-1-COF to deplete light energy and electron donors. In addition, a hybrid strand reaction (HCR) amplification strategy fixes more target DNA and then combines with rGO-modified anti-5-methylcytosine antibody to facilitate ultrasensitive DNA methylation detection. Under optimal conditions, DNA methylation can be measured within a linear concentration range of 10-14 to 10-8 M, with an exceptionally low detection limit of 0.19 fM (S/N = 3). At the same time, the platform can conduct quantitative determination of multi-site methylation, with the linear equation △I = 44.19LogA + 61.43, and the maximum number of methylation sites is 5. The sensor demonstrates high sensitivity, excellent selectivity, and satisfactory stability. Furthermore, the proposed signal-off PEC strategy was successfully employed to detect DNA methylation in spiked human serum samples, with recoveries ranging from 93.17 to 107.28% and relative standard deviation (RSD) ranging from 1.15 to 5.49%.
Collapse
Affiliation(s)
- Huamin Liu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Chenghong Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Yue Hu
- Emergency Department, 2, Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Mimi Li
- Emergency Department, 2, Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiaoping Ran
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lulu Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Ji Y, Bai X, Tang J, Bai M, Zhu Y, Tang J. Photocathodic Activation of Peroxymonosulfate in a Photofuel Cell: A Synergetic Signal Amplification Strategy for a Self-Powered Photoelectrochemical Sensor. Anal Chem 2024; 96:3470-3479. [PMID: 38336002 DOI: 10.1021/acs.analchem.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A self-powered photoelectrochemical (PEC) sensor has attracted widespread attention in the field of analysis, but it is still a challenge to enhance its response signals with rational strategies. In this work, a novel self-powered PEC sensing platform was developed for the quantitative detection of gatifloxacin (GAT) based on a photofuel cell consisting of two types of ZIF-derived ZnO/Co3O4 heterojunctions as photoactive materials. Peroxymonosulfate (PMS) was first used as an electron acceptor coupled with a photofuel cell to develop a synergetic signal amplification strategy. In a dual-photoelectrode system, the PMS activation on the ZnO@Co3O4 photocathode not only accelerated electron transfer from the Co3O4@ZnO photoanode to achieve strong signal intensity but also improved the sensing sensitivity by the oxidation reaction of generated highly active radicals to GAT. Compared with the absence of electron acceptors, the introduction of PMS produced a 2-fold enhancement in the signal output performance and a more than 72-fold improvement in the signal sensitivity. For the construction of the sensing interface, a molecularly imprinted polymer was assembled on the photocathode to specifically recognize GAT. The proposed sensor exhibited a detection range of 10-1 to 105 pM with a detection limit of 0.065 pM. The proposed sensing method has the advantages of sensitivity, simplicity, reliable stability, and anti-interference ability, which opens the door to the design of high-performance self-powered PEC sensors.
Collapse
Affiliation(s)
- Yetong Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, P. R. China
| | - Jing Tang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ma Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Jiangwen Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| |
Collapse
|
8
|
Yang P, Hou X, Gao X, Peng Y, Li Q, Niu Q, Liu Q. Recent Trends in Self-Powered Photoelectrochemical Sensors: From the Perspective of Signal Output. ACS Sens 2024; 9:577-588. [PMID: 38254273 DOI: 10.1021/acssensors.3c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Revolutionary developments in analytical chemistry have led to the rapid development of self-powered photoelectrochemical (PEC) sensors. Different from conventional PEC sensors, self-powered PEC sensors do not require an external power source or complex devices for the sensitive detection of targets. As a result, these sensors have enormous application potential for the development of novel portable sensors. An increasing body of work is making excellent progress toward the implementation of self-powered PEC sensors for detection, but there have been no reviews to date. The present review first introduces the state of the art in the development of self-powered PEC sensors. Then, different types of self-powered PEC sensors are summarized and discussed in detail, including their current, power, and potential. Additionally, single- and dual-photoelectrode systems are classified and systematically compared. Finally, the current developments and major challenges that need to be addressed are also summarized. This review provides valuable insights into the current state of self-powered PEC sensors to promote further progress in this field.
Collapse
Affiliation(s)
- Peilin Yang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiuli Hou
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Gao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuxin Peng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qingfeng Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
9
|
Gao J, He D, Zhang J, Sun B, Wang G, Suo H, Zhang L, Zhao C. In-situ growth of porous rod-like tungsten oxide for electrochemical determination of cupric ion. Anal Chim Acta 2023; 1276:341645. [PMID: 37573124 DOI: 10.1016/j.aca.2023.341645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
Preconcentration can effectively enhance the detection performance of electrodes in the electrochemical detection of heavy metal ions, but it also presents challenges for real-time monitoring. Several attempts have been made to optimize preconcentration by improving the adsorption capacity or detection mechanism of the electrode. The valence transfer of tungsten oxide between W5+/W6+ can participate in the reduction between the electrode material and heavy metal ions, playing a role in preconcentration to some extent. Therefore, we developed a WO3/SSM electrochemical sensor for the detection of Cu(II) that utilizes the valence variation property of WO3. The crystallinity and microstructure of the WO3/SSM electrode can be regulated by controlling the deposition parameters, and we prepared three types of WO3/SSM with different morphologies to identify the influence of the electrochemical effective surface area. The proposed electrode shows high performance as a Cu(II) sensor under short preconcentration time (60 s), with an excellent sensitivity of 14.113 μA μM-1 cm-2 for 0.1-10.0 μM and 4.7356 μA μM-1 cm-2 for 10.0-20.0 μM. Overall, the combined effect of morphology and valence transfers shortens the preconcentration time and optimizes preconcentration while ensuring excellent electrode performance. This WO3/SSM electrode is expected to drive great advances in the application of tungsten oxide in the electrochemical detection of heavy metal ions.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Dong He
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Jingwen Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Bangning Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Guanda Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Hui Suo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Liang Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China
| | - Chun Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
10
|
Geng W, Jiang G, Liu H, Xue L, Ding L, Li Y, Wu Y, Yang R. A Direct-Contact Photocurrent-Direction-Switching Biosensing Platform Based on In Situ Formation of CN QDs/TiO 2 Nanodiscs and Double-Supported 3D DNA Walking Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302829. [PMID: 37356081 DOI: 10.1002/smll.202302829] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/27/2023] [Indexed: 06/27/2023]
Abstract
Herein, a direct-contact photocurrent-direction-switching photoelectrochemical (PEC) biosensing platform for the ultrasensitive and selective detection of soluble CD146 (sCD146) is reported for the first time via in situ formation of carbon nitride quantum dots (CN QDs)/titanium dioxide (TiO2 ) nanodiscs with the double-supported 3D DNA walking amplification. In this platform, metal organic frameworks (MOFs)-derived porous TiO2 nanodiscs exhibit excellent anodic photocurrent, whereas a single-stranded auxiliary DNA (ssDNA) as biogate is absorbed onto the TiO2 nanodiscs to block active sites. Subsequently, with the help of intermediate DNAs from target sCD146-induced double-supported 3D DNA walking signal amplification, the ssDNA can leave away from the surface of TiO2 nanodiscs due to the specific hybridization with intermediate DNAs. Afterward, the successful direct contact of CN QDs on TiO2 nanodiscs by porosity and electrostatic adsorption, leads to the effective photocurrent-direction switching from anodic to cathodic photocurrent. Based on direct-contact photocurrent-direction-switching CN QDs/TiO2 nanodiscs system and double-supported 3D DNA walking signal amplification, sCD146 is detected sensitively with a wide linear range (10 fg mL-1 to 5 ng mL-1 ) and a low limit of detection (2.1 fg mL-1 ). Also, the environmentally friendly and direct-contact photocurrent-direction-switching PEC biosensor has an application prospect for cancer biomarker detection.
Collapse
Affiliation(s)
- Wenchao Geng
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China
| | - Guihua Jiang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Huimin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linsheng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
11
|
Wang C, Tang Y, Zhang B, Zhong Z, Zhao F, Zeng B. Sensitive photoelectrochemical immunosensor for carcinoembryonic antigen detection based on copolymer of thiophene and thiophene-3-acetic acid modified phosphate-doped Bi 2WO 6. Anal Chim Acta 2023; 1262:341243. [PMID: 37179060 DOI: 10.1016/j.aca.2023.341243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In this study, PO43- doped Bi2WO6 (BWO-PO) was prepared by hydrothermal method, and then copolymer of thiophene and thiophene-3-acetic acid (P(Th-T3A)) was chemically deposited on the BWO-PO surface. The introduction of PO43- created point defects, greatly improving the photoelectric catalytic performance of Bi2WO6; the copolymer semiconductor could form heterojunction with Bi2WO6 to promote the separation of photo-generated carriers, due to its proper band gap. Furthermore, the copolymer could enhance the light absorption ability and photo-electronic conversion efficiency. Hence, the composite had good photoelectrochemical properties. When it was combined with carcinoembryonic antibody through the interaction of -COOH groups of the copolymer and the end groups of antibody for constructing ITO-based PEC immunosensor, the resulting sensor exhibited superb response to carcinoembryonic antigen (CEA), with a wide linear range of 1 pg/mL-20 ng/mL, and a relatively low detection limit of 0.41 pg/mL. It also showed high anti-interference ability, stability, and simplicity. The sensor has been successfully applied to monitor the concentration of CEA in serum. The sensing strategy can also be applied to the detection of other markers by changing the recognition elements, hence it has good application potential.
Collapse
Affiliation(s)
- Chunfang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Bihong Zhang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, PR China
| | - Ziying Zhong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| |
Collapse
|
12
|
Wang H, Dong X, Wang H, Ren X, Wang H, Wei Q, Wu D. A novel construction strategy of photoelectrochemical immunosensor for detecting neuron-specific enolase: Sensing mode integrating photoanode and photocathode. Talanta 2023; 260:124651. [PMID: 37187031 DOI: 10.1016/j.talanta.2023.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
In the realm of photoelectrochemical (PEC) analysis, it is customary to employ a lone photoanode or photocathode system for analyte detection. Nonetheless, such a single detection scheme inherently carries some deficiencies. While photoanode-based PEC immunoassay methods do exhibit conspicuous photocurrent responses and heightened sensitivity, they do suffer from inadequate resistance to interference when detecting in real sample detection. Photocathode-based analysis methods are capable of effectively surmounting the limitations of photoanode-based analysis methods, but their stability is poor. Based on the above reasons, this paper reports a novel immunosensing system combining ITO/WO3/Bi2S3 photoanode and ITO/CuInS2 photocathode. The system that incorporates both photoanode and photocathode exhibits a steady and discernible photocurrent, possesses robust resistance to external interference, and has effectively accomplished the quantification of NSE in the linear range from 5 pg/mL to 30 ng/mL. Remarkably, the detection limit has been determined to be 1.59 pg/mL. Besides the notable advantages of satisfactory stability, exceptional specificity, and outstanding reproducibility, the sensing system also introduces an innovative approach to fabricate PEC immunosensors.
Collapse
Affiliation(s)
- Hanyu Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 50024, PR China
| | - Xue Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 50024, PR China
| | - Hui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 50024, PR China
| | - Xiang Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 50024, PR China
| | - Huan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 50024, PR China
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 50024, PR China
| | - Dan Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 50024, PR China.
| |
Collapse
|
13
|
Dong Q, Ding Q, Yuan R, Yuan Y. Metal Porphyrin Complex Combined with Polymerization and Isomerization Cyclic Amplification for a Sensitive Photoelectrochemical Assay. Anal Chem 2023; 95:5126-5132. [PMID: 36897080 DOI: 10.1021/acs.analchem.3c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
5,10,15,20-Tetrakis(4-aminophenyl)-21H,23H-porphine (TPAPP) possesses good light-harvesting ability and photoelectrochemical (PEC) cathode response signal; however, the disadvantages of easy stacking and weak hydrophilicity limit its application as a signal probe in PEC biosensors. Based on these, we prepared a Fe3+ and Cu2+ co-coordinating photoactive material (TPAPP-Fe/Cu) with horseradish peroxidase (HRP)-like activity. The metal ions in the porphyrin center not only enabled the directional flow of photogenerated electrons between electron-rich porphyrin and positive metal ions within inner-/intermolecular layers but also accelerated electron transfer through a synergistic redox reaction of Fe(III)/Fe(II) and Cu(II)/Cu(I) as well as rapid generation of superoxide anion radicals (O2-•) by mimicking catalytically produced and dissolved oxygen, thereby providing the desired cathode photoactive material with extremely high photoelectric conversion efficiency. Accordingly, by combining with toehold-mediated strand displacement (TSD)-induced single cycle and polymerization and isomerization cyclic amplification (PICA), an ultrasensitive PEC biosensor was constructed for the detection of colon cancer-related miRNA-182-5p. The ultratrace target could be converted to abundant output DNA by TSD possessing the desirable amplifying ability to trigger PICA for forming long ssDNA with repetitive sequences, thus decorating substantial TPAPP-Fe/Cu-labeled DNA signal probes for producing high PEC photocurrent. Meanwhile, the Mn(III) meso-tetraphenylporphine chloride (MnPP) was embedded in dsDNA to further exhibit a sensitization effect toward TPAPP-Fe/Cu and an acceleration effect analogous to that of metal ions in the porphyrin center above. As a result, the proposed biosensor displayed a detection limit as low as 0.2 fM, facilitating the development of high-performance biosensors and showing great potential in early clinical diagnosis.
Collapse
Affiliation(s)
- Qingyuan Dong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Qiao Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Meng S, Liu D, Li Y, Dong N, Chen T, You T. Engineering the Signal Transduction between CdTe and CdSe Quantum Dots for in Situ Ratiometric Photoelectrochemical Immunoassay of Cry1Ab Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13583-13591. [PMID: 36251948 DOI: 10.1021/acs.jafc.2c05910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controllable modulation of a response mode is extremely attracting to fabricate biosensor with programmable analytical performances. Here, we reported a proof-of-concept ratiometric photoelectrochemical (PEC) immunoassay of Cry1Ab protein based on the signal transduction regulation at the sensing interface. A sandwich-type PEC structure was designed so that gold nanorods sensitized quantum dots to fix primary antibody (Au NRs/QDs-Ab1) and methylene blue sensitized QDs to combine a second antibody (MB/QDs-Ab2), which served as photoelectric substrate and signal amplifier, respectively. Unlike common recognition element, such a sandwich-type PEC structure allowed for the in situ generation of two specific response signals. For analysis, Cry1Ab captured by Au NRs/QDs-Ab1 led to a decreased photocurrent (ICry1Ab), while the subsequently anchored MB/QDs-Ab2 produced another photocurrent (IMB). Noteworthy, by taking advantage of the different energy band gaps of QDs, varying locations of CdTe and CdSe QDs could realize different signal transduction strategies (i.e., Mode 1 and Mode 2). Investigations on data analysis of ICry1Ab and IMB via different routes demonstrated the superior analytical performances of ratiometry (Mode 1). Consequently, the ratiometric PEC immunosensor offered a linear range of 0.01-100 ng mL-1 with a detection limit of 1.4 pg mL-1. This work provides an efficient strategy for in situ collection of multiple photocurrents to design ratiometric PEC sensors.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
15
|
Dang X, Shi Z, Sun Z, Li Y, Hu X, Zhao H. Ultrasensitive sandwich-type photoelectrochemcial oxytetracycline sensing platform based on MnIn2S4/WO3 (Yb, Tm) functionalized rGO film. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|