1
|
Yan T, Song Y, Zhang D, Wang Z, Li R, Zhang X, Xiang B, Yang L, Lang F, Chu D, Cheng Z. Chicken anemia virus inhibits hematopoiesis and development of chicken embryo. Poult Sci 2025; 104:104857. [PMID: 40036936 PMCID: PMC11926702 DOI: 10.1016/j.psj.2025.104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
Chicken anemia virus (CAV), when primarily transmitted through the vertical route, could result in a significant global prevalence. Specifically, vertical CAV transmission, especially in newly-hatched chicks, may cause anemia and immunosuppression, leading to significant losses in the global poultry industry. Although CAV infection of chick embryos is critical in its vertical transmission, the pathogenicity of CAV in these embryos remains unclear. Herein, CAV-infected chick embryos exhibited a reduced hatchability rate, decreased embryo weight, and anemia. Furthermore, histopathological findings revealed reduced hematopoietic foci in the yolk sac and spleen, as well as pancytopenia and cortical lymphopenia in the bone marrow and thymus, respectively. Additionally, an analysis of the relative expression of transcription factors (TFs) and cell markers demonstrated that CAV inhibited hematopoiesis and T-lymphocyte development. Moreover, the high viral loads and strong immunolabelling highlighted the hematopoietic cells of the yolk sac and bone marrow as the primary target tissues for CAV. It is also noteworthy that the detection of CAV load showed active CAV replication from Embryo Day 15 (ED15) to ED18, implying that CAV replication was activated before hatching. These findings collectively suggest that CAV inhibited hematopoiesis and development in embryos, with its replication activated before hatching. In addition to illuminating CAV pathogenesis, our findings on CAV pathogenicity and tissue tropism in embryos could also guide its prevention and control.
Collapse
Affiliation(s)
- Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yuchen Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Dabin Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Zhuoyuan Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ruiqi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650000, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650000, China
| | - Feng Lang
- Qingdao Yibang Bioengineering Co., Ltd., Qingdao 266000, China
| | - Dianfeng Chu
- Qingdao Yibang Bioengineering Co., Ltd., Qingdao 266000, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Sayed Y, Hassan M, Salem HM, Al-Amry K, Eid G. Probiotics/prebiotics effect on chicken gut microbiota and immunity in relation to heat-stress and climate-change mitigation. J Therm Biol 2025; 129:104097. [PMID: 40186955 DOI: 10.1016/j.jtherbio.2025.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
Heat stress is a serious hazard that threatens world poultry production. The avian gut microbiome plays a critical role in improving nutrient utilization, competing with pathogens, stimulating an immune response, and reducing inflammatory reactions. Hence, the gut microbiome has a positive impact on the host's health which appears in the shape of improved body weight, feed conversion rate, and increased birds' productivity (meat or eggs). Accordingly, this review shed light on the chicken gut microbiome, its correlation with the immunity of chicken, and how this affects the general health condition of the bird as well as, the role of prebiotics and probiotics in improving the gut health and increasing birds' productivity, especially under climate change and heat stress condition. The review aims to focus on the significance of maintaining healthy chickens in order to increase the production of poultry meat to satisfy human needs. A robust microbiota and a well-functioning immune system synergistically contribute to the optimal health and productivity of chickens.
Collapse
Affiliation(s)
- Yara Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, 43511, Suez, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Kasr El-Aini Street, Cairo, 11562, Cairo, Egypt.
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Khaled Al-Amry
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Gamal Eid
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Feng Y, Zhang S, Suo D, Fu T, Li Y, Li Z, Wang C, Fan X. Integrating Metabolomics and Transcriptomics to Analyse and Reveal the Regulatory Mechanisms of Mung Bean Polyphenols on Intestinal Cell Damage Under Different Heat Stress Temperatures. Nutrients 2024; 17:88. [PMID: 39796522 PMCID: PMC11722878 DOI: 10.3390/nu17010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Polyphenols represent a new strategy of dietary intervention for heat stress regulation. METHODS The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels. RESULTS Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways. Under the heat stresses of 39 °C, 41 °C, and 43 °C, the key pathways regulated by mung bean polyphenols on intestinal epithelial Mode-k cells were choline metabolism, pyrimidine metabolism, and the retrograde endorphin signalling pathway in cancer, respectively. FoxO, Rap1, and PI3K-Akt signalling pathways were the key environmental regulatory signalling pathways. Mung bean polyphenols can alleviate heat stress-induced cells at 39 °C by inhibiting cell apoptosis and promoting lipid and amino acid accumulation. Mung bean polyphenols can alleviate the threat of cell death caused by heat stress at 41 °C by regulating heat shock proteins, inhibiting mitochondrial function and some nerve disease-related genes. The threat of cell death by heat stress at 43 °C can be alleviated by regulating nerve-related genes. CONCLUSIONS This study confirmed that mung bean polyphenols can regulate heat stress. The results provide a reference for analysing the mechanism of dietary polyphenol regulating heat stress.
Collapse
Affiliation(s)
- Yuchao Feng
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Decheng Suo
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| | - Tianxin Fu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Ying Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Zetong Li
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Z.); (T.F.); (Y.L.)
| | - Xia Fan
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.F.); (D.S.); (Z.L.)
| |
Collapse
|
4
|
Mangan M, Reszka P, Połtowicz K, Siwek M. Effects of Lactiplantibacillus plantarum and Galactooligosaccharide Administered In Ovo on Hatchability, Chick Quality, Performance, Caecal Histomorphology and Meat Quality Traits of Broiler Chickens. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39704044 DOI: 10.1111/jpn.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The presented study explored the promising alternatives of in ovo injection with Lactiplantibacillus plantarum (LP) and galactooligosaccharide (GOS) in the poultry industry. The study aimed to assess the effects of probiotic and prebiotic on various aspects of poultry production. The study involved 300 Ross broiler eggs, individually candled on Day 7 of embryonic development. The eggs were sorted into four groups: negative control (no injection), positive control (0.9% physiological saline injection), GOS 3.5 mg/egg and LP 1 × 106 CFU/egg. The groups used during the incubation period were the same for the animal trial; each pen/group had 25 chickens. At the end of the experiment, 8 chickens from each group were slaughtered for tissue sample collection and 12 chickens were slaughtered to determine slaughter yield, carcass and meat quality. All data were analysed by one-way ANOVA or repeated measured ANOVA except for the parameters that did not meet the assumption of normality, the Kruskal-Wallis test (Dunn's test) was used. Key findings revealed that hatchability remained unaffected across groups, indicating the safety of the in ovo injections. Both LP and GOS enhanced chick quality, as evidenced by improved body weight, Pasgar score and chick length. The in ovo administration of LP increased the body weight of the chickens during the first-week post-hatch (7 days of age) without impacting feed intake and feed conversion ratio in the later stages. The study demonstrated no adverse effects on meat quality due to the in ovo injection of LP and GOS. Additionally, a positive impact on caecal histomorphology was observed and early gut colonization of beneficial bacteria (Lactobacillus spp. and Bifidobacteria spp.) indicated potential benefits for intestinal health in broilers. In conclusion, the in ovo inoculation of 1 × 106 LP and 3.5 mg of GOS per egg increased the relative abundance of Lactobacillus spp. and Bifidobacterium spp. and showcased promising enhancements in chick quality without compromising growth performance, meat quality and caecal histomorphology. These findings suggest a positive outlook for these substances as a viable alternative for improving poultry health and productivity.
Collapse
Affiliation(s)
- M Mangan
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology (PBS), Bydgoszcz, Poland
| | - P Reszka
- Department of Animal Physiology, Physiotherapy and Nutrition, Bydgoszcz University of Science and Technology (PBS), Bydgoszcz, Poland
| | - K Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland
| | - M Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology (PBS), Bydgoszcz, Poland
| |
Collapse
|
5
|
Slawinska A, Dunisławska A, Kowalczyk A, Łukaszewicz E, Siwek M. Immune-Related Gene Expression Responses to In Ovo Stimulation and LPS Challenge in Two Distinct Chicken Genotypes. Genes (Basel) 2024; 15:1585. [PMID: 39766852 PMCID: PMC11675432 DOI: 10.3390/genes15121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In ovo stimulation introduces bioactive compounds, such as prebiotics, probiotics, or synbiotics into incubating eggs to enhance gut health and immune system development in chickens. This study aimed to determine the genetic and environmental effects modulating responses to in ovo stimulation in commercial broilers and Green-legged Partridge-like (GP) native chickens. METHODS Eggs were stimulated on day 12 of incubation with prebiotics (GOS-galactooligosaccharides), probiotics (Lactococcus lactis subsp. cremoris), or synbiotics (GOS + L. lactis), with controls being mock-injected. Hatched chicks were reared in group pens and challenged with lipopolysaccharide (LPS) on day 42 post-hatching. Cecal tonsils (CT) and spleens were harvested 2 h post-challenge. RT-qPCR was used to analyze the relative gene expression of cytokine genes: IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12p40, and IL-17. RESULTS The results show that genotype influenced the expression of all immune-related genes, with broiler chickens exhibiting stronger innate inflammatory responses than native chickens. LPS induced both mucosal (CT) and systemic (spleen) immune responses in broilers but only systemic (spleen) responses in native chickens. CONCLUSIONS In ovo stimulation had less of an impact on cytokine gene expression than LPS challenge. Broilers expressed higher inflammatory immune responses than GP native chickens.
Collapse
Affiliation(s)
- Anna Slawinska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, St. Mazowiecka 28, 85-084 Bydgoszcz, Poland
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Szosa Bydgoska 13, 87-100 Toruń, Poland
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, St. Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Artur Kowalczyk
- Division of Poultry Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (A.K.); (E.Ł.)
| | - Ewa Łukaszewicz
- Division of Poultry Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (A.K.); (E.Ł.)
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, St. Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
6
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
7
|
Mangan M, Siwek M. Strategies to combat heat stress in poultry production-A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:576-595. [PMID: 38152002 DOI: 10.1111/jpn.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
The effects of heat stress (HS) caused by high temperatures continue to be a global concern in poultry production. Poultry birds are homoeothermic, however, modern-day chickens are highly susceptible to HS due to their inefficiency in dissipating heat from their body due to the lack of sweat glands. During HS, the heat load is higher than the chickens' ability to regulate it. This can disturb normal physiological functioning, affect metabolism and cause behavioural changes, respiratory alkalosis and immune dysregulation in birds. These adverse effects cause gut dysbiosis and, therefore, reduce nutrient absorption and energy metabolism. This consequently reduces production performances and causes economic losses. Several strategies have been explored to combat the effects of HS. These include environmentally controlled houses, provision of clean cold water, low stocking density, supplementation of appropriate feed additives, dual and restricted feeding regimes, early heat conditioning and genetic selection of poultry lines to produce heat-resistant birds. Despite all these efforts, HS still remains a challenge in the poultry sector. Therefore, there is a need to explore effective strategies to address this long-lasting problem. The most recent strategy to ameliorate HS in poultry is early perinatal programming using the in ovo technology. Such an approach seems particularly justified in broilers because chick embryo development (21 days) equals half of the chickens' posthatch lifespan (42 days). As such, this strategy is expected to be more efficient and cost-effective to mitigate the effects of HS on poultry and improve the performance and health of birds. Therefore, this review discusses the impact of HS on poultry, the advantages and limitations of the different strategies. Finally recommend a promising strategy that could be efficient in ameliorating the adverse effects of HS in poultry.
Collapse
Affiliation(s)
- Modou Mangan
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
8
|
Zhang H, Pertiwi H, Hou Y, Majdeddin M, Michiels J. Protective effects of Lactobacillus on heat stress-induced intestinal injury in finisher broilers by regulating gut microbiota and stimulating epithelial development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170410. [PMID: 38280596 DOI: 10.1016/j.scitotenv.2024.170410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Heat stress (HS) is a critical challenge in broilers due to the high metabolic rate and lack of sweat glands. Results from this study show that implementing a cyclic chronic HS (34 °C for 7 h/d) to finisher broilers decreased the diversity of cecal microbiota and impaired intestinal barrier, resulting in gut leak and decreased body weight (both P < 0.05). These alterations might be related to inflammatory outbursts and the retarded proliferation of intestinal epithelial cells (IECs) according to the transcriptome analysis. Considering the potential beneficial properties of Lactobacillus on intestinal development and function, the protective effects of Lactobacillus rhamnosus (L. rhamnosus) on the intestine were investigated under HS conditions in this study. Orally supplemented L. rhamnosus improved the composition of cecal microbiota and upregulated the transcription of tight junction proteins in both duodenum and jejunum, with a consequent suppression in intestinal gene expressions of pro-inflammatory cytokines and facilitation in digestive capability. Meanwhile, the jejunal villus height of the birds that received L. rhamnosus was significantly higher compared with those treated with the broth (P < 0.05). The expression abundances of genes related to IECs proliferation and differentiation were increased by L. rhamnosus, along with upregulated mRNA levels of Wnt3a and β-catenin in jejunum. In addition, L. rhamnosus attenuated enterocyte apoptosis as indicated by decreased caspase-3 and caspase-9 gene expressions. The results indicated that oral administration with L. rhamnosus mitigated HS-induced dysfunction by promoting intestinal development and epithelial maturation in broilers and that the effects of L. rhamnosus might be dependent of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium.
| | - Herinda Pertiwi
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
9
|
Al Amaz S, Chaudhary A, Mahato PL, Jha R, Mishra B. Pre-hatch thermal manipulation of embryos and post-hatch baicalein supplementation mitigated heat stress in broiler chickens. J Anim Sci Biotechnol 2024; 15:8. [PMID: 38246989 PMCID: PMC10802028 DOI: 10.1186/s40104-023-00966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND High environmental temperatures induce heat stress in broiler chickens, affecting their health and production performance. Several dietary, managerial, and genetics strategies have been tested with some success in mitigating heat stress (HS) in broilers. Developing novel HS mitigation strategies for sustaining broiler production is critically needed. This study investigated the effects of pre-hatch thermal manipulation (TM) and post-hatch baicalein supplementation on growth performance and health parameters in heat-stressed broilers. RESULTS Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5 °C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19 to 21, standard temperature) and 236 eggs were incubated at a controlled temperature (37.5 °C) till hatch. After hatch, 180-day-old chicks from both groups were raised in 36 pens (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) control heat stress (CHS), 4) thermal manipulation heat stress (TMHS), 5) control heat stress supplement (CHSS), and 6) thermal manipulation heat stress supplement (TMHSS). All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 °C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24 °C) environment was maintained in the Control and TM groups. RH was constant (50% ± 5%) throughout the trial. All the data were analyzed using one-way ANOVA in R and GraphPad software at P < 0.05 and are presented as mean ± SEM. Heat stress significantly decreased (P < 0.05) the final body weight and ADG in CHS and TMHS groups compared to the other groups. Embryonic TM significantly increased (P < 0.05) the expression of heat shock protein-related genes (HSP70, HSP90, and HSPH1) and antioxidant-related genes (GPX1 and TXN). TMHS birds showed a significant increment (P < 0.05) in total cecal volatile fatty acid (VFA) concentration compared to the CHS birds. The cecal microbial analysis showed significant enrichment (P < 0.05) in alpha and beta diversity and Coprococcus in the TMHSS group. CONCLUSIONS Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens' growth performance, upregulate favorable gene expression, increase VFA production, and promote gut health by increasing beneficial microbial communities.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Prem Lal Mahato
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
10
|
Zhang H, Pertiwi H, Majdeddin M, Michiels J. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 inhibition alleviates intestinal impairment induced by chronic heat stress in finisher broilers. Poult Sci 2024; 103:103252. [PMID: 37980762 PMCID: PMC10685026 DOI: 10.1016/j.psj.2023.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023] Open
Abstract
Heat stress (HS) in poultry has deleterious effects on intestinal development and barrier function, along with inflammatory outbursts. In the present study, chronic HS reduced body weight of broilers and activated mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) /nuclear factor kappa B (NF-κB) signaling pathways to elicit the inflammatory cytokine response in jejunum. Subsequently, this study investigated the protective effects of the Malt1 inhibitor on the intestine of broilers under HS conditions. The 21-day-old male broilers were allocated to 8 pens housed in HS room (34°C for 7 h/d) until 28 d of age. During this period, 4 birds were selected from each heat-stressed pen and received intraperitoneal injection of 20 mg/kg body weight Mepazine (a Malt1 inhibitor) or the equivalent volume of phosphate buffer saline (PBS) every other day. When compared to PBS broilers, birds received Mepazine injection exhibited increased relative weight and higher villus height in jejunum (both P < 0.05). Mepazine treatment also increased (P < 0.05) the mRNA of zonula occludens-1 (ZO-1), claudin-1, and cadherin 1 of jejunum, which was companied by the reduced caspase-3 transcription under HS condition. Meanwhile, the gene expression levels of toll-like receptor 4 (TLR4), Malt1, NF-κB, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in the jejunum were significantly downregulated by Mepazine administration (P < 0.05). Although there were no significant differences in the relative weight of the thymus and bursa, the transcription levels of T helper 1 (Th1)- and Th17-related cytokines were lower in thymus of birds injected with Mepazine. The cytokines of Treg cytokine transforming growth factor beta (TGF-β) and forkhead box protein P3 (Foxp3) in both the thymus and bursa were not influenced. These results suggest that inhibition of Malt1 protease activity can protect intestinal integrity by promoting the production of tight junction proteins and attenuating NF-κB-mediated intestinal inflammation response under HS conditions.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium.; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Herinda Pertiwi
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium..
| |
Collapse
|
11
|
Tavaniello S, De Marzo D, Bednarczyk M, Palazzo M, Zejnelhoxha S, Wu M, Peng M, Stadnicka K, Maiorano G. Influence of a Commercial Synbiotic Administered In Ovo and In-Water on Broiler Chicken Performance and Meat Quality. Foods 2023; 12:2470. [PMID: 37444208 DOI: 10.3390/foods12132470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The present study aimed to test the synbiotic PoultryStar® solUS delivered in ovo to evaluate its effect on hatchability, productive performance and meat quality, compared to its post-hatch administration in water. On the twelfth day of embryonic incubation, 1200 fertile eggs were divided into synbiotic groups injected with 2 mg/embryo (T1) and 3 mg/embryo (T2), a saline group injected with physiological saline and an uninjected control group (C). After hatching, 120 male chicks/group were reared and chicks from the saline group were supplemented with the synbiotic via drinking water (T3). Hatchability was low in both T1 and T2 groups. Growth performance was not affected by the treatments. However, in the second rearing phase (15-36 days), birds from the C and T3 groups were heavier than T1 birds, due to a higher feed intake and daily weight gain. Neither route of synbiotic administration influenced final body weight (at 56 days), weight and yield of the carcass or commercial cuts. Physico-chemical properties, total lipid, cholesterol and fatty acid composition of breast muscle were not affected by the treatments. Considering its exploratory nature, this study has raised many questions that need further investigation, such as the bioactive combination and the effect on embryonic development.
Collapse
Affiliation(s)
- Siria Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Davide De Marzo
- Department of Precision and Regenerative Medicine and Jonian Area, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', 70010 Valenzano, Italy
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Marisa Palazzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Sanije Zejnelhoxha
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Mengjun Wu
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Meng Peng
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Katarzyna Stadnicka
- Department of Oncology, Faculty of Health Sciences, Collegium Medicum Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
12
|
Goel A, Ncho CM, Gupta V, Choi YH. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. ANIMAL NUTRITION 2023; 13:150-159. [PMID: 37123616 PMCID: PMC10130083 DOI: 10.1016/j.aninu.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Healthy chickens are necessary to meet the ever-increasing demand for poultry meat. Birds are subjected to numerous stressful conditions under commercial rearing systems, including variations in the environmental temperature. However, it is difficult to counter the effects of global warming on the livestock industry. High environmental temperature is a stressful condition that has detrimental effects on growth and production performance, resulting in decreased feed intake, retarded growth, compromised gut health, enhanced oxidative stress, and altered immune responses. Traditional approaches include nutritional modification and housing management to mitigate the harmful effects of hot environments. Currently, broiler chickens are more susceptible to heat stress (HS) than layer chickens because of their high muscle mass and metabolic rate. In this review, we explored the possibility of in ovo manipulation to combat HS in broiler chickens. Given their short lifespan from hatching to market age, embryonic life is thought to be one of the critical periods for achieving these objectives. Chicken embryos can be modulated through either temperature treatment or nourishment to improve thermal tolerance during the rearing phase. We first provided a brief overview of the harmful effects of HS on poultry. An in-depth evaluation was then presented for in ovo feeding and thermal manipulation as emerging strategies to combat the negative effects of HS. Finally, we evaluated a combination of the two methods using the available data. Taken together, these investigations suggest that embryonic manipulation has the potential to confer heat resistance in chickens.
Collapse
|
13
|
Oladokun S, Adewole DI. Biomarkers of heat stress and mechanism of heat stress response in Avian species: Current insights and future perspectives from poultry science. J Therm Biol 2022; 110:103332. [DOI: 10.1016/j.jtherbio.2022.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
14
|
Identification of Novel mRNA Isoforms Associated with Acute Heat Stress Response Using RNA Sequencing Data in Sprague Dawley Rats. BIOLOGY 2022; 11:biology11121740. [PMID: 36552250 PMCID: PMC9774719 DOI: 10.3390/biology11121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
The molecular mechanisms underlying heat stress tolerance in animals to high temperatures remain unclear. This study identified the differentially expressed mRNA isoforms which narrowed down the most reliable DEG markers and molecular pathways that underlie the mechanisms of thermoregulation. This experiment was performed on Sprague Dawley rats housed at 22 °C (control group; CT), and three acute heat-stressed groups housed at 42 °C for 30 min (H30), 60 min (H60), and 120 min (H120). Earlier, we demonstrated that acute heat stress increased the rectal temperature of rats, caused abnormal changes in the blood biochemical parameters, as well as induced dramatic changes in the expression levels of genes through epigenetics and post-transcriptional regulation. Transcriptomic analysis using RNA-Sequencing (RNA-Seq) data obtained previously from blood (CT and H120), liver (CT, H30, H60, and H120), and adrenal glands (CT, H30, H60, and H120) was performed. The differentially expressed mRNA isoforms (DEIs) were identified and annotated by the CLC Genomics Workbench. Biological process and metabolic pathway analyses were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A total of 225, 5764, and 4988 DEIs in the blood, liver, and adrenal glands were observed. Furthermore, the number of novel differentially expressed transcript lengths with annotated genes and novel differentially expressed transcript with non-annotated genes were 136 and 8 in blood, 3549 and 120 in the liver, as well as 3078 and 220 in adrenal glands, respectively. About 35 genes were involved in the heat stress response, out of which, Dnaja1, LOC680121, Chordc1, AABR07011951.1, Hsp90aa1, Hspa1b, Cdkn1a, Hmox1, Bag3, and Dnaja4 were commonly identified in the liver and adrenal glands, suggesting that these genes may regulate heat stress response through interactions between the liver and adrenal glands. In conclusion, this study would enhance our understanding of the complex underlying mechanisms of acute heat stress, and the identified mRNA isoforms and genes can be used as potential candidates for thermotolerance selection in mammals.
Collapse
|
15
|
Du J, Shi Y, Zhou C, Guo L, Hu R, Huang C, Hu G, Gao X, Guo X. Antioxidative and anti-inflammatory effects of vitamin C on the liver of laying hens under chronic heat stress. Front Vet Sci 2022; 9:1052553. [PMID: 36387409 PMCID: PMC9650548 DOI: 10.3389/fvets.2022.1052553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the therapeutic effect and mechanism of action of vitamin C on chronic heat stress (CHS)-induced liver oxidative damage and inflammation in laying hens. The thermoneutral control group (TN group) was kept at a constant temperature of 22 ± 1°C, while the chronic heat stress group (CHS group) and the vitamin C supplemented group (HSV group) were exposed to heat stress (HS) (36 ± 1°C, 8 h/d). The TN and HS groups were fed the basic diet at will, and the HSV group was supplemented with 300 mg/kg of vitamin C on top of the basic diet. The experimental results showed a significant improvement in body weight and feed intake in the HSV group compared to the HS group. A significantly lower pH and higher HCO3- and PCO2 levels were observed in the HSV group compared to the CHS group. As laying hens were supplemented with vitamin C, serum malondialdehyde (MDA) level was declined, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were increased, and total antioxidant capacity (T-AOC) was increased. Further, CHS induced an increase in the expression of inflammation-related genes and a decrease in the expression of antioxidant-related genes. In contrast, the addition of vitamin C reversed the effects of CHS, resulting in an increase in the expression of antioxidant-related genes and a decrease in the expression of inflammation-related genes. In conclusion, vitamin C can effectively alleviate CHS-induced acid-base imbalance in body fluids of laying hens and the oxidative damage and inflammatory response caused to the liver. Therefore, vitamin C can be used clinically as an effective drug to alleviate chronic heat stress in laying hens. This experiment provides clinical evidence and theoretical basis for the use of vitamin C as an effective drug to alleviate chronic heat stress in laying hens.
Collapse
Affiliation(s)
- Jun Du
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lianying Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Xiaona Gao
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Xiaoquan Guo
| |
Collapse
|
16
|
Tang S, Xie J, Fang W, Wen X, Yin C, Meng Q, Zhong R, Chen L, Zhang H. Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs. ANIMAL NUTRITION 2022; 11:228-241. [PMID: 36263409 PMCID: PMC9556788 DOI: 10.1016/j.aninu.2022.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
|
17
|
Ncho CM, Goel A, Gupta V, Jeong CM, Choi YH. Embryonic manipulations modulate differential expressions of heat shock protein, fatty acid metabolism, and antioxidant-related genes in the liver of heat-stressed broilers. PLoS One 2022; 17:e0269748. [PMID: 35839219 PMCID: PMC9286270 DOI: 10.1371/journal.pone.0269748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, the effects of in ovo feeding of γ-aminobutyric acid (GABA) and embryonic thermal manipulation (TM) on plasma biochemical parameters, organ weights, and hepatic gene expression in broilers exposed to cyclic heat stress (32 ± 1°C for 8 days) (HS) were investigated. A total of 175 chicks were assigned to five treatments: chicks hatched from control eggs (CON); chicks hatched from control eggs but exposed to HS (CON+HS); chicks hatched from eggs injected at 17.5 days of incubation with 0.6mL of 10% GABA and exposed to HS (G10+HS); chicks hatched from thermally manipulated eggs (39.6°C, 6h/d from embryonic days 10 to 18) and exposed to HS (TM+HS); chicks hatched from eggs that received both previous treatments during incubation and exposed to HS (G10+TM+HS). Results revealed that on day 36 post-hatch, hepatic NADPH oxidase 1 (P = 0.034) and 4 (P = 0.021) genes were downregulated in the TM+HS and G10+TM+HS compared to the CON+HS group. In addition, while acetyl-CoA carboxylase gene expression was reduced (P = 0.002) in the G10+TM group, gene expression of extracellular fatty acid-binding protein and peroxisome proliferator-activated receptor-γ was lower (P = 0.045) in the TM+HS group than in the CON+HS group. HS led to higher gene expression of heat shock protein 70 (HSP70) and 90 (HSP90) (P = 0.005, and P = 0.022). On the other hand, the TM+HS group exhibited lower expression of both HSP70 (P = 0.031) and HSP90 (P = 0.043) whereas the G10+TM+HS group had a reduced (P = 0.016) HSP90 expression compared to the CON+HS. MANOVA on different gene sets highlighted an overall lower (P = 0.034) oxidative stress and lower (P = 0.035) heat shock protein expression in the G10+TM+HS group compared to the CON+HS group. Taken together, the current results suggest that the combination of in ovo feeding of GABA with TM can modulate HSPs and antioxidant-related gene expression in heat-stressed broilers.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Campbell AM, Johnson AM, Persia ME, Jacobs L. Effects of Housing System on Anxiety, Chronic Stress, Fear, and Immune Function in Bovan Brown Laying Hens. Animals (Basel) 2022; 12:1803. [PMID: 35883350 PMCID: PMC9311790 DOI: 10.3390/ani12141803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 01/20/2023] Open
Abstract
The scientific community needs objective measures to appropriately assess animal welfare. The study objective was to assess the impact of housing system on novel physiological and behavioral measurements of animal welfare for laying hens, including secretory and plasma Immunoglobulin (IgA; immune function), feather corticosterone (chronic stress), and attention bias testing (ABT; anxiety), in addition to the well-validated tonic immobility test (TI; fearfulness). To test this, 184 Bovan brown hens were housed in 28 conventional cages (3 birds/cage) and 4 enriched pens (25 birds/pen). Feces, blood, and feathers were collected 4 times between week 22 and 43 to quantify secretory and plasma IgA and feather corticosterone concentrations. TI tests and ABT were performed once. Hens that were from cages tended to show longer TI, had increased feather corticosterone, and decreased secretory IgA at 22 weeks of age. The caged hens fed quicker, and more hens fed during the ABT compared to the penned hens. Hens that were in conventional cages showed somewhat poorer welfare outcomes than the hens in enriched pens, as indicated by increased chronic stress, decreased immune function at 22 weeks of age but no other ages, somewhat increased fear, but reduced anxiety. Overall, these novel markers show some appropriate contrast between housing treatments and may be useful in an animal welfare assessment context for laying hens. More research is needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | - Leonie Jacobs
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (A.M.C.); (A.M.J.); (M.E.P.)
| |
Collapse
|
19
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Early-life galacto-oligosaccharides supplementation alleviates the small intestinal oxidative stress and dysfunction of lipopolysaccharide-challenged suckling piglets. J Anim Sci Biotechnol 2022; 13:70. [PMID: 35655292 PMCID: PMC9164537 DOI: 10.1186/s40104-022-00711-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) are non-digestible food ingredients that promote the growth of beneficial bacteria in the gut. This study investigated the protective effect of the early-life GOS supplement on the piglets' gut function against the oxidative stress induced by lipopolysaccharide (LPS)-challenge. METHODS Eighteen neonatal piglets were assigned to three groups including CON, LPS and LPS + GOS groups. The piglets in CON group and LPS group received physiological saline, while those in LPS + GOS group received GOS solution for 13 d after birth. On d 14, the piglets in LPS group and LPS + GOS group were injected with LPS solutions, while the piglets in CON group were injected with the same volume of physiological saline. RESULTS The results showed that the early-life GOS supplement blocked the LPS-induced reactive oxygen species (ROS) secretion, malondialdehyde (MDA) production and the increase of pro-apoptotic factor expression. Meanwhile, the early-life GOS supplement improved the activities of antioxidant enzymes, disaccharidase enzymes activities, and digestive enzymes activities, and increased the mRNA abundance of the gene related to nutrient digestion and absorption and the relative protein expression of tight junction. The study also showed that the early-life GOS supplement improved the expression of Hemeoxygenase-1 (HO-1) and NAD(P)H/quinone acceptor oxidoreductase-1 (NQO-1), and activated the AMP-activated protein kinase (AMPK). CONCLUSIONS These results suggested that GOS enhanced the gut function, reduced the ROS production and pro-apoptotic factors gene expression, and activated the AMPK signaling pathway in LPS-challenged piglets.
Collapse
Affiliation(s)
- Shiyi Tian
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jue Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Tavaniello S, Slawinska A, Sirri F, Wu M, De Marzo D, Siwek M, Maiorano G. Performance and meat quality traits of slow-growing chickens stimulated in ovo with galactooligosaccharides and exposed to heat stress. Poult Sci 2022; 101:101972. [PMID: 35760001 PMCID: PMC9241043 DOI: 10.1016/j.psj.2022.101972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
In vivo performance, carcass and meat quality traits of slow-growing chickens stimulated in ovo with trans galactooligosaccharides (GOS) and exposed to heat stress were evaluated. On d 12 of egg incubation, 3,000 fertilized eggs (Hubbard JA57) were divided into prebiotic group (GOS) injected with 3.5 mg GOS/egg, saline group (S) injected with physiological saline (only to assess the hatchability rate) and an uninjected control group (C). After hatching, 600 male chicks (300 from GOS and 300 from C) were housed on floor pens (6 pens/treatment, 25 birds/pen) and reared under neutral (TN) or heat stress conditions (HS, 30°C from 36 to 50 d). BW, daily feed intake (DFI), daily weight gain (DWG), feed conversion rate (FCR), and mortality were measured. At 50 d of age, 15 randomly selected birds/treatment/environmental conditions were slaughtered and the pectoral muscle (PM) was collected for analyses. Hatchability was similar among groups. BW of the newly hatched chicks was lower (P < 0.01) in GOS compared to C. Final BW, DWG, DFI, and FCR were not affected (P > 0.05) by GOS. HS reduced final BW (−12.93%, P < 0.001). During finisher phase, DFI and DWG were lower (P < 0.001) and FCR was higher (P < 0.01) in HS compared to TN. Mortality was not affected (P > 0.05) by GOS and HS. Meat from GOS chickens had a higher (P < 0.01) pH and was darker (P < 0.05) compared to C. Proximate composition, cholesterol content, fatty acid profile, and intramuscular collagen properties of PM were not affected by GOS. The HS group showed a lower (P < 0.05) content of both collagen and monounsaturated fatty acids than TN group. Significant interactions between GOS and temperature were found for FA composition. In conclusion, the differences in performance have had an impact on the responses to HS in Hubbard chickens, but not on mortality rate. GOS did not relieve the negative effect of HS on chickens’ performance.
Collapse
|
21
|
Effect of Zeolite Supplementation on Gene Expression in the Intestinal Mucosa in the Context of Immunosafety Support in Poultry. Genes (Basel) 2022; 13:genes13050732. [PMID: 35627116 PMCID: PMC9140869 DOI: 10.3390/genes13050732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Zeolite is an effective and non-toxic silicate mineral. Its properties are widely used in industry due to its sorption and ion exchange properties. Due to its excellent chemical properties, it has also great potential in poultry production as a food additive or supplement to bedding. This is of great importance for the biosafety and hygiene of production. The study aimed to analyse the effects of simultaneous application of zeolite to feed and bedding on production parameters and expression of genes related to intestinal tightness, organism defence, and immune response. Male Ross 308 broiler chickens were used in the experiment. In the experimental group, an external factor in the form of a powdery zeolite was used for feed and pelleted bedding. On the day of slaughter, the caecal mucosa was collected for gene expression analysis. We showed no significant changes in the tissue composition of the carcasses, but zeolite had a beneficial effect on the carcass yield. The analysis of the immune gene panel showed a significant increase in the expression of the interleukins and interferons genes. We have demonstrated the effect of zeolite on the improvement of the intestinal barrier and increasing the tightness of the intestines. There were no changes in gene expression related to the host’s defence against infections; therefore, based on the obtained results, it was concluded that zeolite can be considered an immunomodulating factor of the immune system.
Collapse
|
22
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Galacto-oligosaccharides directly attenuate lipopolysaccharides-induced inflammatory response, oxidative stress and barrier impairment in intestinal epithelium. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Feng Y, Fan X, Suo D, Zhang S, Ma Y, Wang H, Guan X, Yang H, Wang C. Screening of heat stress-regulating active fractions in mung beans. Front Nutr 2022; 9:1102752. [PMID: 36890864 PMCID: PMC9986443 DOI: 10.3389/fnut.2022.1102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/19/2022] [Indexed: 02/22/2023] Open
Abstract
Introduction Heat stress caused by high temperatures has important adverse effects on the safety and health status of humans and animals, and dietary interventions to alleviate heat stress in daily life are highly feasible. Methods In this study, the components of mung bean that have heat stress-regulating effects were characterized by in vitro antioxidant indicators and heat stress cell models. Results As a result, 15 target monomeric polyphenol fractions were identified based on untargeted analysis on an ultra performance liquid chromatography coupled with high field quadrupole orbit high resolution mass spectrometry (UHPLC-QE-HF-HRMS) platform and available reports. The results of DPPH and ABTS radical scavenging showed that mung bean polyphenols (crude extract) and 15 monomeric polyphenols had better antioxidant activity, followed by oil and mung bean peptides, while protein and polysaccharides had relatively poor antioxidant activity. Qualitative and quantitative assays for 20 polyphenols (15 polyphenols and 5 isomers) were then established based on platform targets. Vitexin, orientin, and caffeic acid were identified as monomeric polyphenols for heat stress control in mung beans based on their content. Finally, mild (39°C), moderate (41°C), and severe (43°C) heat stress models were successfully constructed based on mouse intestinal epithelial Mode-k cells and human colorectal adenocarcinoma Caco-2 cell lines, all with an optimal heat stress modeling time of 6 h. Screening of mung bean fractions using HSP70 mRNA content, a key indicator of heat stress. As a result, HSP70 mRNA content was significantly up-regulated by different levels of heat stress in both cell models. The addition of mung bean polyphenols (crude extract), vitexin, orientin, and caffeic acid resulted in significant down-regulation of HSP70 mRNA content, and the higher the level of heat stress, the more significant the regulation effect, with orientin having the best effect. Mung bean proteins, peptides, polysaccharides, oils and mung bean soup resulted in increased or no change in HSP70 mRNA levels after most heat stresses. Discussion The polyphenols were shown to be the main heat stress regulating components in mung bean. The results of the validation experiments confirm that the above three monomeric polyphenols may be the main heat stress regulating substances in mung bean. The role of polyphenols in the regulation of heat stress is closely linked to their antioxidant properties.
Collapse
Affiliation(s)
- Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China.,Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.,Chinese National Engineering Research Center, Daqing, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengcheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China.,Chinese National Engineering Research Center, Daqing, China
| | - Yantao Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China.,Chinese National Engineering Research Center, Daqing, China
| | - Haoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China.,Chinese National Engineering Research Center, Daqing, China
| | - Xin Guan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongzhi Yang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China.,Chinese National Engineering Research Center, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China.,Chinese National Engineering Research Center, Daqing, China
| |
Collapse
|
24
|
Biswal J, Vijayalakshmy K, T. K B, Rahman H. Impact of heat stress on poultry production. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.2003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jyotsnarani Biswal
- South Asia Regional Office, International Livestock Research Institute, New Delhi, India
| | - Kennady Vijayalakshmy
- South Asia Regional Office, International Livestock Research Institute, New Delhi, India
| | - Bhattacharya T. K
- Molecular Genetics, ICAR – Directorate of Poultry Research (DPR), Hyderabad, India
| | - Habibar Rahman
- South Asia Regional Office, International Livestock Research Institute, New Delhi, India
| |
Collapse
|
25
|
The Impact of Hydrated Aluminosilicates Supplemented in Litter and Feed on Chicken Growth, Muscle Traits and Gene Expression in the Intestinal Mucosa. Animals (Basel) 2021; 11:ani11082224. [PMID: 34438682 PMCID: PMC8388497 DOI: 10.3390/ani11082224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Poultry meat production has many challenges; one of them is the optimized use of natural feed and litter additives. Aluminosilicates have many properties, stimulating both the health and growth of birds and influencing the hygienic status of production. The objectives of the study were to compare growth, meat quality traits and gene expression in the intestinal mucosa of chickens, where halloysite and zeolite were added to the feed and litter simultaneously. There was a similar growth performance in all tested groups. There was no negative impact on most of the meat characteristics, and a positive effect on the water-holding capacity of the breast muscles was observed. The immunostimulatory and immunoregulatory properties of natural minerals have been demonstrated. Therefore, their use in the production of broiler chickens can be recommended. Abstract The aim of the study was to compare the production, muscle traits and gene expression in the intestinal mucosa of chickens supplemented with aluminosilicates in feed and litter simultaneously. A total of 300 Ross 308 were maintained for 42 days. Group 1 was the control group. In group 2, 0.650 kg/m2 of halloysite was added to the litter and 0.5–2% to the feed (halloysite and zeolite in a 1:1 ratio); in group 3, we added zeolite (0.650 kg/m2) to the litter and 0.5–2% to the feed. The production parameters, the slaughter yield and analyses of muscle quality were analyzed. There was a higher body weight, body weight gain and feed conversion ratio on day 18 and 33 in group 3, and a higher feed intake on day 19–33 in groups 2 and 3 than in 1. A lower water-holding capacity was found in the breasts of group 2 and in the legs of group 3 compared to group 1. The expression of genes related to the immune response, host defense and intestinal barrier and nutrient sensing in the intestinal tissue was analyzed. The results show a beneficial effect on the immune status of the host without an adverse effect on the expression of genes related to intestinal tightness or nutritional processes. Due to the growth, meat characteristics and the positive impact of immunostimulant and regulating properties, aluminosilicates can be suggested as a litter and feed additive in the rearing of chickens.
Collapse
|
26
|
Breast muscle and plasma metabolomics profile of broiler chickens exposed to chronic heat stress conditions. Animal 2021; 15:100275. [PMID: 34120075 DOI: 10.1016/j.animal.2021.100275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding the variations of muscle and plasma metabolites in response to high environmental temperature can provide important information on the molecular mechanisms related to body energy homeostasis in heat-stressed broiler chickens. In this study, we investigated the effect of chronic heat stress conditions on the breast muscle (Pectoralis major) and plasma metabolomics profile of broiler chickens by means of an innovative, high-throughput analytical approach such as the proton nuclear magnetic resonance (1H NMR) spectrometry. A total of 300 Ross 308 male chicks were split into two experimental groups and raised in either thermoneutral conditions for the entire rearing cycle (0-41 days) (TNT group; six replicates of 25 birds/each) or exposed to chronic heat stress conditions (30 °C for 24 h/day) from 35 to 41 days (CHS group; six replicates of 25 birds/each). At processing (41 days), plasma and breast muscle samples were obtained from 12 birds/experimental group and then subjected to 1H NMR analysis. The reduction of BW and feed intake as well as the increase in rectal temperature and heterophil: lymphocyte ratio confirmed that our experimental model was able to stimulate a thermal stress response without significantly affecting mortality. The 1H NMR analysis revealed that a total of 26 and 19 molecules, mostly related to energy and protein metabolism as well as antioxidant response, showed significantly different concentrations respectively in the breast muscle and plasma in response to the thermal challenge. In conclusion, the results obtained in this study indicated that chronic heat stress significantly modulates the breast muscle and plasma metabolome in fast-growing broiler chickens, allowing to delineate potential metabolic changes that can have important implications in terms of body energy homeostasis, growth performance and product quality.
Collapse
|
27
|
Bacillus subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals (Basel) 2021; 11:ani11061494. [PMID: 34064126 PMCID: PMC8224346 DOI: 10.3390/ani11061494] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High ambient temperature is a major environmental stressor affecting the physiological and behavioral status of animals, increasing stress susceptibility and immunosuppression, and consequently increasing intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or decrease stress-associated detrimental effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate that a dietary probiotic supplement, Bacillus subtilis, reduces heat stress-induced abnormal behaviors and negative effects on skeletal health in broilers through a variety of cellular responses, regulating the functioning of the microbiota–gut–brain axis and/or microbiota-modulated immunity during bone remodeling under thermoneutral and heat-stressed conditions. Abstract The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.
Collapse
|
28
|
Zheng R, Wang P, Cao B, Wu M, Li X, Wang H, Chai L. Intestinal response characteristic and potential microbial dysbiosis in digestive tract of Bufo gargarizans after exposure to cadmium and lead, alone or combined. CHEMOSPHERE 2021; 271:129511. [PMID: 33445016 DOI: 10.1016/j.chemosphere.2020.129511] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The gastrointestinal tract is the largest immune organ in the body and meanwhile, accommodates a large number of microorganisms. Heavy metals could disturb the intestinal homeostasis and change the gut microbial composition. However, the information regarding the links between dysbiosis of gut microbiota and imbalance of host intestinal homeostasis induced by the mixture of heavy metals is insufficient. The present study investigates the effects of Cd/Pb, both single and combination exposure, on the growth performance, intestinal histology, digestive enzymes activity, oxidative stress and immune parameters, and intestinal microbiota in Bufo gargarizans tadpoles. Our results revealed that co-exposure of Cd-Pb induced more severe impacts not only on the host, but the intestinal microbiota. On the one hand, co-exposure of Cd-Pb significantly induced growth retardation, intestinal histological injury, decreased activities of digestive enzymes. On the other hand, Cd and Pb exposure, especially in mixed form, changed the diversity and richness, structure of microbiota. Also, the intestinal microbial composition was altered by Cd/Pb exposure (alone and combination) both at the different levels. Proteobacteria, act as front-line responder, was significantly increased in tadpoles under the exposure of metals. Finally, the functional prediction revealed that the disorders of metabolism and immune responses of intestinal microbiota was increased in tadpoles exposed to Cd/Pb (especially the mixture of Cd and Pb). Our research complements the understanding of links between changes in host fitness loss and intestinal microbiota and will add a new dimension of knowledge to the ecological risks of mixed heavy metals in amphibian.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Pengju Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Baoping Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, People's Republic of China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
29
|
Zhao Y, Zhuang Y, Shi Y, Xu Z, Zhou C, Guo L, Liu P, Wu C, Hu R, Hu G, Guo X, Xu L. Effects of N-acetyl-l-cysteine on heat stress-induced oxidative stress and inflammation in the hypothalamus of hens. J Therm Biol 2021; 98:102927. [PMID: 34016350 DOI: 10.1016/j.jtherbio.2021.102927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to discuss the effects of N-acetyl-l-cysteine (NAC) on heat stress-induced oxidative stress and inflammation in the hypothalamus of hens in different periods. A total of 120 Hy-Line variety brown laying hens (12 weeks old) were randomly assigned to 4 groups with 6 replicates. The control group (C group) (22 ± 1 °C) received a basal diet, the NAC-treated group (N group) (22 ± 1 °C) received a basal diet with 1000 mg/kg NAC, and 2 heat-stressed groups (36 ± 1 °C for 10 h per day and 22 ± 1 °C for the remaining time) were fed a basal diet (HS group) or a basal diet with 1000 mg/kg NAC (HS + N group) for 21 consecutive days. The influence of NAC on histologic changes, oxidative stress and proinflammatory cytokine production was measured and analysed in hens with heat stress-induced hypothalamic changes. NAC effectively alleviated the hypothalamic morphological changes induced by heat stress. In addition, NAC attenuated the activity of the Nf-κB pathway activated by heat stress and decreased the expression of the proinflammatory cytokines IL-6, IL-18, TNF-α, IKK, and IFN-γ. In addition, NAC treatment regulated the expression of HO-1, GSH, SOD2 and PRDX3 by regulating the activity of Nrf2 at different time points to resist oxidative stress caused by heat exposure. In summary, dietary NAC may be an effective candidate for the treatment and prevention of heat stress-induced hypothalamus injury by preventing Nf-κB activation and controlling the Nrf2 pathway.
Collapse
Affiliation(s)
- Yulan Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH, 45435, USA
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lianying Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Lanjiao Xu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Assessment of Microbiota Modulation in Poultry to Combat Infectious Diseases. Animals (Basel) 2021; 11:ani11030615. [PMID: 33652795 PMCID: PMC7996944 DOI: 10.3390/ani11030615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary This research was designed to evaluate the differences in caecal microbiota in broilers reared under two different farm conditions (commercial vs. optimal) during the growing period, using 16 rRNA sequencing analysis. Microbiota composition is affected by stress; for this reason, it could be considered a biomarker of poultry welfare and health. The main results demonstrated that no statistically significant differences were found between groups on microbiota composition from the beginning to the mid-period. However, significant differences were found at the end of growing, when a higher level of microbiota diversity was observed in the optimal farm conditions group. In conclusion, microbiota composition could be an interesting tool to evaluate new management conditions at field level, and could be developed to improve animal welfare during the growing period. Abstract Poultry is one of the main agricultural sub-sectors worldwide. However, public concern regarding animal welfare and antimicrobial resistance has risen in recent years. Due to the influence of management practices on microbiota, it might be considered to evaluate poultry welfare and health. Therefore, the objective of this research was to analyse the influence on microbiota balance of broilers under commercial and optimal farm conditions, using 16S rRNA sequencing analysis. The research was performed in two identical poultry houses (commercial vs. optimal). Results showed a higher level of microbiota complexity in the group reared under optimal farm conditions at the end of rearing. Regarding microbiota composition, Firmicutes was the dominant phylum during the entire growing period. However, the second most prevalent phylum was Proteobacteria at the arrival day, and Bacteroidetes from the mid-period onward in both groups. Moreover, the most predominant genera identified were Oscillospira, Ruminococcus, Bacteroides, and Coprococcus. In conclusion, it is necessary to optimize farm management as much as possible. Using gut microbiota diversity and composition as biomarkers of animal health could be an important tool for infectious disease control, with the aim of reducing the administration of antibiotics at field level.
Collapse
|
31
|
TLR-Mediated Cytokine Gene Expression in Chicken Peripheral Blood Mononuclear Cells as a Measure to Characterize Immunobiotics. Genes (Basel) 2021; 12:genes12020195. [PMID: 33572768 PMCID: PMC7912573 DOI: 10.3390/genes12020195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Immunobiotics are probiotics that promote intestinal health by modulating immune responses. Immunobiotics are recognized by Toll-like receptors (TLRs) and activate cytokine gene expression. This study aimed to characterize cytokine gene expression in the chicken peripheral blood mononuclear cells (PBMC) stimulated with purified TLR ligands and live probiotics. PBMC were isolated from the whole blood. PBMC were stimulated with: lipopolysaccharide (LPS), CpG ODN, Pam3CSK4, Zymosan, galactooligosaccharides (GOS), Lactococcuslactis subsp. cremoris (L. lactis), and Saccharomyces cerevisiae at 42.5 °C and 5% CO2 for 3 h, 6 h, and 9 h. After each time-point, PBMC were harvested for RNA isolation. Relative gene expression was analyzed with RT-qPCR for cytokine genes (IL-1β, IL-2, IL-3, IL-4, IL-6, IL-8, IL-10, IL-12p40, and IFN-ɣ) and reference genes (ACTB and G6PDH). Genes were clustered into pro-inflammatory genes, Th1/Th2 genes, and Th1-regulators. The gene expression differed between treatments in IL1-β, IL-6, IL-8, IL-10, and IL-12p40 (p < 0.001). The genes IL-1β, IL-6, and IL-8 had the highest fold change of mRNA expression at 3 h in response to TLR ligands. L. lactis up-regulated the pro-inflammatory genes at the 6 h time-point. L. lactis did not activate the anti-inflammatory IL-10 gene, but activated IL-12p40 at 6 h. Hereby, L. lactis was proven to exert immunostimulatory properties in PBMC.
Collapse
|
32
|
Perini F, Cendron F, Rovelli G, Castellini C, Cassandro M, Lasagna E. Emerging Genetic Tools to Investigate Molecular Pathways Related to Heat Stress in Chickens: A Review. Animals (Basel) 2020; 11:ani11010046. [PMID: 33383690 PMCID: PMC7823582 DOI: 10.3390/ani11010046] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary New genomic tools have been used as an instrument in order to assess the molecular pathway involved in heat stress resistance. Local chicken breeds have a better attitude to face heat stress. This review aims to summarize studies linked to chickens, heat stress, and heat shock protein. Abstract Chicken products are the most consumed animal-sourced foods at a global level across greatly diverse cultures, traditions, and religions. The consumption of chicken meat has increased rapidly in the past few decades and chicken meat is the main animal protein source in developing countries. Heat stress is one of the environmental factors which decreases the productive performance of poultry and meat quality. Heat stress produces the over-expression of heat shock factors and heat shock proteins in chicken tissues. Heat shock proteins regulate several molecular pathways in cells in response to stress conditions, changing the homeostasis of cells and tissues. These changes can affect the physiology of the tissue and hence the production ability of chickens. Indeed, commercial chicken strains can reach a high production level, but their body metabolism, being comparatively accelerated, has poor thermoregulation. In contrast, native backyard chickens are more adapted to the environments in which they live, with a robustness that allows them to survive and reproduce constantly. In the past few years, new molecular tools have been developed, such as RNA-Seq, Single Nucleotide Polymorphisms (SNPs), and bioinformatics approaches such as Genome-Wide Association Study (GWAS). Based on these genetic tools, many studies have detected the main pathways involved in cellular response mechanisms. In this context, it is necessary to clarify all the genetic and molecular mechanisms involved in heat stress response. Hence, this paper aims to review the ability of the new generation of genetic tools to clarify the molecular pathways associated with heat stress in chickens, offering new perspectives for the use of these findings in the animal breeding field.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
- Correspondence:
| | - Giacomo Rovelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| |
Collapse
|
33
|
Rostagno MH. Effects of heat stress on the gut health of poultry. J Anim Sci 2020; 98:5811133. [PMID: 32206781 DOI: 10.1093/jas/skaa090] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Stress is a biological adaptive response to restore homeostasis, and occurs in every animal production system, due to the multitude of stressors present in every farm. Heat stress is one of the most common environmental challenges to poultry worldwide. It has been extensively demonstrated that heat stress negatively impacts the health, welfare, and productivity of broilers and laying hens. However, basic mechanisms associated with the reported effects of heat stress are still not fully understood. The adaptive response of poultry to a heat stress situation is complex and intricate in nature, and it includes effects on the intestinal tract. This review offers an objective overview of the scientific evidence available on the effects of the heat stress response on different facets of the intestinal tract of poultry, including its physiology, integrity, immunology, and microbiota. Although a lot of knowledge has been generated, many gaps persist. The development of standardized models is crucial to be able to better compare and extrapolate results. By better understanding how the intestinal tract is affected in birds subjected to heat stress conditions, more targeted interventions can be developed and applied.
Collapse
|
34
|
Pietrzak E, Dunislawska A, Siwek M, Zampiga M, Sirri F, Meluzzi A, Tavaniello S, Maiorano G, Slawinska A. Splenic Gene Expression Signatures in Slow-Growing Chickens Stimulated in Ovo with Galactooligosaccharides and Challenged with Heat. Animals (Basel) 2020; 10:ani10030474. [PMID: 32178295 PMCID: PMC7143207 DOI: 10.3390/ani10030474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023] Open
Abstract
Galactooligosaccharides (GOS) that are delivered in ovo improve intestinal microbiota composition and mitigate the negative effects of heat stress in broiler chickens. Hubbard hybrids are slow-growing chickens with a high resistance to heat. In this paper, we determined the impact of GOS delivered in ovo on slow-growing chickens that are challenged with heat. The experiment was a 2 × 2 × 2 factorial design. On day 12 of incubation, GOS (3.5 mg/egg) was delivered into the egg (n = 300). Controls (C) were mock-injected with physiological saline (n = 300). After hatching, the GOS and C groups were split into thermal groups: thermoneutral (TN) and heat stress (HS). HS (30 °C) lasted for 14 days (days 36-50 post-hatching). The spleen (n = 8) was sampled after acute (8.5 h) and chronic (14 days) HS. The gene expression of immune-related (IL-2, IL-4, IL-6, IL-10, IL-12p40, and IL-17) and stress-related genes (HSP25, HSP90AA1, BAG3, CAT, and SOD) was detected with RT-qPCR. Chronic HS up-regulated the expression of the genes: IL-10, IL-12p40, SOD (p < 0.05), and CAT (p < 0.01). GOS delivered in ovo down-regulated IL-4 (acute p < 0.001; chronic p < 0.01), IL-12p40, CAT and SOD (chronic p < 0.05). The obtained results suggest that slow-growing hybrids are resistant to acute heat and tolerant to chronic heat, which can be supported with in ovo GOS administration.
Collapse
Affiliation(s)
- Elzbieta Pietrzak
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (E.P.); (A.D.); (M.S.)
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (E.P.); (A.D.); (M.S.)
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (E.P.); (A.D.); (M.S.)
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell’Emilia, Italy; (M.Z.); (F.S.); (A.M.)
| | - Federico Sirri
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell’Emilia, Italy; (M.Z.); (F.S.); (A.M.)
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell’Emilia, Italy; (M.Z.); (F.S.); (A.M.)
| | - Siria Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. de Sanctis snc, 86100 Campobasso, Italy; (S.T.); (G.M.)
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. de Sanctis snc, 86100 Campobasso, Italy; (S.T.); (G.M.)
| | - Anna Slawinska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (E.P.); (A.D.); (M.S.)
- Correspondence: ; Tel.: +48-052-374-97-50
| |
Collapse
|
35
|
Innate Immune Responses of Skin Mucosa in Common Carp ( Cyprinus Carpio) Fed a Diet Supplemented with Galactooligosaccharides. Animals (Basel) 2020; 10:ani10030438. [PMID: 32150980 PMCID: PMC7142608 DOI: 10.3390/ani10030438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/07/2023] Open
Abstract
Galactooligosaccharides (GOS) are well-known immunomodulatory prebiotics. We hypothesize that GOS supplemented in feed modulates innate immune responses in the skin-associated lymphoid tissue (SALT) of common carp. The aim of this study was to determine the impact of GOS on mRNA expression of the immune-related genes in skin mucosa. During the feeding trial, the juvenile fish (bodyweight 180 ± 5 g) were fed two types of diet for 50 days: control and supplemented with 2% GOS. At the end of the trial, a subset of fish was euthanized (n = 8). Skin mucosa was collected, and RNA was extracted. Gene expression analysis was performed with RT-qPCR to determine the mRNA abundance of the genes associated with innate immune responses in SALT, i.e., acute-phase protein (CRP), antimicrobial proteins (His2Av and GGGT5L), cytokines (IL1β, IL4, IL8, IL10, and IFNγ), lectin (CLEC4M), lyzosymes (LyzC and LyzG), mucin (M5ACL), peroxidase (MPO), proteases (CTSB and CTSD), and oxidoreductase (TXNL). The geometric mean of 40s s11 and ACTB was used to normalize the data. Relative quantification of the gene expression was calculated with ∆∆Ct. GOS upregulated INFγ (p ≤ 0.05) and LyzG (p ≤ 0.05), and downregulated CRP (p ≤ 0.01). We conclude that GOS modulates innate immune responses in the skin mucosa of common carp.
Collapse
|
36
|
Lartey KA, Kang DJ, Zhang QH, Shi CQ, Yang F, Lin HY, Gooneratne R, Chen JJ. Chromolaena odorata as a potential feed additive bioresource to alleviate heat stress in chickens in the humid tropics. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kwame Ayisi Lartey
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Dan-Ju Kang
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Qiao-Hui Zhang
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chao-Qun Shi
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Fan Yang
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hong-Ying Lin
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Jin-Jun Chen
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
37
|
Slawinska A, Zampiga M, Sirri F, Meluzzi A, Bertocchi M, Tavaniello S, Maiorano G. Impact of galactooligosaccharides delivered in ovo on mitigating negative effects of heat stress on performance and welfare of broilers. Poult Sci 2020; 99:407-415. [PMID: 32416825 PMCID: PMC7587628 DOI: 10.3382/ps/pez512] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023] Open
Abstract
Galactooligosaccharides (GOS) delivered in ovo improve intestinal health of broiler chickens. This study aimed to demonstrate the impact of in ovo stimulation with GOS prebiotic on day 12 of egg incubation on performance and welfare traits in broiler chickens. The incubating eggs were divided into 3 groups, based on the substance injected in ovo: 3.5 mg of GOS dissolved in 0.2 mL physiological saline (GOS), 0.2 mL physiological saline (S), or uninjected controls (C). Constant heat stress (HS) was induced on days 32 to 42 post-hatch by increasing environmental temperature to 30°C. Thermoneutral (TN) animals were kept at 25°C. The performance (body weight [BW], daily feed intake [DFI], daily weight gain [DWG], and feed conversion rate [FCR]) were measured and mortality was scored for starter (days 0 to 13), grower (days 14 to 27), and finisher (days 28 to 42) feeding phases. Rectal temperature was scored on days 32 to 42. Food-pad dermatitis (FPD) was scored post-mortem (day 42). GOS increased (P < 0.01) BW on day 42 (2.892 kg in GOS vs. 2.758 kg in C). Heat stress significantly reduced (P < 0.01) final BW (2.516 kg in TN vs. 3.110 kg in HS). During finisher phase, DFI was significantly higher in GOS vs. C (173.2 g vs. 165.7 g; P < 0.05). FCR calculated for the entire rearing period (days 0 to 42) ranged from 1.701 in C to 1.653 in GOS (P < 0.05). GOS improved FCR in HS animals during finisher phase (P < 0.05). Rectal temperature of GOS chickens under HS reached 42.5°C 1 day earlier than C and S (P < 0.05), which suggests that those birds recovered earlier from the high environmental temperature. Heat stress increased (P < 0.05) mortality about 5 times compared to TN during finisher phase (from 1.59% in TN to 7.69% in HS). GOS decreased FPD in TN conditions by 20% (no lesions in 81% in GOS vs. 60% in C). GOS delivered in ovo mitigated negative effects of HS on performance and welfare in broiler chickens.
Collapse
Affiliation(s)
- A Slawinska
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. de Sanctis snc, 86100 Campobasso, Italy; Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland.
| | - M Zampiga
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell'Emilia, Italy
| | - F Sirri
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell'Emilia, Italy
| | - A Meluzzi
- Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell'Emilia, Italy
| | - M Bertocchi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. de Sanctis snc, 86100 Campobasso, Italy; Department of Agricultural and Food Sciences, University of Bologna, Via del Florio 2, 40064 Ozzano dell'Emilia, Italy
| | - S Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. de Sanctis snc, 86100 Campobasso, Italy
| | - G Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. de Sanctis snc, 86100 Campobasso, Italy
| |
Collapse
|
38
|
Tavaniello S, Slawinska A, Prioriello D, Petrecca V, Bertocchi M, Zampiga M, Salvatori G, Maiorano G. Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress. Poult Sci 2020; 99:612-619. [PMID: 32416849 PMCID: PMC7587659 DOI: 10.3382/ps/pez556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023] Open
Abstract
A study was carried out to evaluate meat quality traits in fast-growing chickens stimulated in ovo with trans-galactoolighosaccarides (GOS) and exposed to heat stress. On day 12 of egg incubation, 3,000 fertilized eggs (Ross 308) were divided into prebiotic group (GOS) injected with 3.5 mg GOS/egg, saline group (S) injected with physiological saline, and control group (C) uninjected. After hatching, 900 male chicks (300 chicks/treatment) were reared in floor pens in either thermoneutral (TN; 6 pens/group, 25 birds/pen) or heat stress conditions (HS, 30°C from 32 to 42 D; 6 pens/group, 25 birds/pen). At 42 D of age, 15 randomly chosen birds/treatment/temperature were slaughtered and the pectoral muscle (PM) was removed for analyses. Data were analyzed by GLM in a 3 × 2 factorial design. In ovo treatment had no effect on PM weight, pH, water-holding capacity, and shear force. GOS and S birds had lighter (L*, P < 0.01) PM than C group, whereas the latter showed a higher (P < 0.05) yellowness index (b*) compared to S group. Proximate composition, cholesterol, and intramuscular collagen properties were not affected by treatment. As for fatty acid composition, only total polyunsaturated fatty acids (PUFA) content and n-6 PUFA were slightly lower in GOS group compared to S. Heat stress had a detrimental effect on PM weight (P < 0.01) and increased meat pH (P < 0.01). PM from HS chickens was darker with a higher b* index (P < 0.05) and had a higher (P < 0.01) lipid content and a lower (P < 0.05) total collagen amount. Total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and PUFA were similar among groups. Significant interactions between factors were found for fatty acid composition: GOS decreased (P < 0.01) SFA and increased (P < 0.05) MUFA contents in HS birds. In conclusion, in ovo injection of GOS could mitigate the detrimental effect of heat stress on some meat quality traits.
Collapse
Affiliation(s)
- S Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy.
| | - A Slawinska
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - D Prioriello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - V Petrecca
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - M Bertocchi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; Department of Agricultural and Food Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - M Zampiga
- Department of Agricultural and Food Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - G Salvatori
- Department of Medicine and Health Science, University of Molise, 86100 Campobasso, Italy
| | - G Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
39
|
In ovo Injection of a Galacto-Oligosaccharide Prebiotic in Broiler Chickens Submitted to Heat-Stress: Impact on Transcriptomic Profile and Plasma Immune Parameters. Animals (Basel) 2019; 9:ani9121067. [PMID: 31810282 PMCID: PMC6940861 DOI: 10.3390/ani9121067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
This study investigated the effects of a galactooligosaccharide (GOS) prebiotic in ovo injected on intestinal transcriptome and plasma immune parameters of broiler chickens kept under thermoneutral (TN) or heat stress (HS) conditions. Fertilized Ross 308 eggs were injected in ovo with 0.2 mL physiological saline without (control, CON) or with 3.5 mg of GOS (GOS). Three-hundred male chicks/injection treatment (25 birds/pen) were kept in TN or HS (30 °C) conditions during the last growing phase, in a 2 × 2 factorial design. At slaughter, from 20 birds/injection group (half from TN and half from HS), jejunum and cecum were collected for transcriptome analysis, and plasma was collected. No differences in plasma parameters (IgA and IgG, serum amyloid) and no interaction between injection treatment and environment condition were found. GOS-enriched gene sets related to energetic metabolism in jejunum, and to lipid metabolism in cecum, were involved in gut barrier maintenance. A homogeneous reaction to heat stress was determined along the gut, which showed downregulation of the genes related to energy and immunity, irrespective of in ovo treatment. GOS efficacy in counteracting heat stress was scarce after ten days of environmental treatment, but the in ovo supplementation modulates group of genes in jejunum and cecum of broiler chickens.
Collapse
|
40
|
He J, He Y, Pan D, Cao J, Sun Y, Zeng X. Associations of Gut Microbiota With Heat Stress-Induced Changes of Growth, Fat Deposition, Intestinal Morphology, and Antioxidant Capacity in Ducks. Front Microbiol 2019; 10:903. [PMID: 31105682 PMCID: PMC6498187 DOI: 10.3389/fmicb.2019.00903] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/09/2019] [Indexed: 01/20/2023] Open
Abstract
Accumulating evidence has revealed the dysbiosis of gut/fecal microbiota induced by heat stress (HS) in mammals and poultry. However, the effects of HS on microbiota communities in different intestinal segments of Cherry-Valley ducks (a widely used meat-type breed) and their potential associations with growth performances, fat deposition, intestinal morphology, and antioxidant capacity have not been well evaluated yet. In this study, room temperature (RT) of 25°C was considered as control, and RT at 32°C for 8 h per day was set as the HS treatment. After 3 weeks, the intestinal contents of jejunum, ileum, and cecum were harvested to investigate the microbiota composition variations by 16S ribosomal RNA amplicon sequencing. And the weight gain, adipose indices, intestinal morphology, and a certain number of serum biochemical parameters were also measured and analyzed. The results showed the microbial species at different levels differentially enriched in duck jejunum and cecum under HS, while no significant data were observed in ileum. HS also caused the intestinal morphological changes (villus height and the ratio of villus height to crypt depth) and the reductions of growth speed (daily gain), levels of serum triglyceride (TG) and total cholesterol, and antioxidant activity (higher malondialdehyde (MDA) content and lower total antioxidant). The higher abdominal fat content and serum glucose level were also observed in HS ducks. The Spearman correlation analysis indicated that in jejunum the phyla Firmicutes and Proteobacteria were associated with average daily gain, feed/gain, serum TG and MDA levels, and villus height/crypt depth (P < 0.05). The phylum Firmicutes and genus Acinetobacter were significantly associated with fat deposition and serum glucose level (P < 0.05). The genus Lactobacillus was positively associated with serum total antioxidant (P < 0.05), while some other microbial species were found negatively associated, including order Pseudomonadales, genera Acinetobacter, and unidentified_Mitochondria. However, no significant correlations were observed in cecum. These findings imply the potential roles of duck gut microbiota in the intestinal injuries, fat deposition, and reductions of growth speed and antioxidant capacity caused by HS, although the molecular mechanisms requires further investigation.
Collapse
Affiliation(s)
- Jun He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yuxin He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China.,Department of Food Science and Nutrition, Nanjing Normal University, Nanjing, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|