1
|
Yu P, Pan X, Chen M, Ma J, Xu B, Zhao Y. Ultrasound-assisted enzymatic extraction of soluble dietary Fiber from Hericium erinaceus and its in vitro lipid-lowering effect. Food Chem X 2024; 23:101657. [PMID: 39113740 PMCID: PMC11304871 DOI: 10.1016/j.fochx.2024.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Dietary fiber (DF) is an important active polysaccharide in Hericium erinaceus. Obesity can lead to a wide range of diseases. In this work, we investigated the in vitro lipid-lowering effect of soluble dietary fiber (SDF) from H. erinaceus, aiming to provide a basis for the subsequent development of lipid-lowering products. Ultrasound-assisted enzymatic extraction (UAEE) of SDF from H. erinaceus was performed. The optimal extraction parameters determined via single-factor experiments and response surface methodology (RSM) were as follows: Lywallzyme concentration, 1.0%; complex protease concentration, 1.2%; ultrasonication time, 35 min; and ultrasonication power, 150 W. In vitro lipid-lowering experiments revealed that the adsorption amount of cholesterol micelles by H. erinaceus SDF was 11.91 mg/g. The binding amount and binding rate of sodium taurocholate were 3.73 mg/g and 42.47%, respectively, and those of sodium glycocholate were 3.43 mg/g and 39.12%, respectively. The pancreatic lipase inhibition rate reached 52.11%, and the type of inhibition was competitive. Therefore, H. erinaceus SDF has good in vitro lipid-lowering ability.
Collapse
Affiliation(s)
- Panling Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xueyu Pan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianshuai Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Baoting Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
2
|
Xie R, Lee YY, Xie P, Tan CP, Wang Y, Zhang Z. Immobilization of Lipase from Thermomyces Lanuginosus and Its Glycerolysis Ability in Diacylglycerol Preparation. Molecules 2024; 29:4141. [PMID: 39274989 PMCID: PMC11397512 DOI: 10.3390/molecules29174141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
In the glycerolysis process for diacylglycerol (DAG) preparation, free lipases suffer from poor stability and the inability to be reused. To address this, a cost-effective immobilized lipase preparation was developed by cross-linking macroporous resin with poly (ethylene glycol) diglycidyl ether (PEGDGE) followed by lipase adsorption. The selected immobilization conditions were identified as pH 7.0, 35 °C, cross-linking agent concentration 2.0%, cross-linking time 4 h, lipase amount 5 mg/g of support, and adsorption time 4 h. Enzymatic properties of the immobilized lipase were analyzed, revealing enhanced pH stability, thermal stability, storage stability, and operational stability post-immobilization. The conditions for immobilized enzyme-catalyzed glycerolysis to produce DAG were selected, demonstrating the broad applicability of the immobilized lipase. The immobilized lipase catalyzed glycerolysis reactions using various oils as substrates, with DAG content in the products ranging between 35 and 45%, demonstrating broad applicability. Additionally, the changes during the repeated use of the immobilized lipase were characterized, showing that mechanical damage, lipase leakage, and alterations in the secondary structure of the lipase protein contributed to the decline in catalytic activity over time. These findings provide valuable insights for the industrial application of lipase.
Collapse
Affiliation(s)
- Rui Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (R.X.); (P.X.); (Y.W.)
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Pengkai Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (R.X.); (P.X.); (Y.W.)
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (R.X.); (P.X.); (Y.W.)
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (R.X.); (P.X.); (Y.W.)
| |
Collapse
|
3
|
Yang Y, Guo M, Guo S, Tian J, Gu D. Artificial antibody-antigen-directed immobilization of lipase for consecutive catalytic synthesis of ester: Benzyl acetate case study. BIORESOURCE TECHNOLOGY 2024; 403:130894. [PMID: 38795924 DOI: 10.1016/j.biortech.2024.130894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
A strategy based on artificial antibody-antigen recognition was proposed for the specific directed immobilization of lipase. The artificial antibody was synthesized using catechol as a template, α-methacrylic acid as a functional monomer, and Fe3O4 as the matrix material. Lipase was modified with 3,4-dihydroxybenzaldehyde as an artificial antigen. The artificial antibody can specifically recognize catechol fragment in the enzyme structure to achieve the immobilization of lipase. The immobilization amount, yield, specific activity, and immobilized enzyme activity were 13.2 ± 0.2 mg/g, 78.9 ± 0.4 %, 7.9 ± 0.2 U/mgprotein, and 104.6 ± 1.7 U/gcarrier, respectively. Moreover, the immobilized lipase exhibited strong reusability and regeneration ability. Additionally, the immobilized lipase successfully catalyzed the synthesis of benzyl acetate and demonstrated robust continuous catalytic activity. These results fully demonstrate the feasibility of the proposed artificial antibody-antigen-directed immobilization of lipase.
Collapse
Affiliation(s)
- Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Meishan Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
4
|
Wang S, Qin Y, Liu Y, Liu G, Cheng G, Soteyome T. Controlling release of astaxanthin in β-sitosterol oleogel-based emulsions via different self-assembled mechanisms and composition of the oleogelators. Food Res Int 2024; 186:114350. [PMID: 38729698 DOI: 10.1016/j.foodres.2024.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this study, three types of β-sitosterol-based oleogels (β-sitosterol + γ-oryzanol oleogels, β-sitosterol + lecithin, oleogels and β-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the β-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, β-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.
Collapse
Affiliation(s)
- Shujie Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou 510640, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| | - Thanapop Soteyome
- School of Food Science and Technology, Rajamangala University of Technology Phra Nakhon, 168 Thanon Si Ayutthaya, Khwaeng Wachira Phayaban, Khet Dusit, Krung Thep Maha Nakhon 10300, Thailand.
| |
Collapse
|
5
|
Technical–Economic Assessment—The Missing Piece for Increasing the Attractiveness of Applied Biocatalysis in Ester Syntheses? Catalysts 2023. [DOI: 10.3390/catal13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although the current literature describes significant advances in biocatalytic ester syntheses, few industrial plants worldwide are currently producing esters using biocatalysts. Green and sustainable esters can be obtained via a biocatalytic route, including some operational advantages over conventional syntheses. An analysis of the literature revealed that most articles neglect or describe the economic issues generically, without quantitative information. Scaling-up studies are also scarce in this field. The main disadvantage of biocatalysis using immobilized lipases—their cost—has not been studied at the same level of depth as other technical aspects. This gap in the literature is less intense in enzymatic biodiesel production studies and, despite the lack of a strict correlation, enzymatic biodiesel commercial plants are relatively more common. Preliminary techno-economic assessments are crucial to identify and circumvent the economic drawbacks of biocatalytic ester syntheses, opening the way to broader application of this technology in a large-scale context.
Collapse
|
6
|
Effects of different particle-sized insoluble dietary fibre from citrus peel on adsorption and activity inhibition of pancreatic lipase. Food Chem 2022; 398:133834. [DOI: 10.1016/j.foodchem.2022.133834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
|
7
|
Zhang Y, Tang X, Li F, Zhang J, Zhang B, Yang X, Tang Y, Zhang Y, Fan J, Zhang B. Inhibitory effects of oat peptides on lipolysis: A physicochemical perspective. Food Chem 2022; 396:133621. [DOI: 10.1016/j.foodchem.2022.133621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
|
8
|
Sena RO, Carneiro C, Moura MVH, Brêda GC, Pinto MCC, Fé LXSGM, Fernandez-Lafuente R, Manoel EA, Almeida RV, Freire DMG, Cipolatti EP. Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. Int J Biol Macromol 2021; 189:734-743. [PMID: 34455007 DOI: 10.1016/j.ijbiomac.2021.08.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/19/2022]
Abstract
This work aimed the application of a new biocatalyst for biodiesel production from residual agro-industrial fatty acids. A recombinant Pichia pastoris displaying lipase from Rhizomucor miehei (RML) on the cell surface, using the PIR-1 anchor system, were prepared using glycerol as the carbon source. The biocatalyst, named RML-PIR1 showed optimum temperature of 45 °C (74.0 U/L). The stability tests resulted in t1/2 of 3.49 and 2.15 h at 40 and 45 °C, respectively. RML-PIR1 was applied in esterification reactions using industrial co-products as substrates, palm fatty acid distillate (PFAD) and soybean fatty acid distillate (SFAD). The highest productivity was observed for SFAD after 48 h presenting 79.1% of conversion using only 10% of biocatalyst and free-solvent system. This is about ca. eight times higher than commercial free RML in the same conditions. The stabilizing agents study revealed that the treatment using glutaraldehyde (GA) and poly(ethylene glycol) (PEG) enabled increased stability and reuse of biocatalyst. It was observed by SEM analysis that the treatment modified the cell morphology. RML-PIR1-GA presented 87.9% of the initial activity after 6 reuses, whilst the activity of unmodified RML-PIR decreased by 40% after the first use. These results were superior to those obtained in the literature, making this new biocatalyst promising for biotechnological applications, such as the production of biofuels on a large scale.
Collapse
Affiliation(s)
- Raphael Oliveira Sena
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Candida Carneiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Marcelo Victor Holanda Moura
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil; SENAI Innovation Institute for Biosynthetics and Fibers, SENAI CETIQT, Rio de Janeiro, Brazil
| | - Gabriela Coelho Brêda
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Martina C C Pinto
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil; Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, 68502, Rio de Janeiro, RJ 21941-972, Brazil
| | | | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Evelin Andrade Manoel
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, 21941-170 Rio de Janeiro, Brazil
| | - Rodrigo Volcan Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
| | - Denise Maria Guimarães Freire
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
| | - Eliane Pereira Cipolatti
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, 21941-170 Rio de Janeiro, Brazil; Department of Biochemical Process Technology, Rio de Janeiro State University, São Francisco Xavier, 524 Maracanã, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Šibalić D, Šalić A, Tušek AJ, Sokač T, Brekalo K, Zelić B, Tran NN, Hessel V, Tišma M. Sustainable Production of Lipase from Thermomyces lanuginosus: Process Optimization and Enzyme Characterization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Darijo Šibalić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Anita Šalić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, Zagreb HR-10000, Croatia
| | - Ana Jurinjak Tušek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb HR-10000, Croatia
| | - Tea Sokač
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, Zagreb HR-10000, Croatia
| | - Klara Brekalo
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Bruno Zelić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, Zagreb HR-10000, Croatia
| | - Nghiep Nam Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace Campus, Adelaide 5005, Australia
- School of Chemical Engineering, Can Tho University, Campus 2, Can Tho 900000, Vietnam
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace Campus, Adelaide 5005, Australia
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| |
Collapse
|
10
|
Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol Adv 2020; 42:107581. [DOI: 10.1016/j.biotechadv.2020.107581] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
|
11
|
Application of magnetic immobilized papain on passivated rice bran lipase. Int J Biol Macromol 2020; 157:51-59. [DOI: 10.1016/j.ijbiomac.2020.04.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/13/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
|
12
|
Chen H, Li J, Yao R, Yan S, Wang Q. Mechanism of lipid metabolism regulation by soluble dietary fibre from micronized and non-micronized powders of lotus root nodes as revealed by their adsorption and activity inhibition of pancreatic lipase. Food Chem 2020; 305:125435. [DOI: 10.1016/j.foodchem.2019.125435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
13
|
Dong L, Lv M, Gao X, Zhang L, Rogers M, Cao Y, Lan Y. In vitrogastrointestinal digestibility of phytosterol oleogels: influence of self-assembled microstructures on emulsification efficiency and lipase activity. Food Funct 2020; 11:9503-9513. [DOI: 10.1039/d0fo01642j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of this study was to investigate the influence of a self-assembled microstructure on lipid digestibility of phytosterol (γ-oryzanol and β-sitosterol) oleogels, including the oil emulsification process and further lipolysis.
Collapse
Affiliation(s)
- Lulu Dong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Muwen Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Luping Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Michael Rogers
- Department of Food Science
- University of Guelph
- Guelph
- Canada
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| |
Collapse
|
14
|
Xue F, Chen Q, Li Y, Liu E, Li D. Immobilized lysozyme onto 1,2,3,4-butanetetracarboxylic (BTCA)-modified magnetic cellulose microsphere for improving bio-catalytic stability and activities. Enzyme Microb Technol 2019; 131:109425. [DOI: 10.1016/j.enzmictec.2019.109425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
|
15
|
The Kinetic Parameters of Adsorption of Enzymes Using Carbon-Based Materials Obtained from Different Food Wastes. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00635-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Bayazidi P, Almasi H, Asl AK. Immobilization of lysozyme on bacterial cellulose nanofibers: Characteristics, antimicrobial activity and morphological properties. Int J Biol Macromol 2017; 107:2544-2551. [PMID: 29079438 DOI: 10.1016/j.ijbiomac.2017.10.137] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 10/22/2017] [Indexed: 11/18/2022]
Abstract
The aim of this study was to immobilize of lysozyme onto bacterial cellulose nanofibers (BCNF) using physical absorption method. Antimicrobial activity and other properties of immobilized lysozyme and also morphological characteristics of BCNF were studied. Activity of lysozyme was decreased about 12% after immobilization. The lysozyme concentration of 1mg/ml was chosen for next studies on immobilized enzyme. The optimum pH and temperature were recorded as 7 and 45°C, respectively for immobilized enzyme. Storage stability was increased and immobilized lysozyme exhibited more than 70% of its initial activity after 9 cycles. Kinetic parameters of Km and Vmax were 31.18μg/ml and 112.35 ΔOD/min, respectively for immobilized enzyme. Antimicrobial activity of lysozyme against Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Yersinia entrocolitica, Aspergillus niger and Saccharomyces serviseae was increased after immobilization. The XRD analyses showed a decrease in diffraction intensities and crystallinity index of BCNF after immobilization of lysozyme. According to the results of scanning electron microscopy (SEM), the diameter of nanofibers was increased by lysozyme incorporation. This study demonstrates the potential for the use of BCNF as carrier for lysozyme immobilization.
Collapse
Affiliation(s)
- Pashew Bayazidi
- Department of Food Science and Technology, Faculty of Agriculture, Saba Higher Education Institute, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Asghar Khosrowshahi Asl
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
17
|
Huang L, Chen X, Rui X, Li W, Li T, Xu X, Dong M. Use of fermented glutinous rice as a natural enzyme cocktail for improving dough quality and bread staling. RSC Adv 2017. [DOI: 10.1039/c6ra25805k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Jiu-niang (rice wine) could be used as a natural enzyme cocktail for the improvement of bread quality.
Collapse
Affiliation(s)
- Lu Huang
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Xiaohong Chen
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Xin Rui
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Wei Li
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Teng Li
- Institute of Innovation Research
- Shanghai Niumag Corporation
- Shanghai
- P. R. China
| | - Xiao Xu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Mingsheng Dong
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- P. R. China
| |
Collapse
|
18
|
Raharjo TJ, Febrina L, Wardoyo FA, Swasono RT. Effect of Deacetylation Degree of Chitosan as Solid Support in Lipase Immobilization by Glutaraldehyde Crosslink. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajb.2016.127.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis. Appl Biochem Biotechnol 2016; 180:826-840. [DOI: 10.1007/s12010-016-2136-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
20
|
Bustamante-Vargas CE, de Oliveira D, Valduga E, Venquiaruto LD, Paroul N, Backes GT, Dallago RM. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity. Appl Biochem Biotechnol 2016; 179:1060-72. [DOI: 10.1007/s12010-016-2050-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/14/2016] [Indexed: 12/30/2022]
|
21
|
Abstract
Lipase-catalyzed biodiesel production models in room temperature ionic liquids (RTILs) reaction medium available in the literature are valid especially for mixing intensity. In this paper, a preliminary model is established in order to try to describe the lipase-catalyzed biodiesel production process in RTILs in a stirring type bioreactor. Mixing intensity and time delay were inspected for the reaction model in [BMIM][PF6] medium. As a result, this model is a good explanation for these actual reaction conditions in RTILs. The model prediction curves well describe the experimental data indicating this bioenzymatic reaction model is effective and reliable in certain conditions.
Collapse
|
22
|
Cellulosic fraction of rice bran fibre alters the conformation and inhibits the activity of porcine pancreatic lipase. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Wang F, Nie TT, Shao LL, Cui Z. Comparison of physical and covalent immobilization of lipase fromCandida antarcticaon polyamine microspheres of alkylamine matrix. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2014.977266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Kinetics modeling of the acidolysis with immobilized Rhizomucor miehei lipases for production of structured lipids from sunflower oil. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Studies on the co-immobilized GOD/CAT on cross-linked chitosan microsphere modified by lysine. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Liu W, Duan H, Meng X, Qin D, Wang X, Zhang J. Immobilization ofCandida lipolyticalipase on macroporous beaded terpolymers with epoxy groups. J Appl Polym Sci 2012. [DOI: 10.1002/app.38023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Lian ZX, Ma ZS, Wei J, Liu H. Preparation and characterization of immobilized lysozyme and evaluation of its application in edible coatings. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Immobilization of Pseudomonas cepacia lipase onto the electrospun PAN nanofibrous membranes for transesterification reaction. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability. J Biosci Bioeng 2011; 113:166-72. [PMID: 22071144 DOI: 10.1016/j.jbiosc.2011.09.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/14/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022]
Abstract
In this study, three membranes: regenerated cellulose (RC), glass fiber (GF) and polyvinylidene fluoride (PVDF), were grafted with 1,4-diaminobutane (DA) and activated with glutaraldehyde (GA) for lipase covalent immobilization. The efficiencies of lipases immobilized on these membranes with different hydrophobic/hydrophilic properties were compared. The lipase immobilized on hydrophobic PVDF-DA-GA membrane exhibited more than an 11-fold increase in activity compared to its immobilization on a hydrophilic RC-DA-GA membrane. The relationship between surface hydrophobicity and immobilized efficiencies was investigated using hydrophobic/hydrophilic GF membranes which were prepared by grafting a different ratio of n-butylamine/1,4-diaminobutane (BA/DA). The immobilized lipase activity on the GF membrane increased with the increased BA/DA ratio. This means that lipase activity was exhibited more on the hydrophobic surface. Moreover, the modified PVDF-DA membrane was grafted with GA, epichlorohydrin (EPI) and cyanuric chloride (CC), respectively. The lipase immobilized on the PVDF-DA-EPI membrane displayed the highest specific activity compared to other membranes. This immobilized lipase exhibited more significant stability on pH, thermal, reuse, and storage than did the free enzyme. The results exhibited that the EPI modified PVDF is a promising support for lipase immobilization.
Collapse
|
30
|
Bayramoglu G, Senkal BF, Yilmaz M, Arica MY. Immobilization and stabilization of papain on poly(hydroxyethyl methacrylate-ethylenglycol dimethacrylate) beads grafted with epoxy functional polymer chains via surface-initiated-atom transfer radical polymerization (SI-ATRP). BIORESOURCE TECHNOLOGY 2011; 102:9833-9837. [PMID: 21908189 DOI: 10.1016/j.biortech.2011.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
Poly(hydroxyethyl methacrylate-ethylen glycol dimethacrylate), p(HEMA-EGDMA), beads were prepared by suspension polymerization, and were decorated with fibrous poly(glycidyl methacrylate), p(GMA), via surface initiated-atom transfer radical polymerization (SI-ATRP). The functional epoxy groups of the beads were used for covalent immobilization of papain. The average amount of immobilized enzyme was 18.7 mg/g beads. The immobilized enzyme was characterized by temperature, pH, operational and storage stability experiments. The maximum velocity of the free and immobilized enzymes (V(max)) and Michaelis-Menten constant (K(m)) values were determined as 10.7 and 8.3 U/mg proteins and 274 and 465 μM, respectively. The immobilized papain was operated in a batch reactor, and it was very effective for hydrolysis of different proteins (i.e., casein and cytochrom c).
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Gazi University, Faculty of Sciences, Biochemical Processing and Biomaterial Research Laboratory, 06500 Teknikokullar, Ankara, Turkey.
| | | | | | | |
Collapse
|
31
|
Li SF, Fan YH, Hu RF, Wu WT. Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.04.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Poly(styrene–divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess Biosyst Eng 2011; 34:735-46. [DOI: 10.1007/s00449-011-0523-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
|
33
|
Comparison of the Properties of Lipase Immobilized onto Mesoporous Resins by Different Methods. Appl Biochem Biotechnol 2011; 164:561-72. [DOI: 10.1007/s12010-010-9157-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
|
34
|
Covalent immobilization of lipase onto amine functionalized polypropylene membrane and its application in green apple flavor (ethyl valerate) synthesis. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.09.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|