1
|
Kumaran S, Vetrivelan V, Muthu S, Al-Saadi AA. Computational analysis of anti-cancer drug hydroxyurea adsorption on nanocages of gold, silver and copper: SERS and DFT assessment. Heliyon 2024; 10:e24475. [PMID: 38444468 PMCID: PMC10912048 DOI: 10.1016/j.heliyon.2024.e24475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 03/07/2024] Open
Abstract
The use of nanostructures in targeted drug delivery is effective in decreasing anticancer drug toxicity. Here, we discuss the theoretically predicted adsorption and interaction behavior of hydroxyurea [HU] with nano metal cages (nmC). HU interact the nmC through the N4 in primary amine with energies of -29.776, -30.684 and -22.105 kcal/mol for Au, Ag and Cu cage, respectively. As a result of reactivity studies, HU complexes with nmC (Au/Ag/Cu) are becoming more electrophilic and this gives the nmC system their bioactivity. It is suggested that nanocage is going to change the FMO's energy levels by means of absorption, so that it is used in drug administration. DOS and MEP were accomplished to gain additional understandings into the reactivity of proposed complexes. Method for improving the Raman signal of biomolecules is surface enhanced Raman scattering (SERS), which uses nanosized metal substrates. Chemical enhancement is evidenced by Mulliken charge distributions of all systems for detection and chemical compositions and exerts a significant role in determining them. In HU complexes containing nmC (Au/Ag/Cu), electron density was detected via ELF and LOL calculations. Based on the results of a non-covalent interaction (NCI) analysis, Van der Waals/hydrogen bonds/repulsive steric - interactions have been found. The title compound will also be analyzed in order to determine its bioactivity and drug likeness parameters, as a result, we will able to create a molecule with a highly favorable pharmacological profile and use the docking method to determine the values of the interaction energies for drug delivery. This study suggests that adsorption of drugs on nanocage surface occurs physically and functionalizing the nanocage has increased adsorption energy.
Collapse
Affiliation(s)
- S. Kumaran
- Department of ECE, Saveetha Engineering College, Thandalam, Chennai, 602105, Tamilnadu, India
| | - V. Vetrivelan
- Department of Physics, Government College of Engineering, Srirangam, Tiruchirappalli, 620012, Tamilnadu, India
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604 407, Tamilnadu, India
| | - Abdulaziz A. Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 3126, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Khanam A, Singh G, Narwal S, Chopra B, Dhingra AK. A Review on Novel Applications of Nanotechnology in the Management of Prostate Cancer. Curr Drug Deliv 2024; 21:1161-1179. [PMID: 37888818 DOI: 10.2174/0115672018180695230925113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Prostate cancer continues to be a serious danger to men's health, despite advances in the field of cancer nanotechnology. Although different types of cancer have been studied using nanomaterials and theranostic systems derived from nanomaterials, they have not yet reached their full potential for prostate cancer due to issues with in vivo biologic compatibility, immune reaction responses, accurate targetability, as well as a therapeutic outcome related to the nano-structured mechanism. METHOD The ultimate motive of this article is to understand the theranostic nanotechnology-based scheme for treating prostate cancer. The categorization of diverse nanomaterials in accordance with biofunctionalization tactics and biomolecule sources has been emphasized in this review so that they might potentially be used in clinical contexts and future advances. These opportunities can enhance the direct visualization of prostate tumors, early identification of prostate cancer-associated biomarkers at extremely low detection limits, and finally, the therapy for prostate cancer. RESULT In December 2022, a thorough examination of the scientific literature was carried out utilizing the Web of Science, PubMed, and Medline databases. The goal was to analyze novel applications of nanotechnology in the treatment of prostate cancer, together with their structural layouts and functionalities. CONCLUSION The various treatments and the reported revolutionary nanotechnology-based systems appear to be precise, safe, and generally successful; as a result, this might open up a new avenue for the detection and eradication of prostate cancer.
Collapse
Affiliation(s)
- Arshi Khanam
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Gurvirender Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Smita Narwal
- Global Research Institute of Pharmacy, Radaur, Yamunanagar-135133, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Ashwani K Dhingra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
3
|
Li L, Zou Y, Wang L, Yang L, Li Y, Liao A, Chen Z, Yu Z, Guo J, Han S. Nanodelivery of scutellarin induces immunogenic cell death for treating hepatocellular carcinoma. Int J Pharm 2023:123114. [PMID: 37301243 DOI: 10.1016/j.ijpharm.2023.123114] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma (HCC) causes the immunosuppressive tumor microenvironment (TME) resistant to current immunotherapy. The immunogenic apoptosis (currently termed immunogenic cell death, ICD) of cancer cells may induce the adaptive immunity against tumors, thereby providing great potential for treating HCC. In this study, we have confirmed the potential of scutellarin (SCU, a flavonoid found in Erigeron breviscapus) for triggering ICD in HCC cells. To facilitate in vivo application of SCU for HCC immunotherapy, an aminoethyl anisamide-targeted polyethylene glycol-modified poly(lactide-co-glycolide) (PLGA-PEG-AEAA) was produced to facilitate SCU delivery in this study. The resultant nanoformulation (PLGA-PEG-AEAA.SCU) remarkably promoted blood circulation and tumor delivery in the orthotopic HCC mouse model. Consequently, PLGA-PEG-AEAA.SCU reversed the immune suppressive TME and achieved the immunotherapeutic efficacy, resulting in significantly longer survival of mice, without inducing toxicity. These findings uncover the ICD potential of SCU and provide a promising strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Linlin Li
- Center for Prenatal Diagnosis and Reproductive Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Anqi Liao
- Center for Prenatal Diagnosis and Reproductive Medicine, The First Hospital of Jilin University, Changchun 130021, China; School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
5
|
Kadhim MM, Jihad A, Hachim SK, Abdullaha SAH, Taban TZ, Rheima AM. A molecular modeling on the potential application of beryllium oxide nanotube for delivery of hydroxyurea anticancer drug. J Mol Model 2022; 28:357. [PMID: 36222931 DOI: 10.1007/s00894-022-05343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2022]
Abstract
Within this work, we scrutinized the use of BeO nanotube (BeONT) as a nanocarrier for the anticancer drug hydroxyurea (HU) through density functional theory (DFT) calculations. We utilized the functional ꞷB97XD and the basis set 6-31G**. Based on a detailed surface analysis, HU was adsorbed on the surface of the nanotube through 4 different orientations. Also, no vibrational spectra exhibited imaginary frequencies, showing the minimum energy of the relaxed structures. The maximum adsorption energy and the minimum adsorption energy are in strong physical adsorption. The BeONT exhibited p-type semiconducting characteristics in all orientations since it received electronic charge from HU. The results demonstrate the possibility of using the BeONT as a promising carrier for HU drugs.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq.
| | - Ali Jihad
- Pharmacy Department, Al-Mustaqbal University College, Hilla, 51001, Iraq
| | - Safa K Hachim
- College of Technical Engineering, The Islamic University, Najaf, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Taleeb Zedan Taban
- Laser and Optoelectronics Engineering Department, Kut University College, Kut, Wasit, Iraq
| | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
6
|
Yang Y, Guo J, Huang L. Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends Pharmacol Sci 2021; 41:701-714. [PMID: 32946772 DOI: 10.1016/j.tips.2020.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is a highly complex environment that surrounds tumors. Interactions between cancer cells/non-cancerous cells and cells/non-cell components in the TME support tumor initiation, development, and metastasis. Of the cell types in the TME, tumor-associated macrophages (TAMs) have gained attention owing to their crucial roles in supporting tumors and conferring therapy resistance. Recent developments in nanotechnology raise opportunities for the application of nano targeted drug-delivery systems (Nano-TDDS) in cancer therapy. We focus our discussion on current knowledge of TAMs, and describe recent examples of Nano-TDDS-based TAM modulation, highlighting strategies to overcome in vivo delivery barriers associated with the TME and their potential for clinical translation.
Collapse
Affiliation(s)
- Yishun Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Zou Y, Xiao F, Song L, Sun B, Sun D, Chu D, Wang L, Han S, Yu Z, O'Driscoll CM, Guo J. A folate-targeted PEGylated cyclodextrin-based nanoformulation achieves co-delivery of docetaxel and siRNA for colorectal cancer. Int J Pharm 2021; 606:120888. [PMID: 34271152 DOI: 10.1016/j.ijpharm.2021.120888] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic agent used for a range of cancers, but it has little activity against colorectal cancer (CRC). However, combination therapy with other therapeutic agents is a potential strategy to enhance the efficacy of DTX in CRC treatment. The nuclear factor-κB (NF-κB) signaling pathway is implicated in a variety of malignancies (e.g., CRC), and the blockade of NF-κB may increase the sensitivity of cancer cells to chemotherapy. The application of small interference RNA (siRNA) to inhibit the translation of complementary mRNA has demonstrated the potential for cancer gene therapy. In this study, an amphiphilic cationic cyclodextrin (CD) nanoparticle modified with PEGylated folate (FA; a ligand to target folate receptor on CRC) has been developed for co-delivery of DTX and siRNA (against the RelA, a subunit of NF-κB) in the treatment of CRC. The resultant co-formulation (CD.DTX.siRelA.PEG-FA) achieved cell-specific uptake indicating the function of the folate targeting ligand. The CD.DTX.siRelA.PEG-FA nanoparticle enhanced the apoptotic effect of DTX with the downregulation of RelA expression, which significantly retarded the growth of CRC in mice, without causing significant toxicity. These results suggest that the FA-targeted PEGylated CD-based co-formulation provides a promising strategy for combining DTX and siRNA in treating CRC.
Collapse
Affiliation(s)
- Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Fang Xiao
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun 130041, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Bingxue Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- Department of Pharmacy, the General Hospital of FAW, Changchun 130011, China
| | - Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
8
|
Theoretical analysis of the structural and electronic properties of the interaction of boron nitride diamantane nanocrystal with the drug hydroxyurea as an anticancer drug. J Mol Model 2021; 27:90. [PMID: 33611723 DOI: 10.1007/s00894-021-04711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The density functional theory calculations with hybrid B3LYP/6-31G(d,p) basis sets have been used to examine the structural and electronic properties of boron nitride (BN) diamantane interacted with the drug hydroxyurea (HU) as an anticancer drug. The findings have been shown that there is a decrease in the total energy after combining the drug with diamantane. The energy levels of HOMO and LUMO analyses indicate that the value of HOMO energy increased slightly, while the value of LUMO energy decreased significantly in these systems in the HU/BN diamantane. In addition, the decreasing of the energy gap between HOMO and LUMO confirms a strong bond between the drug hydroxyurea and BN diamantane. Finally, the drug's stability and reactivity with BN diamantane were investigated by measuring chemical reaction characteristics such as chemical potential, electron affinity, global hardness, and electrophilicity index. As a result, the nanocrystal of BN diamantane can be considered a vector for the delivery of anticancer drugs within biological systems.
Collapse
|
9
|
Combined inhibition of CD73 and ZEB1 by Arg-Gly-Asp (RGD)-targeted nanoparticles inhibits tumor growth. Colloids Surf B Biointerfaces 2021; 197:111421. [DOI: 10.1016/j.colsurfb.2020.111421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
|
10
|
Guo J, Huang L. Membrane-core nanoparticles for cancer nanomedicine. Adv Drug Deliv Rev 2020; 156:23-39. [PMID: 32450105 DOI: 10.1016/j.addr.2020.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer is one of the most severe disease burdens in modern times, with an estimated increase in the number of patients diagnosed globally from 18.1 million in 2018 to 23.6 million in 2030. Despite a significant progress achieved by conventional therapies, they have limitations and are still far from ideal. Therefore, safe, effective and widely-applicable treatments are urgently needed. Over the past decades, the development of novel delivery approaches based on membrane-core (MC) nanostructures for transporting chemotherapeutics, nucleic acids and immunomodulators has significantly improved anticancer efficacy and reduced side effects. In this review, the formulation strategies based on MC nanostructures for delivery of anticancer drug are described, and recent advances in the application of MC nanoformulations to overcome the delivery hurdles for clinical translation are discussed.
Collapse
|
11
|
Sousa AR, Oliveira AV, Oliveira MJ, Sarmento B. Nanotechnology-based siRNA delivery strategies for metastatic colorectal cancer therapy. Int J Pharm 2019; 568:118530. [DOI: 10.1016/j.ijpharm.2019.118530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
|
12
|
Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, Creczynski-Pasa TB. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1182-1190. [DOI: 10.1016/j.msec.2019.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
|
13
|
Luan X, Rahme K, Cong Z, Wang L, Zou Y, He Y, Yang H, Holmes JD, O'Driscoll CM, Guo J. Anisamide-targeted PEGylated gold nanoparticles designed to target prostate cancer mediate: Enhanced systemic exposure of siRNA, tumour growth suppression and a synergistic therapeutic response in combination with paclitaxel in mice. Eur J Pharm Biopharm 2019; 137:56-67. [PMID: 30779980 DOI: 10.1016/j.ejpb.2019.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/18/2018] [Accepted: 02/15/2019] [Indexed: 12/24/2022]
Abstract
Small interfering RNA (siRNA) has recently illustrated therapeutic potential for malignant disorders. However, the clinical application of siRNA-based therapeutics is significantly retarded by the paucity of successful delivery systems. Recently, multifunctional gold nanoparticles (AuNPs) as non-viral delivery carriers have shown promise for transporting chemotherapeutics, proteins/peptides, and genes. In this study, AuNPs capped with polyethylenimine (PEI) and PEGylated anisamide (a ligand known to target the sigma receptor) have been developed to produce a range of positively charged anisamide-targeted PEGylated AuNPs (namely Au-PEI-PEG-AA). The anisamide-targeted AuNPs effectively complexed siRNA via electrostatic interaction, and the resultant complex (Au110-PEI-PEG5000-AA.siRNA) illustrated favourable physicochemical characteristics, including particle size, surface charge, and stability. In vitro, anisamide-targeted AuNPs selectively bound to human prostate cancer PC-3 cells, inducing efficient endosomal escape of siRNA, and effective downregulation of the RelA gene. In vivo, prolonged systemic exposure of siRNA was achieved by anisamide-targeted AuNPs resulting in significant tumour growth suppression in a PC3 xenograft mouse model without an increase in toxicity. In addition, a combination of siRNA-mediated NF-κB knockdown using anisamide-targeted AuNPs with Paclitaxel produced a synergistic therapeutic response, thus providing a promising therapeutic strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xue Luan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon; Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland
| | - Zhongcheng Cong
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Department of Pharmacy, The General Hospital of FAW, Changchun 130011, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yan He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Justin D Holmes
- Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; AMBER@CRANN, Trinity College Dublin, Dublin 2, Ireland
| | | | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
14
|
Li H, Wang Z, Zhang J, Yuan C, Zhang H, Hou X, Zhang D. Enhanced shRNA delivery by the combination of polyethylenimine, ultrasound, and nanobubbles in liver cancer. Technol Health Care 2019; 27:263-272. [PMID: 31045545 PMCID: PMC6597992 DOI: 10.3233/thc-199025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Traditional cancer treatments such as surgery, radiation, and chemotherapy destroy both cancer and normal cells, which limit their clinical application. It is difficult to achieve the best results for any liver cancer patients using any single treatment method. Gene therapy for HCC demands non-invasive, efficient, targeted and safe gene transfection strategies. OBJECTIVE In this study, a nonviral shRNA gene delivery system utilizing a combination of PEI, US, and NBs was developed for targeting survivin in liver Cancer. METHODS AND RESULTS The PEI-shRNA-NBs cumulated in the tumor tissue because of the EPR effect. By exposure to the US, micelles shRNA may be released from PEI-shRNA-NBs in tumor tissues and the shRNA then transmitted efficiently to cancer cells. Considerably enhanced therapeutic outcome was obtained with the gene silencing effect enhanced. CONCLUSIONS PEI-shRNA-NBs possess the potential to become promising tools intended for shRNA delivery.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Ultrasonography, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Ziyu Wang
- Department of Ultrasonography, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Xinxin Hou
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Dongsheng Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Cai W, Lv W, Feng Y, Yang H, Zhang Y, Yang G, Duan Y, Wang J. The therapeutic effect in gliomas of nanobubbles carrying siRNA combined with ultrasound-targeted destruction. Int J Nanomedicine 2018; 13:6791-6807. [PMID: 30425489 PMCID: PMC6205539 DOI: 10.2147/ijn.s164760] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Nanobubbles (NBs) combined with ultrasound-targeted destruction (UTD) have become promising potential carriers for drug or siRNA delivery. Due to their nano-size, NBs could penetrate tumor blood vessels and accumulate in intercellular spaces so that "sonoporation" induced by UTD would act directly on the tumor cells to increase cell membrane permeability. Methods Based on the successful the fabrication of NBs, we synthesized NBs carrying siRNA (NBs-siRNA) by using a biotin-streptavidin system. We then utilized ultrasound irradiation (UI)-targeted NBs-siRNA to improve siRNA transfection and achieve the inhibition of glioma growth. Results NBs as carriers combined with UI effectively enhanced siRNA transfection and the effect of silencing targeted genes in vitro. Additionally, a better therapeutic effect was shown in the NBs-siRNA with UI group in vivo compared with that of microbubbles (MBs) with UI or NBs-siRNA without UI. Conclusion These results indicated that NBs combined with UTD might be an ideal delivery vector for siRNA to achieve the noninvasive treatment of glioma.
Collapse
Affiliation(s)
- Wenbin Cai
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ; .,General Hospital of Tibet Military Command, Lhasa, Tibet Autonomous Region, 850007, China
| | - Wei Lv
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ; .,Department of Radiology, 305 Hospital of Chinese People's Liberation Army, Xicheng District, Beijing, 100017, China
| | - Yang Feng
- Xijing Hospital, Traditional Chinese Medicine, Xi'an 710032, China
| | - Hengli Yang
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ;
| | - Yajun Zhang
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ;
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ;
| | - Jia Wang
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ;
| |
Collapse
|
16
|
Guo J, Luan X, Cong Z, Sun Y, Wang L, McKenna SL, Cahill MR, O'Driscoll CM. The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. J Control Release 2018; 286:154-166. [DOI: 10.1016/j.jconrel.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
|
17
|
Khan FA, Akhtar S, Almofty SA, Almohazey D, Alomari M. FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 Cells): Morphometric Analysis. Biomolecules 2018; 8:biom8020032. [PMID: 29882888 PMCID: PMC6022976 DOI: 10.3390/biom8020032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Currently, breast cancer treatment mostly revolves around radiation therapy and surgical interventions, but often these treatments do not provide satisfactory relief to the patients and cause unmanageable side-effects. Nanomaterials show promising results in treating cancer cells and have many advantages such as high biocompatibility, bioavailability and effective therapeutic capabilities. Interestingly, fluorescent magnetic nanoparticles have been used in many biological and diagnostic applications, but there is no report of use of fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in the treatment of human breast cancer cells. In the present study, we tested the effect of FMSP-nanoparticles on human breast cancer cells (MCF-7). We tested different concentrations (1.25, 12.5 and 50 µg/mL) of FMSP-nanoparticles in MCF-7 cells and evaluated the nanoparticles response morphometrically. Our results revealed that FMSP-nanoparticles produced a concentration dependent effect on the cancer cells, a dose of 1.25 µg/mL produced no significant effect on the cancer cell morphology and cell death, whereas dosages of 12.5 and 50 µg/mL resulted in significant nuclear augmentation, disintegration, chromatic condensation followed by dose dependent cell death. Our results demonstrate that FMSP-nanoparticles induce cell death in MCF-7 cells and may be a potential anti-cancer agent for breast cancer treatment.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
18
|
Hoosen Y, Pradeep P, Kumar P, du Toit LC, Choonara YE, Pillay V. Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. Int J Mol Sci 2018; 19:E731. [PMID: 29510526 PMCID: PMC5877592 DOI: 10.3390/ijms19030731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer (OC) has gained a great deal of attention due to its aggressive proliferative capabilities, high death rates and poor treatment outcomes, rendering the disease the ultimate lethal gynaecological cancer. Nanotechnology provides a promising avenue to combat this malignancy by the niche fabrication of optimally-structured nanomedicines that ensure potent delivery of chemotherapeutics to OC, employing nanocarriers to act as "intelligent" drug delivery vehicles, functionalized with active targeting approaches for precision delivery of chemotherapeutics to overexpressed biomarkers on cancer cells. Recently, much focus has been implemented to optimize these active targeting mechanisms for treatment/diagnostic purposes employing nanocarriers. This two-part article aims to review the latest advances in active target-based OC interventions, where the impact of the newest antibody, aptamer and folate functionalization on OC detection and treatment is discussed in contrast to the limitations of this targeting mechanism. Furthermore, we discuss the latest advances in nanocarrier based drug delivery in OC, highlighting their commercial/clinical viability of these systems beyond the realms of research. Lastly, in the second section of this review, we comprehensively discussed a focus shift in OC targeting from the well-studied OC cells to the vastly neglected extracellular matrix and motivate the potential for glycosaminoglycans (GAGs) as a more focused extracellular molecular target.
Collapse
Affiliation(s)
- Yasar Hoosen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
19
|
Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs. TOXICS 2018; 6:toxics6010012. [PMID: 29401738 PMCID: PMC5874785 DOI: 10.3390/toxics6010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022]
Abstract
Pharmacotherapy as the mainstay in the management of breast cancer has demonstrated various drawbacks, including non-targeted bio distribution and narrow therapeutic and safety windows. Thus, enhancements in pharmacodynamic and pharmacokinetic profiles of the classical anti-cancer drugs could lead to improved efficacy against cancer cells. Therefore, inorganic pH-dependent carbonate apatite (CA) nanoparticles were utilized to efficiently deliver various drugs into cancer cells. Following characterization and various modifications in the structure of CA complexes with different drugs, lifted outcomes were achieved. Markedly, complexing paclitaxel with CA resulted in 20.71 ± 4.34% loading efficiency together with 24.14 ± 2.21% enhancement in cytotoxicity on MCF-7 cells plus superior in vivo anti-tumour efficacy compared to free paclitaxel.
Collapse
|
20
|
Cyclodextrin-Based Nanosystems in Targeted Cancer Therapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76162-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Gao T, Bi A, Yang S, Liu Y, Kong X, Zeng W. Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:99-115. [PMID: 30324350 DOI: 10.1007/978-3-319-99286-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer in men with high morbidity and mortality. However, the current treatment with drugs often leads to chemotherapy resistance. It is known that the multi-disciplines research on molecular imaging is very helpful for early diagnosing, staging, restaging and precise treatment of PCa. In the past decades, the tumor-specific targeted drugs were developed for the clinic to treat prostate cancer. Among them, the emerging nanotechnology has brought about many exciting novel diagnosis and treatments systems for PCa. Nanotechnology can greatly enhance the treatment activity of PCa and provide novel theranostics platform by utilizing the unique physical/chemical properties, targeting strategy, or by loading with imaging/therapeutic agents. Herein, this chapter focuses on state-of-art advances in imaging and diagnosing PCa with nanomaterials and highlights the approaches used for functionalization of the targeted biomolecules, and in the treatment for various aspects of PCa with multifunctional nanoparticles, nanoplatforms and nanodelivery system.
Collapse
Affiliation(s)
- Tang Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Shuiqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Xiangqi Kong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China. .,Molecular Imaging Research Center, Central South University, Changsha, China.
| |
Collapse
|
22
|
Targeted Drug Delivery via Folate Receptors for the Treatment of Brain Cancer: Can the Promise Deliver? J Pharm Sci 2017; 106:3413-3420. [DOI: 10.1016/j.xphs.2017.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
|
23
|
Malhotra M, Gooding M, Evans JC, O'Driscoll D, Darcy R, O'Driscoll CM. Cyclodextrin-siRNA conjugates as versatile gene silencing agents. Eur J Pharm Sci 2017; 114:30-37. [PMID: 29191522 DOI: 10.1016/j.ejps.2017.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/26/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
Abstract
Functional siRNAs (luciferase and PLK1) have been conjugated to β-cyclodextrin and the ability of the conjugates to retain gene knockdown activity has been assessed by delivery to cancer cell lines using various formulations. Initially two formulations used complexation with polycations, namely Lipofectamine 2000 and an amphiphilic polycationic cyclodextrin. Gene knockdown results for human glioblastoma cells (U87) and prostate cancer cells (PC3, DU145) showed that conjugation to the cyclodextrin did not reduce gene silencing by the RNA. A third mode of delivery involved formation of targeted nanoparticles in which the conjugate was first complexed with adamantyl-PEG-ligands (targeting ligand RVG peptide or dianisamide) by adamantyl inclusion in the cyclodextrin cavities of the conjugates, followed by charge neutralisation with the cationic polymer chitosan. Enhanced knockdown was achieved by these ligand-targeted formulations. In summary, while this study illustrated the gene silencing efficacy of a simple cyclodextrin-siRNA conjugate it is envisaged that future studies will explore the use of conjugates with a modified cyclodextrin which would be self-delivering. Detailed data such as stability, lysosomal escape etc. will then be reported for each conjugate, since this will be appropriate for conjugates which are intended to exploit, rather than merely demonstrate, the concept. The present paper was intended to demonstrate the viability and generality of this novel concept.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matt Gooding
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Daniel O'Driscoll
- Alimentary Pharmabiotic Centre, Microbiome Institute, University College Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
24
|
Kabilova TO, Shmendel EV, Gladkikh DV, Chernolovskaya EL, Markov OV, Morozova NG, Maslov MA, Zenkova MA. Targeted delivery of nucleic acids into xenograft tumors mediated by novel folate-equipped liposomes. Eur J Pharm Biopharm 2017; 123:59-70. [PMID: 29162508 DOI: 10.1016/j.ejpb.2017.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
Folate receptors (FR) are cellular markers highly expressed in various cancer cells. Here, we report on the synthesis of a novel folate-containing lipoconjugate (FC) built of 1,2-di-O-ditetradecyl-rac-glycerol and folic acid connected via a PEG spacer, and the evaluation of the FC as a targeting component of liposomal formulations for nucleic acid (NA) delivery into FR expressing tumor cells. FR-targeting liposomes, based on polycationic lipid 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride (2X3), lipid helper dioleoylphosphatidylethanolamine (DOPE) and novel FC, formed small compact particles in solution with diameters of 60 ± 22 nm, and were not toxic to cells. Complexes of NAs with the liposomes were prepared at various nitrogen to phosphate ratios (N/P) to optimize liposome/cell interactions. We showed that FR-mediated delivery of different nucleic acids mediated by 2X3-DOPE/FC liposomes occurs in vitro at low N/P (1/1 and 2/1); under these conditions FC-containing liposomes display 3-4-fold higher transfection efficiency in comparison with conventional formulation. Lipoplexes formed at N/P 1/1 by targeted liposomes and cargo (Cy7-labeled siRNA targeting MDR1 mRNA) in vivo efficiently accumulate in tumor (∼15-18% of total amount), and kidneys (71%), and were retained there for more than 24 h, causing efficient downregulation of p-glycoprotein expression (to 40% of control) in tumors. Thus, FC containing liposomes provide effective targeted delivery of nucleic acids into tumor cells in vitro and in xenograft tumors in vivo.
Collapse
Affiliation(s)
- Tatyana O Kabilova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Elena V Shmendel
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Daniil V Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Oleg V Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Nina G Morozova
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Mikhail A Maslov
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
25
|
Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine 2017; 12:6131-6152. [PMID: 28883725 PMCID: PMC5574664 DOI: 10.2147/ijn.s140772] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of multifunctional nanomaterials, one of the most interesting and advanced research areas in the field of nanotechnology, is anticipated to revolutionize cancer diagnosis and treatment. Gold nanoparticles (AuNPs) are now being widely utilized in bio-imaging and phototherapy due to their tunable and highly sensitive optical and electronic properties (the surface plasmon resonance). As a new concept, termed "theranostics," multifunctional AuNPs may contain diagnostic and therapeutic functions that can be integrated into one system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. In this review, the important properties of AuNPs relevant to diagnostic and phototherapeutic applications such as structure, shape, optics, and surface chemistry are described. Barriers for translational development of theranostic AuNPs and recent advances in the application of AuNPs for cancer diagnosis, photothermal, and photodynamic therapy are discussed.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon
- Department of Chemistry, Tyndall National Institute, University College Cork, Cork
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | - Yan He
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Lin-Lin Li
- The First Hospital of Jilin University, Changchun, China
| | - Justin D Holmes
- Department of Chemistry, Tyndall National Institute, University College Cork, Cork
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
26
|
Hao Q, Xu G, Yang Y, Sun Y, Cong D, Li H, Liu X, Wang Z, Zhang Z, Chen J, Li Y, Luan X, Wang L, Tian L, Liu K, Li Y, Jiao Q, Pei J. Oestrone-targeted liposomes for mitoxantrone delivery via oestrogen receptor - synthesis, physicochemical characterization and in-vitro evaluation. ACTA ACUST UNITED AC 2017; 69:991-1001. [PMID: 28444771 DOI: 10.1111/jphp.12736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/26/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Targeted delivery of mitoxantrone (MTO, an anthraquinone drug with high antitumour effect) may be achieved using a novel nanoparticulate delivery system via binding the oestrogen receptor (ER, highly expressed in a variety of human tumours). METHODS A novel liposomal nanoparticle (NP) was developed using a conjugate derived from 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG2000 -NH2 ) and oestrone (ES, is known to bind the ER) to produce an ES-targeted PEGylated liposome (ES-SSL). The resulting targeted NP was loaded with MTO to produce a targeted liposome-MTO formulation (ES-SSL-MTO). KEY FINDINGS The targeted formulation (~140 nm, 1.5 mV) achieved over 95% drug encapsulation efficiency and a favourable stability at 4, 25 and 37 °C up to 48 h. The flow cytometric data indicated that cellular uptake of ES-SSL into human leukaemia HL-60 cells was mediated via binding the oestrogen receptor. In addition, the ES-SSL-MTO significantly reduced the growth of HL-60 cells. CONCLUSIONS Our results provide a proof of principle that ES-modified PEGylated liposomes can target the ER, thereby potentially improving the therapeutic benefits in ER-overexpressed tumours.
Collapse
Affiliation(s)
- Qiang Hao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Guoxing Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yuxin Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Dengli Cong
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Hongrui Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zeng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zheng Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jinglin Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xue Luan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lin Tian
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Kun Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Qianru Jiao
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Chen XQ, Liu M, Wang RF, Yan P, Zhang CL, Ma C, Zhao Q, Yin L, Zhao GY, Guo FQ. Noninvasive imaging of c(RGD) 2 -9R as a potential delivery carrier for transfection of siRNA in malignant tumors. J Labelled Comp Radiopharm 2017; 60:385-393. [PMID: 28423195 DOI: 10.1002/jlcr.3514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022]
Abstract
The purpose of our study was to develop and evaluate a novel integrin αv β3 -specific delivery carrier for transfection of siRNA in malignant tumors. We adopted arginine-glycine-aspartate (RGD) motif as a tissue target for specific recognition of integrin αν β3 . A chimaeric peptide was synthesized by adding nonamer arginine residues (9-arginine [9R]) at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD)2 -9R, to enable small interfering RNA (siRNA) binding. To test the applicability of the delivery carrier in vivo, c(RGD)2 -9R was labeled with radionuclide of technetium-99m. Biodistribution and γ-camera imaging studies were performed in HepG2 xenograft-bearing nude mice. As results, an optimal 10:1 molar ratio of 99m Tc-c(RGD)2 -9R to siRNA was indicated by the electrophoresis on agarose gels. 99m Tc-c(RGD)2 -9R/siRNA remained stable under a set of conditions in vitro. For in vivo study, tumor radioactivity uptake of 99m Tc-c(RGD)2 -9R/siRNA in nude mice bearing HepG2 xenografts was significantly higher than that of control probe (P < .05). The xenografts were clearly visualized at 4 hours till 6 hours noninvasively after intravenous injection of 99m Tc-c(RGD)2 -9R/siRNA, while the xenografts were not visualized at any time after injection of control probe. It was concluded that c(RGD)2 -9R could be an effective siRNA delivery carrier. Technetium-99m radiolabeled-delivery carrier represents a potential imaging strategy for RNAi-based therapy.
Collapse
Affiliation(s)
- Xue Qi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rong Fu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chun Li Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chao Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Qian Zhao
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Guang Yu Zhao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Feng Qin Guo
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
28
|
Yousefpour Marzbali M, Yari Khosroushahi A. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol 2017; 79:637-649. [DOI: 10.1007/s00280-017-3273-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/02/2017] [Indexed: 12/11/2022]
|
29
|
Guo J, Russell EG, Darcy R, Cotter TG, McKenna SL, Cahill MR, O’Driscoll CM. Antibody-Targeted Cyclodextrin-Based Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukemia: Physicochemical Characteristics, in Vitro Mechanistic Studies, and ex Vivo Patient Derived Therapeutic Efficacy. Mol Pharm 2017; 14:940-952. [DOI: 10.1021/acs.molpharmaceut.6b01150] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianfeng Guo
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Pharmacodelivery
Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Eileen G. Russell
- Tumour
Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery
Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Thomas G. Cotter
- Tumour
Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Mary R. Cahill
- Department
of Haematology, Cork University Hospital, Cork, Ireland
| | | |
Collapse
|
30
|
Chen X, Liu M, Wang R, Yan P, Zhang C, Ma C, Yin L. Construction and Biological Evaluation of a Novel Integrin α νβ₃-Specific Carrier for Targeted siRNA Delivery In Vitro. Molecules 2017; 22:molecules22020231. [PMID: 28165399 PMCID: PMC6155842 DOI: 10.3390/molecules22020231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/05/2023] Open
Abstract
(1) Background: The great potential of RNA interference (RNAi)-based gene therapy is premised on the effective delivery of small interfering RNAs (siRNAs) to target tissues and cells. Hence, we aimed at developing and examining a novel integrin αvβ3-specific delivery carrier for targeted transfection of siRNA to malignant tumor cells; (2) Methods: Arginine-glycine-aspartate motif (RGD) was adopted as a tissue target for specific recognition of integrin αvβ3. To enable siRNA binding, a chimeric peptide was synthesized by adding nonamer arginine residues (9R) at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD)2-9R. The efficiency of 9R peptide transferring siRNA was biologically evaluated in vitro by flow cytometry, confocal microscopy, and Western blot; (3) Results: An optimal 10:1 molar ratio of c(RGD)2-9R to siRNA was confirmed by the electrophoresis on agarose gels. Both the flow cytometry and confocal microscopy results testified that transfection of c(RGD)2-9R as an siRNA delivery carrier was obviously higher than the naked-siRNA group. The results of Western blot demonstrated that these 9R peptides were able to transduce siRNA to HepG2 cells in vitro, resulting in efficient gene silencing; and (4) Conclusion: The chimeric peptide of c(RGD)2-9R can be developed as an effective siRNA delivery carrier and shows potential as a new strategy for RNAi-based gene therapy.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Chao Ma
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| |
Collapse
|
31
|
Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O'Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev 2016; 106:367-380. [PMID: 27320644 DOI: 10.1016/j.addr.2016.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
The influence of nanoparticle (NP) formulations on the pharmacokinetic, pharmacodynamic and biodistribution profiles of peptide- and protein-like drugs following oral administration is critically reviewed. The possible mechanisms of absorption enhancement and the effects of the physicochemical properties of the NP are examined. The potential advantages and challenges of physiologically-based pharmacokinetic (PBPK) modelling to help predict efficacy in man are discussed. The importance of developing and expanding the regulatory framework to help translate the technology into the clinic and accelerate the availability of oral nanoparticulate formulations is emphasized. In conclusion, opportunities for future work to improve the state of the art of oral nanomedicines are identified.
Collapse
|
32
|
Ge K, Zhang C, Sun W, Liu H, Jin Y, Li Z, Liang XJ, Jia G, Zhang J. Up-Conversion Y2O3:Yb(3+),Er(3+) Hollow Spherical Drug Carrier with Improved Degradability for Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25078-25086. [PMID: 27589262 DOI: 10.1021/acsami.6b07215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rare earth hollow spheres with up-conversion luminescence properties have shown potential applications in drug delivery and bioimaging fields. However, there have been few reports for the degradation properties of rare earth oxide drug carriers. Herein, uniform and well-dispersed Y2O3:Yb(3+),Er(3+) hollow spheres (YOHSs) have been fabricated by a general Pechini sol-gel process with melamine formaldehyde colloidal spheres as template. The novel YOHSs with up-conversion luminescence has good drug loading amount and drug-release efficiency; moreover, it exhibits pH-responsive release patterns. In particular, the YOHSs sample exhibits low cytotoxicity and excellent degradable properties in acid buffer. After the sample was loaded with anticancer drug doxorubicin (DOX), the antitumor result in vitro indicates that YOHS-DOX might be effective in cancer treatment. The animal imaging test also reveals that the YOHSs drug carrier can be used as an outstanding luminescent probe for bioimaging in vivo application prospects. The results suggest that the degradable drug carrier with up-conversion luminescence may enhance the delivery efficiency of drugs and improve the cancer therapy in clinical applications.
Collapse
Affiliation(s)
- Kun Ge
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University , Baoding 071002, P. R. China
- Affiliated Hospital of Hebei University , Baoding 071000, P.R. China
| | - Cuimiao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University , Baoding 071002, P. R. China
| | - Wentong Sun
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University , Baoding 071002, P. R. China
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University , Baoding 071002, P. R. China
| | - Yi Jin
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University , Baoding 071002, P. R. China
| | - Zhenhua Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University , Baoding 071002, P. R. China
| | - Xing-Jie Liang
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China , Beijing 100190, P. R. China
| | - Guang Jia
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University , Baoding 071002, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University , Baoding 071002, P. R. China
| |
Collapse
|
33
|
Evans JC, Malhotra M, Guo J, O'Shea JP, Hanrahan K, O'Neill A, Landry WD, Griffin BT, Darcy R, Watson RW, O'Driscoll CM. Folate-targeted amphiphilic cyclodextrin.siRNA nanoparticles for prostate cancer therapy exhibit PSMA mediated uptake, therapeutic gene silencing in vitro and prolonged circulation in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2341-2351. [PMID: 27389146 DOI: 10.1016/j.nano.2016.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/15/2016] [Accepted: 06/19/2016] [Indexed: 12/27/2022]
Abstract
In this study, a folate targeted cyclodextrin (CD) nanoparticle was prepared by co-formulating CD.siRNA complexes with DSPE-PEG5000-folate to target the prostate specific membrane antigen (PSMA). Targeted formulations showed increased uptake, relative to untargeted controls, in two prostate cancer cell lines expressing PSMA (VCaP and LNCaP). Competitive uptake studies, using excess folate, significantly reduced uptake of targeted nanoparticles in PSMA positive cell lines (P<0.001). Relative to untreated controls, folate-targeted nanoparticles significantly reduced the levels of RelA mRNA in VCaP and LNCaP cells by 44% and 22% respectively (P<0.001). In contrast there was no significant reduction in RelA mRNA in these cell lines by untargeted complexes. Pharmacokinetic (PK) data indicated that the incorporation of PEG into the formulation increased the circulation time of siRNA 8-fold. This study highlights the ability of incorporating a folate ligand into CD.siRNA nanoparticles to allow for targeted delivery of siRNA to prostate cancer cells via the PSMA.
Collapse
Affiliation(s)
- James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Joseph P O'Shea
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Karen Hanrahan
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Amanda O'Neill
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - William D Landry
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - R William Watson
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
34
|
Guo J, O'Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm 2016; 509:16-27. [PMID: 27188645 DOI: 10.1016/j.ijpharm.2016.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
The chemistry of gold nanoparticles (AuNPs) facilitates surface modifications and thus these bioengineered NPs have been investigated as a means of delivering a variety of therapeutic cargos to treat cancer. In this study we have developed AuNPs conjugated with targeting ligands to enhance cell-specific uptake in prostate cancer cells, with a purpose of providing efficient non-viral gene delivery systems in the treatment of prostate cancer. As a consequence, two novel AuNPs were synthesised namely AuNPs-PEG-Tf (negatively charged AuNPs with the transferrin targeting ligands) and AuNPs-PEI-FA (positively charged AuNPs with the folate-receptor targeting ligands). Both bioconjugated AuNPs demonstrated low cytotoxicity in prostate cancer cells. The attachment of the targeting ligand Tf to AuNPs successfully achieved receptor-mediated cellular uptake in PC-3 cells, a prostate cancer cell line highly expressing Tf receptors. The AuNPs-PEI-FA effectively complexed small interfering RNA (siRNA) through electrostatic interaction. At the cellular level the AuNPs-PEI-FA specifically delivered siRNA into LNCaP cells, a prostate cancer cell line overexpressing prostate specific membrane antigen (PSMA, exhibits a hydrolase enzymic activity with a folate substrate). Following endolysosomal escape the AuNPs-PEI-FA.siRNA formulation produced enhanced endogenous gene silencing compared to the non-targeted formulation. Our results suggest both formulations have potential as non-viral gene delivery vectors in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland.
| | | | - Justin D Holmes
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon.
| |
Collapse
|
35
|
Fitzgerald KA, Rahme K, Guo J, Holmes JD, O'Driscoll CM. Anisamide-targeted gold nanoparticles for siRNA delivery in prostate cancer - synthesis, physicochemical characterisation and in vitro evaluation. J Mater Chem B 2016; 4:2242-2252. [PMID: 32263220 DOI: 10.1039/c6tb00082g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metastatic prostate cancer is a leading cause of cancer-related death in men and current chemotherapies are largely inadequate in terms of efficacy and toxicity. Hence improved treatments are required. The application of siRNA as a cancer therapeutic holds great promise. However, translation of siRNA into the clinic is dependent on the availability of an effective delivery system. Gold nanoparticles (AuNPs) are known to be effective and non-toxic siRNA delivery agents. In this study, a stable gold nanosphere coated with poly(ethylenimine) (PEI) was prepared to yield PEI capped AuNPs (Au-PEI). The PEI was further conjugated with the targeting ligand anisamide (AA, is known to bind to the sigma receptor overexpressed on the surface of prostate cancer cells) to produce an anisamide-targeted nanoparticle (Au-PEI-AA). The resulting untargeted and targeted nanoparticles (Au-PEI and Au-PEI-AA respectively) were positively charged and efficiently complexed siRNA. Au-PEI-AA mediated siRNA uptake into PC3 prostate cancer cells via binding to the sigma receptor. In addition, the Au-PEI-AA·siRNA complexes resulted in highly efficient knockdown of the RelA gene (∼70%) when cells were transfected in serum-free medium. In contrast, no knockdown was observed in the presence of serum, suggesting that adsorption of serum proteins inhibits the binding of the anisamide moiety to the sigma receptor. This study provides (for the first time) proof of principle that anisamide-labelled gold nanoparticles can target the sigma receptor. Further optimisation of the formulation to increase serum stability will enhance its potential to treat prostate cancer.
Collapse
|
36
|
Li H, Hao Y, Wang N, Wang L, Jia S, Wang Y, Yang L, Zhang Y, Zhang Z. DOTAP functionalizing single-walled carbon nanotubes as non-viral vectors for efficient intracellular siRNA delivery. Drug Deliv 2015; 23:840-8. [PMID: 24892622 DOI: 10.3109/10717544.2014.919542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Functionalized single-walled carbon nanotubes (SWNT) with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were used as novel and more convenient carriers of small interfering RNA (siRNA). OBJECTIVE To utilize the unique capability of SWNT to be easily modified by functional groups and readily internalized by mammalian cells to bind, condense, stabilize siRNA and enhance its transfection efficiency. METHODS After SWNT were non-covalently functionalized by cationic DOTAP (SWNT-DOTAP), siRNA interacted with SWNT-DOTAP via static electricity (SWNT-DOTAP/siRNA). Subsequently, the size, zeta potential and morphology of SWNT-DOTAP/siRNA were analyzed. The optimal compression ratio and stability of siRNA were assessed by agarose gel electrophoresis. Furthermore, in prostate carcinoma PC-3 cells, RT-PCR, flow cytometry and sulforhodamine B assays were used to evaluate the silencing activity, transfection efficiency and cell proliferation, respectively. RESULTS AND DISCUSSION The characteristics of SWNT-DOTAP, i.e. an average size of 194.49 nm, a zeta potential of 45.16 mV and lower cytotoxicity than Lipofectamine 2000, indicated that this vector was suitable for siRNA delivery. Moreover, after interaction with SWNT-DOTAP, siRNA of human telomerase reverse transcriptase was bound, condensed and stabilized. In PC-3 cells, SWNT-DOTAP/siRNA exhibited 82.6% silencing activity and 92% transfection efficiency. Furthermore, the complexes inhibited cell proliferation by 42.1%. CONCLUSION SWNT-DOTAP may be a promising siRNA delivery vector for gene-based therapeutic applications in cancer.
Collapse
Affiliation(s)
- Haixia Li
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Yongwei Hao
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Ning Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China .,b Department of pharmacy , the First Affiliated Hospital of Xinxiang Medical University , Xinxiang 453100 , China
| | - Lei Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Shasha Jia
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Yali Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Lijia Yang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Yun Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| | - Zhenzhong Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450002 , China
| |
Collapse
|
37
|
Rahme K, Guo J, Holmes JD, O'Driscoll CM. Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery. Colloids Surf B Biointerfaces 2015; 135:604-612. [PMID: 26322474 DOI: 10.1016/j.colsurfb.2015.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
The potential of RNA interference (RNAi)-based therapeutics for cancer has received much attention; however, delivery of RNAi effectors, such as small interfering RNA (siRNA), remains an obstacle to clinical translation. Non-viral delivery vectors have been used extensively to enhance siRNA delivery. Recently, the potential of gold nanoparticles (AuNPs) for transporting drugs, proteins and genetic materials has been demonstrated. Previously, our laboratory synthesised positively charged, surfactant-free AuNPs in water by the reduction of gold (III) chloride (AuCl3) using hydroxylamine hydrochloride (NH2OH·HCl) in the presence of L-cysteine methyl ester hydrochloride (HSCH2CH(NH2)COOCH3·HCl) as a capping agent. These AuNPs, which achieve higher cell viability in comparison to cetyl trimethyl ammonium bromide (CTAB, a surfactant)-capped counterparts, have demonstrated potential for siRNA delivery. However, it is well known that systemic administration of cationic delivery systems without biological stablising moieties causes non-specific binding with negatively charged serum proteins, resulting in particle aggregation and opsonisation. Consequently, highly stable AuNPs capped with l-cysteine methyl ester hydrochloride conjugated to poly(ethylene glycol) (PEG) were synthesised in this study. PEGylation enhanced the biocompatibility of the AuNPs by reducing toxicity in a range of cell types, by inhibiting interaction with serum proteins thus avoiding aggregation, and, by providing protection against degradation by nucleases. Moreover, these PEGylated AuNPs formed nanoparticles (NPs) with siRNA (which was first compacted with protamine), and had a diameter within the nanoscale range (∼ 250 nm) and a near neutral surface charge (∼ 10 mV). In the future a bifunctional PEG chain on the AuNPs (i.e., SH-PEG-NH2, SH-PEG-COOH) will be used to facilitate conjugation of a targeting ligand to enhance cell specific uptake.
Collapse
Affiliation(s)
- Kamil Rahme
- Materials Chemistry and Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; AMBER (Advanced Materials and Biological Engineering Research Centre), CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices), Trinity College Dublin, Dublin, Ireland; Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Lebanon
| | - Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Justin D Holmes
- Materials Chemistry and Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; AMBER (Advanced Materials and Biological Engineering Research Centre), CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices), Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
38
|
Boccellino M, Alaia C, Misso G, Cossu AM, Facchini G, Piscitelli R, Quagliuolo L, Caraglia M. Gene interference strategies as a new tool for the treatment of prostate cancer. Endocrine 2015; 49:588-605. [PMID: 26049369 DOI: 10.1007/s12020-015-0629-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancer in men. It affects older men and the incidence increases with age; the median age at diagnosis is 67 years. The diagnosis of PCa is essentially based on three tools: digital rectal exam, serum concentration of prostate specific antigen, and transrectal ultrasound-guided biopsy. Currently, the therapeutic treatments of this cancer are different and range from the prostatectomy to hormonal therapy, to radiation therapy, to immunotherapy, and to chemotherapy. However, additional efforts are required in order to find new weapons for the treatment of metastatic setting of disease. The purpose of this review is to highlight new therapeutic strategies based on gene interference; in fact, numerous siRNA and miRNA in the therapeutic treatment of PCa are reported below.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio, 7, 80138, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Guo J, McKenna SL, O’Dwyer ME, Cahill MR, O’Driscoll CM. RNA interference for multiple myeloma therapy: targeting signal transduction pathways. Expert Opin Ther Targets 2015; 20:107-21. [DOI: 10.1517/14728222.2015.1071355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Abstract
Nucleic acids show immense potential to treat cancer, acquired immune deficiency syndrome, neurological diseases and other incurable human diseases. Upon systemic administration, they encounter a series of barriers and hence barely reach the site of action, the cell. Intracellular delivery of nucleic acids is facilitated by nanovectors, both viral and non-viral. A major advantage of non-viral vectors over viral vectors is safety. Nanovectors evaluated specifically for nucleic acid delivery include polyplexes, lipoplexes and other cationic carrier-based vectors. However, more recently there is an increased interest in inorganic nanovectors for nucleic acid delivery. Nevertheless, there is no comprehensive review on the subject. The present review would cover in detail specific properties and types of inorganic nanovectors, their preparation techniques and various biomedical applications as therapeutics, diagnostics and theranostics. Future prospects are also suggested.
Collapse
|
41
|
Guo J, Armstrong MJ, O'Driscoll CM, Holmes JD, Rahme K. Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Adv 2015. [DOI: 10.1039/c4ra16294c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of positively charged, surfactant-free, not cytotoxic 2–200 nm gold nanoparticles in water by seeding growth method; a powerful candidate for nucleic acid delivery application.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery group
- School of Pharmacy
- University College Cork
- Cork
- Ireland
| | - Mark J. Armstrong
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| | | | - Justin D. Holmes
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| |
Collapse
|
42
|
The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm 2015; 478:147-154. [DOI: 10.1016/j.ijpharm.2014.10.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022]
|
43
|
Babaei M, Ardjmand M, Akbarzadeh A, Seyfkordi A. Efficacy comparison of nanoniosomal and pegylated nanoniosomal Cisplatin on A172 cell line. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Zhang J, Li X, Huang L. Non-viral nanocarriers for siRNA delivery in breast cancer. J Control Release 2014; 190:440-50. [PMID: 24874288 PMCID: PMC4142098 DOI: 10.1016/j.jconrel.2014.05.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy in American women. While significant progress has been made in the development of modern diagnostic tools and surgical treatments, only marginal improvements have been achieved with relapsed metastatic breast cancer. Small interfering RNAs (siRNAs) mediate gene silencing of a target protein by disrupting messenger RNAs in an efficient and sequence-specific manner. One application of this technology is the knockdown of genes responsible for tumorigenesis, including those driving oncogenesis, survival, proliferation and death of cells, angiogenesis, invasion and metastasis, and resistance to treatment. Non-viral nanocarriers have attracted attention based on their potential for targeted delivery of siRNA and efficient gene silencing without toxicity. Here, we review promising, non-viral delivery strategies employing liposomes, nanoparticles and inorganic materials in breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
45
|
Pensado A, Fernandez-Piñeiro I, Seijo B, Sanchez A. Anionic nanoparticles based on Span 80 as low-cost, simple and efficient non-viral gene-transfection systems. Int J Pharm 2014; 476:23-30. [PMID: 25261708 DOI: 10.1016/j.ijpharm.2014.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
The existing strategies in the design of non-viral vectors for gene therapy are primarily conceived for cationic systems. However, the safety concerns associated with the use of positively charged systems for nucleic acid delivery and several reports regarding the efficacy of negatively charged systems highlights the need for improved gene-delivery vectors. With these premises in mind, we investigated the development of new negatively charged nanoparticles based on Sorbitan esters (Span(®)) – extremely cheap excipients broadly used in the pharmaceutical industry – on the basis of a simple, one-step and easily scalable procedure. For their specific use in gene therapy, we have incorporated oleylamine (OA) or poly-L-arginine (PA) into these nanosystems. Thus, we used Sorbitan monooleate (Span(®) 80) to design Span(®) 80-oleylamine and Span(®) 80-poly-L-arginine nanosystems (SP-OA and SP-PA, respectively). These systems can associate with the model plasmid pEGFP-C3 and show mean particle sizes of 304 nm and 247 nm and surface charges of -13 mV and -17 mV, respectively. The nanoparticles developed were evaluated in terms of in vitro cell viability and transfection ability. Both systems exhibited an appropriate cell-toxicity profile and are able to transfect the plasmid effectively. Specifically, the nanosystems including OA among their components provided higher transfection levels than the SP-PA nanoparticles. In conclusion, anionic nanoparticles based on Span(®) 80 can be considered low-cost, simple and efficient non-viral anionic gene-transfection systems.
Collapse
Affiliation(s)
- A Pensado
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain
| | - I Fernandez-Piñeiro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain
| | - B Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain; Molecular Image Group, Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), A Choupana, Santiago de Compostela 15706, Spain
| | - A Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain; Molecular Image Group, Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), A Choupana, Santiago de Compostela 15706, Spain.
| |
Collapse
|
46
|
Guo J, Cahill MR, McKenna SL, O'Driscoll CM. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnol Adv 2014; 32:1396-409. [PMID: 25218571 DOI: 10.1016/j.biotechadv.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 12/13/2022]
Abstract
Leukaemia is a bone marrow cancer occurring in acute and chronic subtypes. Acute leukaemia is a rapidly fatal cancer potentially causing death within a few weeks, if untreated. Leukaemia arises as a result of disruption to haematopoietic precursors, caused either by acquired gene fusions, gene mutations or inappropriate expression of the relevant oncogenes. Current treatment options have made significant progress, but the 5 year survival for acute leukaemia remains under 10% in elderly patients, and less than 50% for some types of acute leukaemia in younger adults. For chronic leukaemias longer survival is generally expected and for chronic myeloid leukaemia patients on tyrosine kinase inhibitors the median survival is not yet reached and is expected to exceed 10 years. Chemotherapy and haematopoietic stem cell transplantation (HSCT) for acute leukaemia provide the mainstay of therapy for patients under 65 and both carry significant morbidity and mortality. Alternative and superior therapeutic strategies for acute leukaemias are urgently required. Recent molecular-based knowledge of recurring chromosome rearrangements, in particular translocations and inversions, has resulted in significant advances in understanding the molecular pathogenesis of leukaemia. Identification of a number of unique fusion genes has facilitated the development of highly specific small interfering RNAs (siRNA). Although delivery of siRNA using multifunctional nanoparticles has been investigated to treat solid cancers, the application of this approach to blood cancers is at an early stage. This review describes current treatments for leukaemia and highlights the potential of leukaemic fusion genes as therapeutic targets for RNA interference (RNAi). In addition, the design of biomimetic nanoparticles which are capable of responding to the physiological environment of leukaemia and their potential to advance RNAi therapeutics to the clinic will be critically evaluated.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Mary R Cahill
- Department of Haematology, Cork University Hospital, Ireland
| | | | | |
Collapse
|
47
|
Movahedi F, Ebrahimi Shahmabadi H, Alavi SE, Koohi Moftakhari Esfahani M. Release modeling and comparison of nanoarchaeosomal, nanoliposomal and pegylated nanoliposomal carriers for paclitaxel. Tumour Biol 2014; 35:8665-72. [PMID: 24867099 DOI: 10.1007/s13277-014-2125-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/20/2014] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is the most prevalent cancer among women. Recently, delivering by nanocarriers has resulted in a remarkable evolution in treatment of numerous cancers. Lipid nanocarriers are important ones while liposomes and archaeosomes are common lipid nanocarriers. In this work, paclitaxel was used and characterized in nanoliposomal and nanoarchaeosomal form to improve efficiency. To increase stability, efficiency and solubility, polyethylene glycol 2000 (PEG 2000) was added to some samples. MTT assay confirmed effectiveness of nanocarriers on MCF-7 cell line and size measuring validated nano-scale of particles. Nanoarchaeosomal carriers demonstrated highest encapsulation efficiency and lowest release rate. On the other hand, pegylated nanoliposomal carrier showed higher loading efficiency and less release compared with nanoliposomal carrier which verifies effect of PEG on improvement of stability and efficiency. Additionally, release pattern was modeled using artificial neural network (ANN) and genetic algorithm (GA). Using ANN modeling for release prediction, resulted in R values of 0.976, 0.989 and 0.999 for nanoliposomal, pegylated nanoliposomal and nanoarchaeosomal paclitaxel and GA modeling led to values of 0.954, 0.951 and 0.976, respectively. ANN modeling was more successful in predicting release compared with the GA strategy.
Collapse
Affiliation(s)
- Fatemeh Movahedi
- School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | | | | |
Collapse
|
48
|
Wang L, Shi J, Liu R, Liu Y, Zhang J, Yu X, Gao J, Zhang C, Zhang Z. Photodynamic effect of functionalized single-walled carbon nanotubes: a potential sensitizer for photodynamic therapy. NANOSCALE 2014; 6:4642-4651. [PMID: 24647856 DOI: 10.1039/c3nr06835h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) possess unique physical and chemical properties, which make them very attractive for a wide range of applications. In particular, SWNTs and their composites have shown a great potential for photodynamic therapy (PDT). SWNTs have usually been used for photothermal therapy; herein, the photodynamic effect of two functionalized SWNTs are detected under visible light illumination in vitro and in vivo. The results indicated that the photodynamic effect is not entirely dependent on illumination time, but also on the modification method of the SWNTs. The ability of SWNTs complexes to combine with photodynamic therapy significantly improved the therapeutic efficacy of cancer treatment, and the combined treatment demonstrated a synergistic effect. These findings suggest that the SWNTs composite has great potential as sensitizer for PDT.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fitzgerald KA, Evans JC, McCarthy J, Guo J, Prencipe M, Kearney M, Watson WR, O'Driscoll CM. The role of transcription factors in prostate cancer and potential for future RNA interference therapy. Expert Opin Ther Targets 2014; 18:633-49. [DOI: 10.1517/14728222.2014.896904] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Şalva E, Turan SO, Kabasakal L, Alan S, Özkan N, Eren F, Akbuğa J. Investigation of the Therapeutic Efficacy of Codelivery of psiRNA–Vascular Endothelial Growth Factor and pIL-4 into Chitosan Nanoparticles in the Breast Tumor Model. J Pharm Sci 2014; 103:785-95. [DOI: 10.1002/jps.23815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 01/16/2023]
|