1
|
Riznichenko GY, Belyaeva NE, Kovalenko IB, Antal TK, Goryachev SN, Maslakov AS, Plyusnina TY, Fedorov VA, Khruschev SS, Yakovleva OV, Rubin AB. Mathematical Simulation of Electron Transport in the Primary Photosynthetic Processes. BIOCHEMISTRY (MOSCOW) 2022; 87:1065-1083. [DOI: 10.1134/s0006297922100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Riznichenko GY, Antal TK, Belyaeva NE, Khruschev SS, Kovalenko IB, Maslakov AS, Plyusnina TY, Fedorov VA, Rubin AB. Molecular, Brownian, kinetic and stochastic models of the processes in photosynthetic membrane of green plants and microalgae. Biophys Rev 2022; 14:985-1004. [PMID: 36124262 PMCID: PMC9481862 DOI: 10.1007/s12551-022-00988-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022] Open
Abstract
The paper presents the results of recent work at the Department of Biophysics of the Biological Faculty, Lomonosov Moscow State University on the kinetic and multiparticle modeling of processes in the photosynthetic membrane. The detailed kinetic models and the rule-based kinetic Monte Carlo models allow to reproduce the fluorescence induction curves and redox transformations of the photoactive pigment P700 in the time range from 100 ns to dozens of seconds and make it possible to reveal the role of individual carriers in their formation for different types of photosynthetic organisms under different illumination regimes, in the presence of inhibitors, under stress conditions. The fitting of the model curves to the experimental data quantifies the reaction rate constants that cannot be directly measured experimentally, including the non-radiative thermal relaxation reactions. We use the direct multiparticle models to explicitly describe the interactions of mobile photosynthetic carrier proteins with multienzyme complexes both in solution and in the biomembrane interior. An analysis of these models reveals the role of diffusion and electrostatic factors in the regulation of electron transport, the influence of ionic strength and pH of the cellular environment on the rate of electron transport reactions between carrier proteins. To describe the conformational intramolecular processes of formation of the final complex, in which the actual electron transfer occurs, we use the methods of molecular dynamics. The results obtained using kinetic and molecular models supplement our knowledge of the mechanisms of organization of the photosynthetic electron transport processes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Galina Yu. Riznichenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Taras K. Antal
- Laboratory of Integrated Environmental Research, Pskov State University, Lenin Sq. 2, 180000 Pskov, Russia
| | - Natalia E. Belyaeva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Sergey S. Khruschev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Ilya B. Kovalenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Alexey S. Maslakov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Tatyana Yu Plyusnina
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Vladimir A. Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Andrey B. Rubin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| |
Collapse
|
3
|
Gideon DA, Nirusimhan V, Manoj KM. Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. J Biomol Struct Dyn 2020; 40:1995-2009. [PMID: 33073701 DOI: 10.1080/07391102.2020.1835715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the light reaction of oxygenic photosynthesis, plastocyanin (PC) and ferredoxins (Fd) are small/diffusible redox-active proteins playing key roles in electron transfer/transport phenomena. In the Z-scheme mechanistic purview, they are considered as specific affinity binding-based electron-relay agents, linking the functions of Cytochrome b6f (Cyt. b6f), Photosystem I (PS I) and Fd:NADPH oxidoreductase (FNR). The murburn explanation for photolytic photophosphorylation deems PC/Fd as generic 'redox capacitors', temporally accepting and releasing one-electron equivalents in reaction milieu. Herein, we explore the two theories with respect to structural, distributional and functional aspects of PC/Fd. Amino acid residues located on the surface loci of key patches of PC/Fd vary in electrostatic/contour (topography) signatures. Crystal structures of four different complexes each of Cyt.f-PC and Fd-FNR show little conservation in the contact-surfaces, thereby discrediting 'affinity binding-based electron transfers (ET)' as an evolutionary logic. Further, thermodynamic and kinetic data of wildtype and mutant proteins interactions do not align with Z-scheme. Furthermore, micromolar physiological concentrations of PC and the non-conducive architecture of chloroplasts render the classical model untenable. In the murburn model, as PC is optional, the observation that plants lacking PC survive and grow is justified. Further, the low physiological concentration/distribution of PC in chloroplast lumen/stroma is supported by murburn equilibriums, as higher concentrations would limit electron transfers. Thus, structural evidence, interactive dynamics with redox partners and physiological distribution/role of PC/Fd support the murburn perspective that these proteins serve as generic redox-capacitors in chloroplasts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India
| |
Collapse
|
4
|
Riznichenko GY, Belyaeva NE, Diakonova AN, Kovalenko IB, Maslakov AS, Antal TK, Goryachev SN, Plyusnina TY, Fedorov VA, Khruschev SS, Rubin AB. Models of Photosynthetic Electron Transport. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
López‐Martínez M, López‐Ortiz M, Antinori ME, Wientjes E, Nin‐Hill A, Rovira C, Croce R, Díez‐Pérez I, Gorostiza P. Electrochemically Gated Long‐Distance Charge Transport in Photosystem I. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Montse López‐Martínez
- Department of Material Science and Physical ChemistryUniversity of Barcelona Martí i Franquès, 1 08028 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) 28029 Madrid Spain
- Present address: Institut für Angewandte PhysikTU Wien Vienna Austria
| | - Manuel López‐Ortiz
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) 28029 Madrid Spain
| | - Maria Elena Antinori
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
- Present address: Smart Materials, NanophysicsIstituto Italiano di Tecnologia Genova Italy
| | - Emilie Wientjes
- Laboratory of BiophysicsWageningen University 6700 ET Wageningen The Netherlands
| | - Alba Nin‐Hill
- Inorganic and Organic Chemistry Department & Institute of Theoretical and Computational Chemistry (IQTCUB)University of Barcelona (UB) Martí i Franquès, 1 Barcelona 08028 Spain
| | - Carme Rovira
- Inorganic and Organic Chemistry Department & Institute of Theoretical and Computational Chemistry (IQTCUB)University of Barcelona (UB) Martí i Franquès, 1 Barcelona 08028 Spain
- Catalan Institution for Research and Advanced Studies (ICREA) 08010 Barcelona Spain
| | - Roberta Croce
- Biophysics of Photosynthesis. Dep. Physics and AstronomyFaculty of SciencesVrije Universiteit Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands
| | - Ismael Díez‐Pérez
- Department of Material Science and Physical ChemistryUniversity of Barcelona Martí i Franquès, 1 08028 Barcelona Spain
- Present address: Department of Chemistry, Faculty of Natural & Mathematical SciencesKing's College London London UK
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) 28029 Madrid Spain
- Catalan Institution for Research and Advanced Studies (ICREA) 08010 Barcelona Spain
| |
Collapse
|
6
|
López-Martínez M, López-Ortiz M, Antinori ME, Wientjes E, Nin-Hill A, Rovira C, Croce R, Díez-Pérez I, Gorostiza P. Electrochemically Gated Long-Distance Charge Transport in Photosystem I. Angew Chem Int Ed Engl 2019; 58:13280-13284. [PMID: 31310425 DOI: 10.1002/anie.201904374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/23/2019] [Indexed: 12/26/2022]
Abstract
The transport of electrons along photosynthetic and respiratory chains involves a series of enzymatic reactions that are coupled through redox mediators, including proteins and small molecules. The use of native and synthetic redox probes is key to understanding charge transport mechanisms and to the design of bioelectronic sensors and solar energy conversion devices. However, redox probes have limited tunability to exchange charge at the desired electrochemical potentials (energy levels) and at different protein sites. Herein, we take advantage of electrochemical scanning tunneling microscopy (ECSTM) to control the Fermi level and nanometric position of the ECSTM probe in order to study electron transport in individual photosystem I (PSI) complexes. Current-distance measurements at different potentiostatic conditions indicate that PSI supports long-distance transport that is electrochemically gated near the redox potential of P700, with current extending farther under hole injection conditions.
Collapse
Affiliation(s)
- Montse López-Martínez
- Department of Material Science and Physical Chemistry, University of Barcelona, Martí i Franquès, 1, 08028, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain.,Present address: Institut für Angewandte Physik, TU Wien, Vienna, Austria
| | - Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Maria Elena Antinori
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Present address: Smart Materials, Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, 6700 ET, Wageningen, The Netherlands
| | - Alba Nin-Hill
- Inorganic and Organic Chemistry Department & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona (UB), Martí i Franquès, 1, Barcelona, 08028, Spain
| | - Carme Rovira
- Inorganic and Organic Chemistry Department & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona (UB), Martí i Franquès, 1, Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Roberta Croce
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ismael Díez-Pérez
- Department of Material Science and Physical Chemistry, University of Barcelona, Martí i Franquès, 1, 08028, Barcelona, Spain.,Present address: Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London, UK
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
7
|
Riznichenk G, Kovalenko I, Fedorov V, Khruschev S, Rubin A. Photosynthetic Electron Transfer by Dint of Protein Mobile Carriers. Multi-particle Brownian and Molecular Modeling. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201922403008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The paper presents the review of works on modeling the interaction of photosynthetic proteins using the multiparticle Brownian dynamics method developed at the Department of Biophysics, Biological Faculty, Lomonosov Moscow State University. The method describes the displacement of individual macromolecules – mobile electron carriers, and their electrostatic interactions between each other and with pigment-protein complexes embedded in photosynthetic membrane. Three-dimensional models of the protein molecules were constructed on the basis of the data from the Protein Data Bank. We applied the Brownian methods coupled to molecular dynamic simulations to reveal the role of electrostatic interactions and conformational motions in the transfer of an electron from the cytochrome complex Cyt b6f) membrane we developed the model which combines events of proteins Pc diffusion along the thylakoid membrane, electrostatic interactions of Pc with the membrane charges, formation of Pc super-complexes with multienzyme complexes of Photosystem I and to the molecule of the mobile carrier plastocyanin (Pc) in plants, green algae and cyanic bacteria. Taking into account the interior of photosynthetic membrane we developed the model which combines events of proteins Pc diffusion along the thylakoid membrane, electrostatic interactions of Pc with the membrane charges, formation of Pc super-complexes with multienzyme complexes of Photosystem I and Cyt b6f, embedded in photosynthetic membrane, electron transfer and complex dissociation. Multiparticle Brownian simulation method can be used to consider the processes of protein interactions in subcellular systems in order to clarify the role of individual stages and the biophysical mechanisms of these processes.
Collapse
|
8
|
Kubota-Kawai H, Mutoh R, Shinmura K, Sétif P, Nowaczyk MM, Rögner M, Ikegami T, Tanaka H, Kurisu G. X-ray structure of an asymmetrical trimeric ferredoxin-photosystem I complex. NATURE PLANTS 2018; 4:218-224. [PMID: 29610537 DOI: 10.1038/s41477-018-0130-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI), a large protein complex located in the thylakoid membrane, mediates the final step in light-driven electron transfer to the stromal electron carrier protein ferredoxin (Fd). Here, we report the first structural description of the PSI-Fd complex from Thermosynechococcus elongatus. The trimeric PSI complex binds three Fds in a non-equivalent manner. While each is recognized by a PSI protomer in a similar orientation, the distances between Fds and the PSI redox centres differ. Fd binding thus entails loss of the exact three-fold symmetry of the PSI's soluble subunits, inducing structural perturbations which are transferred to the lumen through PsaF. Affinity chromatography and nuclear magnetic resonance analyses of PSI-Fd complexes support the existence of two different Fd-binding states, with one Fd being more tightly bound than the others. We propose a dynamic structural basis for productive complex formation, which supports fast electron transfer between PSI and Fd.
Collapse
Affiliation(s)
- Hisako Kubota-Kawai
- Institute for Protein Research, Osaka University, Osaka, Japan
- National Institute for Basic Biology, Aichi, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Kanako Shinmura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Pierre Sétif
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Osaka, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan.
- Department of Macromolecular Science, Graduate School of Science, Osaka, Japan.
| |
Collapse
|
9
|
Cherepanov DA, Milanovsky GE, Petrova AA, Tikhonov AN, Semenov AY. Electron Transfer through the Acceptor Side of Photosystem I: Interaction with Exogenous Acceptors and Molecular Oxygen. BIOCHEMISTRY (MOSCOW) 2018; 82:1249-1268. [PMID: 29223152 DOI: 10.1134/s0006297917110037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers the state-of-the-art on mechanisms and alternative pathways of electron transfer in photosynthetic electron transport chains of chloroplasts and cyanobacteria. The mechanisms of electron transport control between photosystems (PS) I and II and the Calvin-Benson cycle are considered. The redistribution of electron fluxes between the noncyclic, cyclic, and pseudocyclic pathways plays an important role in the regulation of photosynthesis. Mathematical modeling of light-induced electron transport processes is considered. Particular attention is given to the electron transfer reactions on the acceptor side of PS I and to interactions of PS I with exogenous acceptors, including molecular oxygen. A kinetic model of PS I and its interaction with exogenous electron acceptors has been developed. This model is based on experimental kinetics of charge recombination in isolated PS I. Kinetic and thermodynamic parameters of the electron transfer reactions in PS I are scrutinized. The free energies of electron transfer between quinone acceptors A1A/A1B in the symmetric redox cofactor branches of PS I and iron-sulfur clusters FX, FA, and FB have been estimated. The second-order rate constants of electron transfer from PS I to external acceptors have been determined. The data suggest that byproduct formation of superoxide radical in PS I due to the reduction of molecular oxygen in the A1 site (Mehler reaction) can exceed 0.3% of the total electron flux in PS I.
Collapse
Affiliation(s)
- D A Cherepanov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia.
| | | | | | | | | |
Collapse
|
10
|
Kovalenko IB, Knyazeva OS, Antal TK, Ponomarev VY, Riznichenko GY, Rubin AB. Multiparticle Brownian dynamics simulation of experimental kinetics of cytochrome bf oxidation and photosystem I reduction by plastocyanin. PHYSIOLOGIA PLANTARUM 2017; 161:88-96. [PMID: 28369912 DOI: 10.1111/ppl.12570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/22/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
A model of electron transport from cytochrome f to photosystem I mediated by plastocyanin was designed on the basis of the multiparticle Brownian dynamics method. The model combines events which occur over a wide time range, including protein diffusion along the thylakoid membrane, long-distance interactions between proteins, formation of a multiprotein complex, electron transfer within a complex and complex dissociation. Results of the modeling were compared with the experimental kinetics measured in chloroplast thylakoids. Computer simulation demonstrated that the complex interior of the photosynthetic membrane, electrostatic interactions and Brownian diffusion provide physical conditions for the directed electron flow along the photosynthetic electron transport chain.
Collapse
Affiliation(s)
- Ilya B Kovalenko
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Olga S Knyazeva
- Physical Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Taras K Antal
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | - Andrei B Rubin
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
11
|
Mellor S, Nielsen AZ, Burow M, Motawia MS, Jakubauskas D, Møller BL, Jensen PE. Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis. ACS Chem Biol 2016; 11:1862-9. [PMID: 27119279 PMCID: PMC4949584 DOI: 10.1021/acschembio.6b00190] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 01/29/2023]
Abstract
Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane and photosynthesis-driven, NADPH-independent P450 catalytic activity mediated by the electron carrier protein ferredoxin. Here, we report the fusion of ferredoxin with P450 CYP79A1 from the model plant Sorghum bicolor, which catalyzes the initial step in the pathway leading to biosynthesis of the cyanogenic glucoside dhurrin. Fusion with ferredoxin allows CYP79A1 to obtain electrons for catalysis by interacting directly with photosystem I. Furthermore, electrons captured by the fused ferredoxin moiety are directed more effectively toward P450 catalytic activity, making the fusion better able to compete with endogenous electron sinks coupled to metabolic pathways. The P450-ferredoxin fusion enzyme obtains reducing power solely from its fused ferredoxin and outperforms unfused CYP79A1 in vivo. This demonstrates greatly enhanced electron transfer from photosystem I to CYP79A1 as a consequence of the fusion. The fusion strategy reported here therefore forms the basis for enhanced partitioning of photosynthetic reducing power toward P450-dependent biosynthesis of important natural products.
Collapse
Affiliation(s)
- Silas
Busck Mellor
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Agnieszka Zygadlo Nielsen
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Meike Burow
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- DynaMo
Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mohammed Saddik Motawia
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Dainius Jakubauskas
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Birger Lindberg Møller
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Villum
Research Center of Excellence ”Plant Plasticity”, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Center
for Synthetic Biology “bioSYNergy”, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Villum
Research Center of Excellence ”Plant Plasticity”, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Khruschev SS, Abaturova AM, Diakonova AN, Fedorov VA, Ustinin DM, Kovalenko IB, Riznichenko GY, Rubin AB. Brownian-dynamics simulations of protein–protein interactions in the photosynthetic electron transport chain. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Computer modeling of electron and proton transport in chloroplasts. Biosystems 2014; 121:1-21. [PMID: 24835748 DOI: 10.1016/j.biosystems.2014.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/21/2022]
Abstract
Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis.
Collapse
|
14
|
Kovalenko IB, Knyazeva OS, Riznichenko GY, Rubin AB. Computer simulation of plastocyanin interaction with cytochrome f and photosystem I in cyanobacterium Phormidium laminosum. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Antal TK, Kovalenko IB, Rubin AB, Tyystjärvi E. Photosynthesis-related quantities for education and modeling. PHOTOSYNTHESIS RESEARCH 2013; 117:1-30. [PMID: 24162971 DOI: 10.1007/s11120-013-9945-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 10/07/2013] [Indexed: 05/24/2023]
Abstract
A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.
Collapse
Affiliation(s)
- Taras K Antal
- Biological Faculty, Moscow State University, Vorobyevi Gory, 119992, Moscow, Russia
| | | | | | | |
Collapse
|
16
|
Su X, Xu WZ, Liu X, Zhuo RF, Wang CY, Zhang X, Kakutani K, You S. The isolation and identification of a light-induced protein in alfalfa sprouts and the cloning of its specific promoter. Gene 2013; 520:139-47. [DOI: 10.1016/j.gene.2013.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/14/2013] [Accepted: 02/13/2013] [Indexed: 11/30/2022]
|
17
|
Kovalenko IB, Knyazeva OS, Riznichenko GY, Rubin AB. Mechanisms of interaction of electron transport proteins in photosynthetic membranes of cyanobacteria. DOKL BIOCHEM BIOPHYS 2011; 440:213-5. [PMID: 22095121 DOI: 10.1134/s160767291105005x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Indexed: 11/22/2022]
Affiliation(s)
- I B Kovalenko
- Faculty of Biology, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
18
|
Riznichenko GY, Kovalenko IB, Abaturova AM, Diakonova AN, Knyazeva OS, Ustinin DM, Khruschev SS, Rubin AB. Multiparticle computer simulation of protein interactions in the photosynthetic membrane. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911050162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism. J Biol Eng 2011; 5:7. [PMID: 21615937 PMCID: PMC3130634 DOI: 10.1186/1754-1611-5-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/26/2011] [Indexed: 01/11/2023] Open
Abstract
Background FeFe-hydrogenases are the most active class of H2-producing enzymes known in nature and may have important applications in clean H2 energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O2. Results We have developed a synthetic metabolic pathway in E. coli that links FeFe-hydrogenase activity to the production of the essential amino acid cysteine. Our design includes a complementary host strain whose endogenous redox pool is insulated from the synthetic metabolic pathway. Host viability on a selective medium requires hydrogenase expression, and moderate O2 levels eliminate growth. This pathway forms the basis for a genetic selection for O2 tolerance. Genetically selected hydrogenases did not show improved stability in O2 and in many cases had lost H2 production activity. The isolated mutations cluster significantly on charged surface residues, suggesting the evolution of binding surfaces that may accelerate hydrogenase electron transfer. Conclusions Rational design can optimize a fully heterologous three-component pathway to provide an essential metabolic flux while remaining insulated from the endogenous redox pool. We have developed a number of convenient in vivo assays to aid in the engineering of synthetic H2 metabolism. Our results also indicate a H2-independent redox activity in three different FeFe-hydrogenases, with implications for the future directed evolution of H2-activating catalysts.
Collapse
|