1
|
Paul T, Nath P, Tapadar S, Sultana S, Deb Purkayastha S, Sharma H, Rout J. Growth potential, biochemical properties and nutrient removal efficiency of some freshwater microalgae and their consortia from wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-11. [PMID: 39297543 DOI: 10.1080/15226514.2024.2405001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Impact of varying nitrate (NO3-N) and phosphate (PO4-P) concentrations and sewage water (SW) on the growth, nutrient removal, lipid accumulation, enzymatic antioxidant activity and phytochemical contents of the microalgae Scenedesmus dimorphus, Coelastrella tenuitheca, Chroococcus turgidus and Parachlorella kessleri under monoculture and their consortia have been investigated. High growth rates were observed for all the four algae in both mono and mixed culture conditions at enhanced concentrations of N (1500 mg/L NO3-N) and P (40 mg/L PO4-P). The species Scenedesmus dimorphus outperformed other microalgae growing in SW in efficiently removing nitrogen. The algal consortia of mixed species was found to be more effective in phosphorus removal. The carbohydrate and protein contents were highest in Parachlorella kessleri, about 37% and 44%, respectively, in SW cultivation. The algal consortia demonstrated highest starch content (4%) in nitrogen deprived growth medium. Highest lipid production (43%) was observed in the SW culture. The species Coelastrella tenuitheca, Chroococcus turgidus and Scenedesmus dimorphus irrespective of the growth media indicated significant accumulation of phenol, flavonoid and tannin. The DPPH, catalase and ascorbic peroxidase assay showed pronounced antioxidant activity. Nutrient (N and P) enrichment exhibited enhanced antioxidant enzymatic activity and accumulation of cell storage products.
Collapse
Affiliation(s)
- Tanushree Paul
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Pushpita Nath
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Shahnaj Tapadar
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Sakiba Sultana
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | | | - Himangshu Sharma
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Jayashree Rout
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| |
Collapse
|
2
|
Iqhrammullah M, Chiari W, Hudaa S, Irhamni I, Fahrurrozi, Akbar SA. Microalgal-bacterial interactions: Research trend and updated review. Heliyon 2024; 10:e35324. [PMID: 39170559 PMCID: PMC11336587 DOI: 10.1016/j.heliyon.2024.e35324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Microalgae are being recognized as the key contributor to sustainability in many sectors, starting from energy up to food industries. The microorganism has also been utilized as environmental remediator, capable of converting organic compounds into economically valuable biomass. To optimize the use of microalgae in these sectors, researchers have explored various approaches, of which is the use of bacteria. The interaction between bacteria and microalgae can potentially be harnessed, but its complexity requires extensive research. Herein, we present the bibliometric analysis on microalgal-bacterial interactions. The metadata of published literature was collected through Scopus database on August 4, 2023. The downloaded.csv file was uploaded to VOSViewer and biblioshiny for network visualization. We found that the research has gained a lot of attention from researchers since 2012 with an exponential increase of the publication number. The United States and China are leading the research with a strong collaboration. Based on the research sub-topic clusters, the interaction is mostly studied for wastewater treatment, biomass production, and algal bloom control. Updated reviews on this topic reveal that researchers are now focus on optimizing the efficacy of microalgae-bacteria system, investigating the modes of actions, and identifying challenges in its real-world implementation. The microalgal-bacterial interaction is a promising approach for microalgae utilization in wastewater treatment, biomass production, and algal bloom control.
Collapse
Affiliation(s)
- Muhammad Iqhrammullah
- Research Center for Marine and Land Bioindustry National Research and Innovation Agency (BRIN), North Lombok, 83756, Indonesia
- Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, 23123, Indonesia
| | - Williams Chiari
- Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Syihaabul Hudaa
- Department of Management, Institut Teknologi dan Bisnis Ahmad Dahlan Jakarta, Banten, 15419, Indonesia
| | - Irhamni Irhamni
- Department of Environmental Engineering, Faculty of Infrastructure and Regional Technology, Institut Teknologi Sumatera, Lampung Selatan, 35365, Indonesia
- Department of Environmental Engineering, Faculty of Engineering, Universitas Serambi Mekkah, Banda Aceh, 23245, Indonesia
| | - Fahrurrozi
- Research Center for Marine and Land Bioindustry National Research and Innovation Agency (BRIN), North Lombok, 83756, Indonesia
| | - Said Ali Akbar
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
3
|
Vyas KD, Singh A. Juncus rigidus high biomass and cellulose productivity under wastewater salinity stress - A paradigm shift to the valorization of RO reject water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173076. [PMID: 38734100 DOI: 10.1016/j.scitotenv.2024.173076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The use of water purifiers is intensively catching up and disposing of reverse osmosis reject water is of great concern. Reject water management using conventional methods is costly and harmful to the environment. To address this issue, the present study aims to utilize reverse osmosis reject wastewater using an eco-friendly approach. Juncus rigidus was treated with reject wastewater containing different salinity levels. Wastewater-treated plant dry biomass increased with increasing reject water salinity, and 625.3 g dry biomass recovered in treatment-B (~18,520 ppm). However, ~23,220 ppm wastewater salinity was lethal to the plants. The cellulose was extracted by alkali hydrolysis. The cellulose content in the wastewater-treated biomass was significantly higher in Treatment-B compared to both the control and Treatment-A (~12,744 ppm). The water salinity enhanced the cellulose (26.49 %) production in J. rigidus. Cellulose purity was confirmed using spectroscopic and thermogravimetric means. XRD shows highest crystallinity Index (77.29) with a d-spacing of 4.7 Å and 5.7 nm crystallite size in treatment-B. FTIR results reveal well-defined relevant peaks for OH, CH, CO, CH2, C-O-C, CO groups in treatment-B cellulose. Salinity impacts carboxyl groups in treatment B cellulose with a sharper and intense peak at 1644 cm-1 responsible for water absorption. Treatment-B exhibits higher thermal stability due to increased crystallinity. DSC shows endothermic depolymerization of cellulose with distinct peaks for different treatments. Morphological traits got better with increasing salinity with no adverse effect on cellulose. Salinity moderately affected the water absorption capacity of cellulose. All cellulose samples were devoid of gram-negative bacteria known by microbial test. This pioneering work underscores the plant's remarkable capacity not only to accomplish the circular economy by the valorization of wastewater obtained from various water purifiers for Juncus cultivation for cellulose production for diverse applications but also to generate income from wastewater.
Collapse
Affiliation(s)
- Krupali Dipakbhai Vyas
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aneesha Singh
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Abate R, Oon YS, Oon YL, Bi Y. Microalgae-bacteria nexus for environmental remediation and renewable energy resources: Advances, mechanisms and biotechnological applications. Heliyon 2024; 10:e31170. [PMID: 38813150 PMCID: PMC11133723 DOI: 10.1016/j.heliyon.2024.e31170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
Microalgae and bacteria, known for their resilience, rapid growth, and proximate ecological partnerships, play fundamental roles in environmental and biotechnological advancements. This comprehensive review explores the synergistic interactions between microalgae and bacteria as an innovative approach to address some of the most pressing environmental issues and the demands of clean and renewable freshwater and energy sources. Studies indicated that microalgae-bacteria consortia can considerably enhance the output of biotechnological applications; for instance, various reports showed during wastewater treatment the COD removal efficiency increased by 40%-90.5 % due to microalgae-bacteria consortia, suggesting its great potential amenability in biotechnology. This review critically synthesizes research works on the microalgae and bacteria nexus applied in the advancements of renewable energy generation, with a special focus on biohydrogen, reclamation of wastewater and desalination processes. The mechanisms of underlying interactions, the environmental factors influencing consortia performance, and the challenges and benefits of employing these bio-complexes over traditional methods are also discussed in detail. This paper also evaluates the biotechnological applications of these microorganism consortia for the augmentation of biomass production and the synthesis of valuable biochemicals. Furthermore, the review sheds light on the integration of microalgae-bacteria systems in microbial fuel cells for concurrent energy production, waste treatment, and resource recovery. This review postulates microalgae-bacteria consortia as a sustainable and efficient solution for clean water and energy, providing insights into future research directions and the potential for industrial-scale applications.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
5
|
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 2024; 10:e28615. [PMID: 38628756 PMCID: PMC11019186 DOI: 10.1016/j.heliyon.2024.e28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The recent growing interest in sustainable and alternative sources of energy and bio-based products has driven the paradigm shift to an integrated model termed "biorefinery." Biorefinery framework implements the concepts of novel eco-technologies and eco-efficient processes for the sustainable production of energy and value-added biomolecules. The utilization of microbial resources for the production of various value-added products has been documented in the literatures. However, the appointment of these microbial resources in integrated resource management requires a better understanding of their status. The main of aim of this review is to provide an overview on the defined positioning and overall contribution of the microbial resources, i.e., algae, fungi and bacteria, for various bioprocesses and generation of multiple products from a single biorefinery. By utilizing waste material as a feedstock, biofuels can be generated by microalgae while sequestering environmental carbon and producing value added compounds as by-products. In parallel, fungal biorefineries are prolific producers of lignocellulose degrading enzymes along with pharmaceutically important novel products. Conversely, bacterial biorefineries emerge as a preferred platform for the transformation of standard cells into proficient bio-factories, developing chassis and turbo cells for enhanced target compound production. This comprehensive review is poised to offer an intricate exploration of the current trends, obstacles, and prospective pathways of microbial biorefineries, for the development of future biorefineries.
Collapse
Affiliation(s)
- Suchitra Gaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Eldon R. Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| |
Collapse
|
6
|
Zhou Y, Wu B, Cui X, Ren T, Ran T, Rittmann BE. Mass Flow and Metabolic Pathway of Nonaeration Greywater Treatment in an Oxygenic Microalgal-Bacterial Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:534-544. [PMID: 38108291 DOI: 10.1021/acs.est.3c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A symbiotic microalgal-bacterial biofilm can enable efficient carbon (C) and nitrogen (N) removal during aeration-free wastewater treatment. However, the contributions of microalgae and bacteria to C and N removal remain unexplored. Here, we developed a baffled oxygenic microalgal-bacterial biofilm reactor (MBBfR) for the nonaerated treatment of greywater. A hydraulic retention time (HRT) of 6 h gave the highest biomass concentration and biofilm thickness as well as the maximum removal of chemical oxygen demand (94.8%), linear alkylbenzenesulfonates (LAS, 99.7%), and total nitrogen (97.4%). An HRT of 4 h caused a decline in all of the performance metrics due to LAS biotoxicity. Most of C (92.6%) and N (95.7%) removals were ultimately associated with newly synthesized biomass, with only minor fractions transformed into CO2 (2.2%) and N2 (1.7%) on the function of multifarious-related enzymes in the symbiotic biofilm. Specifically, microalgae photosynthesis contributed to the removal of C and N at 75.3 and 79.0%, respectively, which accounted for 17.3% (C) and 16.7% (N) by bacteria assimilation. Oxygen produced by microalgae favored the efficient organics mineralization and CO2 supply by bacteria. The symbiotic biofilm system achieved stable and efficient removal of C and N during greywater treatment, thus providing a novel technology to achieve low-energy-input wastewater treatment, reuse, and resource recovery.
Collapse
Affiliation(s)
- Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Ran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
7
|
Montoya-Vallejo C, Guzmán Duque FL, Quintero Díaz JC. Biomass and lipid production by the native green microalgae Chlorella sorokiniana in response to nutrients, light intensity, and carbon dioxide: experimental and modeling approach. Front Bioeng Biotechnol 2023; 11:1149762. [PMID: 37265992 PMCID: PMC10229873 DOI: 10.3389/fbioe.2023.1149762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Microalgae are photosynthetic cells that can produce third-generation biofuels and other commercial compounds. Microalgal growth is influenced by two main parameters: light intensity and carbon dioxide concentration, which represent the energy and carbon source, respectively. For photosynthesis, the optimum values of abiotic factors vary among species. Methods: In this study, the microalga Chlorella sorokiniana was isolated from a freshwater lake. It was identified using molecular analysis of the ribosomal internal transcribed spacer. A single-factor design of experiments in 250-mL Erlenmeyer flasks was used to evaluate which concentrations of nitrogen and phosphorus increase the production of biomass and lipids. The response surface methodology was used with a 32-factorial design (light intensity and CO2 were used to evaluate its effect on biomass, lipid production, and specific growth rates, in 200-mL tubular photobioreactors (PBRs)). Results and Discussion: Low levels of light lead to lipid accumulation, while higher levels of light lead to the synthesis of cell biomass. The highest biomass and lipid production were 0.705 ± 0.04 g/L and 55.1% ± 4.1%, respectively. A mathematical model was proposed in order to describe the main phenomena occurring in the culture, such as oxygen and CO2 mass transfer and the effect of light and nutrients on the growth of microalgae. The main novelties of this work were molecular identification of the strain, optimization of culture conditions for the indigenous microalgae species that were isolated, and formulation of a model that describes the behavior of the culture.
Collapse
|
8
|
Sousa H, Sousa CA, Vale F, Santos L, Simões M. Removal of parabens from wastewater by Chlorella vulgaris-bacteria co-cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163746. [PMID: 37121314 DOI: 10.1016/j.scitotenv.2023.163746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Anthropogenic activities have increased the dispersal of emerging contaminants (ECs), particularly of parabens, causing an escalation of their presence in wastewater (WW). Current WW technologies do not present satisfactory efficiency or sustainability in removing these contaminants. However, bioremediation with microalgae-based systems is proving to be a relevant technology for WW polishing, and the use of microalgae-bacteria consortia can improve the efficiency of WW treatment. This work aimed to study dual cultures of selected bacteria (Raoultella ornithinolytica, Acidovorax facilis, Acinetobacter calcoaceticus, Leucobacter sp. or Rhodococcus fascians) and the microalga Chlorella vulgaris in microbial growth and WW bioremediation - removal of methylparaben (MetP) and nutrients. The association with the bacteria was antagonistic for C. vulgaris biomass productivity as a result of the decreased growth kinetics in comparison to the axenic microalga. The presence of MetP did not disturb the growth of C. vulgaris under axenic or co-cultured conditions, except when associated with R. fascians, where growth enhancement was observed. The removal of MetP by the microalga was modest (circa 30 %, with a removal rate of 0.0343 mg/L.d), but increased remarkably when the consortia were used (> 50 %, with an average removal rate > 0.0779 mg/L.d), through biodegradation and photodegradation. For nutrient removal, the consortia were found to be less effective than the axenic microalga, except for nitrogen (N) removal by C. vulgaris w/ R. fascians. The overall results propose that C. vulgaris co-cultivation with bacteria can increase MetP removal, while negatively affecting the microalga growth and the consequent reduction of sludge production, highlighting the potential of microalgae-bacteria consortia for the effective polishing of WW contaminated with parabens.
Collapse
Affiliation(s)
- Henrique Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Francisca Vale
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
9
|
Culaba AB, Mayol AP, San Juan JLG, Ubando AT, Bandala AA, Concepcion Ii RS, Alipio M, Chen WH, Show PL, Chang JS. Design of biorefineries towards carbon neutrality: A critical review. BIORESOURCE TECHNOLOGY 2023; 369:128256. [PMID: 36343780 DOI: 10.1016/j.biortech.2022.128256] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The increase in worldwide demand for energy is driven by the rapid increase in population and exponential economic development. This resulted in the fast depletion of fossil fuel supplies and unprecedented levels of greenhouse gas in the atmosphere. To valorize biomass into different bioproducts, one of the popular and carbon-neutral alternatives is biorefineries. This system is an appropriate technology in the circular economy model. Various research highlighted the role of biorefineries as a centerpiece in the carbon-neutral ecosystem of technologies of the circular economy model. To fully realize this, various improvements and challenges need to be addressed. This paper presents a critical and timely review of the challenges and future direction of biorefineries as an alternative carbon-neutral energy source.
Collapse
Affiliation(s)
- Alvin B Culaba
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines.
| | - Andres Philip Mayol
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Jayne Lois G San Juan
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Industrial and Systems Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Analysis Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd., Binan, Laguna 4024, Philippines
| | - Argel A Bandala
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Electronics and Computer Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Ronnie S Concepcion Ii
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Melchizedek Alipio
- Department of Electronics and Computer Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
10
|
Li H, Liu J, Jia C, Feng J, Liu X, Xie S, Lv J. Role of extracellular polymeric substance in flocculation of Chlorococcum sphacosum cultivated with different initial inoculum concentrations in municipal wastewater. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Li S, Qu W, Chang H, Li J, Ho SH. Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129785. [PMID: 36007366 DOI: 10.1016/j.jhazmat.2022.129785] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
As a promising technology, the microalgae-driven strategy can achieve environmentally sustainable and economically viable swine wastewater treatment. Currently, most microalgae-based research focuses on remediation improvement and biomass accumulation, while information on the removal mechanisms and dominant microorganisms is emerging but still limited. In this review, the major removal mechanisms of pollutants and pathogenic bacteria are systematically discussed. In addition, the bacterial and microalgal community during the swine wastewater treatment process are summarized. In general, Blastomonas, Flavobacterium, Skermanella, Calothrix and Sedimentibacter exhibit a high relative abundance. In contrast to the bacterial community, the microalgal community does not change much during swine wastewater treatment. Additionally, the effects of various parameters (characteristics of swine wastewater and cultivation conditions) on microalgal growth and current challenges in the microalgae-driven biotreatment process are comprehensively introduced. This review stresses the need to integrate bacterial and microalgal ecology information into the conventional design of full-scale swine wastewater treatment systems and operations. Herein, future research needs are also proposed, which will facilitate the development and operation of a more efficient microalgae-based swine wastewater treatment process.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
12
|
Kayode-Afolayan SD, Ahuekwe EF, Nwinyi OC. Impacts of pharmaceutical effluents on aquatic ecosystems. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Ubando AT, Anderson S Ng E, Chen WH, Culaba AB, Kwon EE. Life cycle assessment of microalgal biorefinery: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2022; 360:127615. [PMID: 35840032 DOI: 10.1016/j.biortech.2022.127615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microalgal biorefineries represent an opportunity to economically and environmentally justify the production of bioproducts. The generation of bioproducts within a biorefinery system must quantitatively demonstrate its viability in displacing traditional fossil-based refineries. To this end, several works have conducted life cycle analyses on microalgal biorefineries and have shown technological bottlenecks due to energy-intensive processes. This state-of-the-art review covers different studies that examined microalgal biorefineries through life cycle assessments and has identified strategic technologies for the sustainable production of microalgal biofuels through biorefineries. Different metrics were introduced to supplement life cycle assessment studies for the sustainable production of microalgal biofuel. Challenges in the comparison of various life cycle assessment studies were identified, and the future design choices for microalgal biorefineries were established.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Earle Anderson S Ng
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Alvin B Culaba
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
14
|
Kasiviswanathan P, Swanner ED, Halverson LJ, Vijayapalani P. Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS One 2022; 17:e0272209. [PMID: 35976812 PMCID: PMC9385024 DOI: 10.1371/journal.pone.0272209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
A fundamental challenge in human missions to Mars is producing consumable foods efficiently with the in situ resources such as soil, water, nutrients and solar radiation available on Mars. The low nutrient content of martian soil and high salinity of water render them unfit for direct use for propagating food crops on Mars. It is therefore essential to develop strategies to enhance nutrient content in Mars soil and to desalinate briny water for long-term missions on Mars. We report simple and efficient strategies for treating basaltic regolith simulant soil and briny water simulant for suitable resources for growing plants. We show that alfalfa plants grow well in a nutrient-limited basaltic regolith simulant soil and that the alfalfa biomass can be used as a biofertilizer to sustain growth and production of turnip, radish and lettuce in the basaltic regolith simulant soil. Moreover, we show that marine cyanobacterium Synechococcus sp. PCC 7002 effectively desalinates the briny water simulant, and that desalination can be further enhanced by filtration through basalt-type volcanic rocks. Our findings indicate that it is possible to grow food crops with alfalfa treated basaltic regolith martian soil as a substratum watered with biodesalinated water.
Collapse
Affiliation(s)
| | - Elizabeth D. Swanner
- Department of Geological & Atmospheric Sciences, Ames, Iowa, United States of America
| | - Larry J. Halverson
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Paramasivan Vijayapalani
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. BIOLOGY 2022; 11:biology11081146. [PMID: 36009773 PMCID: PMC9405046 DOI: 10.3390/biology11081146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Microalgae-based biorefineries allow the simultaneous production of microalgae biomass enriched in a particular macromolecule and high-added and low-value products if a proper selection of the microalgae species and the cultivation conditions are adequate for the purpose. This review discusses the challenges and future trends related to microalgae-based biorefineries stressing the multi-product approach and the use of raw wastewater or pretreated wastewater to improve the cost-benefit ratio of biomass and products. Emphasis is given to the production of biomass enriched in carbohydrates. Microalgae-bioactive compounds as potential therapeutical and health promoters are also discussed. Future and novel trends following the circular economy strategy are also discussed. Abstract Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.
Collapse
|
17
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
18
|
Duan J, Cui R, Huang Y, Ai X, Hao Y, Shi H, Huang A, Xie Z. Identification and characterization of four microalgae strains with potential application in the treatment of tail-water for shrimp cultivation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Tang CC, Zhang XY, Wang R, Wang TY, He ZW, Wang XC. Calcium ions-effect on performance, growth and extracellular nature of microalgal-bacterial symbiosis system treating wastewater. ENVIRONMENTAL RESEARCH 2022; 207:112228. [PMID: 34662574 DOI: 10.1016/j.envres.2021.112228] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Microalgal-bacterial symbiosis (MABS) system treating wastewater has attracted great concern because of its advantages of carbon dioxide reduction and biomass energy production. However, due to the low density and negative surface charge of microalgae cells, the sedimentation and harvesting performance of microalgae biomass has been one limitation for the application of MABS system on wastewater treatment. This study investigated the performance enhancement of microalgae harvesting and wastewater treatment contributed by calcium ions (i.e., Ca2+) in the MABS system. Results showed that a low Ca2+ loading (i.e., 0.1 mM) promoted both COD and nutrients removal, with growth rates of 11.95, 6.53 and 1.21% for COD, TN and TP compared to control, and chlorophyll a was increased by 64.15%. Differently, a high Ca2+ loading (i.e., 10 mM) caused removal reductions by improving the aggregation of microalgae, with reduction rates of 34.82, 3.50 and 10.30% for COD, NH4+-N and TP. Mechanism analysis indicated that redundant Ca2+ adsorbed on MABS aggregates and dissolved in wastewater decreased the dispersibility of microalgae cells by electrical neutralization and compressed double electric layer. Moreover, the presence of Ca2+ could improve extracellular secretions and promoted flocculation performance, with particle size increasing by 336.22%. The findings of this study may provide some solutions for the enhanced microalgae biomass harvest and nutrients removal from wastewater.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xin-Yi Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Rong Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tian-Yang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
20
|
Fatty acids profile of Mastigocladus laminosus Cohn ex Kichner isolated from Algerian hot springs as a biofuel feedstock. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45:791-813. [PMID: 35303143 PMCID: PMC9033726 DOI: 10.1007/s00449-022-02711-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.
Collapse
Affiliation(s)
- Philipp Benner
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lisa Meier
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Annika Pfeffer
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Konstantin Krüger
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - José Enrique Oropeza Vargas
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany.
- Technical University of Munich, TUM-AlgaeTec Center, 85521, Taufkirchen, Germany.
| |
Collapse
|
22
|
Zhang M, Ji B, Wang S, Gu J, Liu Y. Granule size informs the characteristics and performance of microalgal-bacterial granular sludge for wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 346:126649. [PMID: 34974093 DOI: 10.1016/j.biortech.2021.126649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
In this study, four groups of microalgal-bacterial granules with averaged diameters of about 356, 760, 951 and 1,444 µm were used to investigate their characteristics and performance in treating wastewater. A strong correlation between extracellular polymeric substances of microalgal-bacterial granules and the granule size was observed. Moreover, granule size showed a positive effect on the specific organics removal rate, but being negative for ammonium and phosphorus removal. It appeared that granule size could be used as a useful index to reflect the synergistic interactions between microalgae and bacteria in terms of the abundances, distributions and functional species in the microalgal-bacterial granules. This study is expected to offer new insights into the size-dependent performances of microalgal-bacterial granules for wastewater treatment.
Collapse
Affiliation(s)
- Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shulian Wang
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
23
|
Growth Performance, Biochemical Composition and Nutrient Recovery Ability of Twelve Microalgae Consortia Isolated from Various Local Organic Wastes Grown on Nano-Filtered Pig Slurry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020422. [PMID: 35056737 PMCID: PMC8781922 DOI: 10.3390/molecules27020422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
Abstract
This paper demonstrated the growth ability of twelve algae-microbial consortia (AC) isolated from organic wastes when a pig slurry-derived wastewater (NFP) was used as growth substrate in autotrophic cultivation. Nutrient recovery, biochemical composition, fatty acid and amino acid profiles of algae consortia were evaluated and compared. Three algae-microbial consortia, i.e., a Chlorella-dominated consortium (AC_1), a Tetradesmus and Synechocystis co-dominated consortium (AC_10), and a Chlorella and Tetradesmus co-dominated consortium (AC_12) were found to have the best growth rates (µ of 0.55 ± 0.04, 0.52 ± 0.06, and 0.58 ± 0.03 d−1, respectively), which made them good candidates for further applications. The ACs showed high carbohydrates and lipid contents but low contents of both proteins and essential amino acids, probably because of the low N concentration of NFP. AC_1 and AC_12 showed optimal ω6:ω3 ratios of 3.1 and 3.6, which make them interesting from a nutritional point of view.
Collapse
|
24
|
Girotto F, Piazza L. Food waste bioconversion into new food: A mini-review on nutrients circularity in the production of mushrooms, microalgae and insects. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:47-53. [PMID: 34348508 DOI: 10.1177/0734242x211038189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global challenge of feeding an ever-increasing world population is leading scientists' attention towards nutritious and sustainable foods whose production should have low impacts on environment, economy and society. In case the input feedstock can be waste nutrients, the label of such productions becomes even greener. Nutrients circularity is nowadays an important circular economy practice. This mini-review focuses on the valorisation of food waste as precious biomass to grow new food and feed. In particular, three functional edibles are discussed in the present paper: mushrooms, microalgae and insects. These foods are part of people diets since ages in certain areas of the world and the original aspect of their cultivation and breeding found on waste nutrients recovery is here reviewed. Proofs of such food waste biorefinery viability are already given by several researches featuring the main traits of a suitable growing medium: optimal pool of nutrients and optimal pH. However, lot of work still needs to be done in order to assess the optimal growth and cultivation conditions and the health security of the harvested/bred edibles. A SWOT factors analysis was performed.
Collapse
Affiliation(s)
- Francesca Girotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Laura Piazza
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
25
|
Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149765. [PMID: 34454141 DOI: 10.1016/j.scitotenv.2021.149765] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 05/27/2023]
Abstract
There is a growing global recognition that microalgae-based biofuel are environment-friendly and economically feasible options because they incur several advantages over traditional fossil fuels. Also, the microalgae can be manipulated for extraction of value-added compounds such as lipids (triacylglycerols), carbohydrates, polyunsaturated fatty acids, proteins, pigments, antioxidants, various antimicrobial compounds, etc. Recently, there is an increasing focus on the co-cultivation practices of microalgae with other microorganisms to enhance biomass and lipid productivity. In a co-cultivation strategy, microalgae grow symbiotically with other heterotrophic microbes such as bacteria, yeast, fungi, and other algae/microalgae. They exchange nutrients and metabolites; this helps to increase the productivity, therefore facilitating the commercialization of microalgal-based fuel. Co-cultivation also facilitates biomass harvesting and waste valorization, thereby help to build an algal biorefinery platform for bioenergy production along with multivariate high value bioproducts and simultaneous waste bioremediation. This article comprehensively reviews various microalgae cultivation practices utilizing co-culture approaches with other algae, fungi, bacteria, and yeast. The review mainly focuses on the impact of several binary culture strategies on biomass and lipid yield. The advantages and challenges associated with the procedure along with their respective cultivation modes have also been presented and discussed in detail.
Collapse
Affiliation(s)
- Ayusmita Ray
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
26
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
27
|
Treatment of fishery wastewater by co-culture of Thalassiosira pseudonana with Isochrysis galbana and evaluation of their active components. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Moreno Osorio JH, Pollio A, Frunzo L, Lens PNL, Esposito G. A Review of Microalgal Biofilm Technologies: Definition, Applications, Settings and Analysis. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.737710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Biofilm-based algal cultivation has many advantages over the conventional suspended growth methods and has received increased attention as a potential platform for algal production, wastewater treatment (nutrient removal), and a potential pathway to supply feedstock for microalgae-based biorefinery attempts. However, the attached cultivation by definition and application is a result of a complex interaction between the biotic and abiotic components involved. Therefore, the entire understanding of the biofilm nature is still a research challenge due to the need for real-time analysis of the system. In this review, the state of the art of biofilm definition, its life cycle, the proposed designs of bioreactors, screening of carrier materials, and non-destructive techniques for the study of biofilm formation and performance are summarized. Perspectives for future research needs are also discussed to provide a primary reference for the further development of microalgal biofilm systems.
Collapse
|
29
|
Chaudry S. Integrating Microalgae Cultivation with Wastewater Treatment: a Peek into Economics. Appl Biochem Biotechnol 2021; 193:3395-3406. [PMID: 34196918 DOI: 10.1007/s12010-021-03612-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Microalgae cultivation on wastewater is one of the most promising processes in perspective of green and circular economy. This study investigated the economics of integrating the microalgae cultivation with the wastewater treatment in perspective of biomass production and wastewater treatment. The cost of integrated process was evaluated for six cases: three cases for domestic wastewater at different stages of treatment including sewage, anaerobically digested domestic effluent, and centrate and three cases for industrial wastewater including agro-industrial wastewater, anaerobically digested piggery effluent, and anaerobically digested abattoir effluent. The cost of biomass production was found ranging from $ 0.39 to $ 0.92/kg with minimum for the anaerobically digested domestic effluent and centrate. The cost of wastewater treatment was found ranging from 0.18 to 1.69/m3 with minimum for the sewage. These costs did not include any credits generated from the biomass or the treated wastewater. The concentration of limiting nutrient, flowrate of wastewater, and the extent of nutrient removal are the major cost-influencing parameters for the integrated process.
Collapse
Affiliation(s)
- Sofia Chaudry
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan.
- Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
30
|
Flores-Salgado G, Quijano G, Vital-Jácome M, Buitrón G, Orozco-Soto SM, Vera-Bustamante P, Ibarra Zannatha JM, Thalasso F. Novel photo-microrespirometric method for the rapid determination of photosynthesis-irradiance (PI) curves in microalgal-bacterial systems. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Yap JK, Sankaran R, Chew KW, Halimatul Munawaroh HS, Ho SH, Rajesh Banu J, Show PL. Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. CHEMOSPHERE 2021; 281:130886. [PMID: 34020196 DOI: 10.1016/j.chemosphere.2021.130886] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 05/16/2023]
Abstract
Microalgae have drawn significant interest worldwide, owing to their enormous application potential in the green energy, biopharmaceutical, and nutraceutical industries. Many studies have proved and stated the potential of microalgae in the area of biofuel which is economically effective and environmentally friendly. Besides the commercial value, the potential of microalgae in environmental protection has also been investigated. Microalgae-based process is one of the most effective way to treat heavy metal pollution, compared to conventional methods, it does not release any toxic waste or harmful gases, and the aquatic organism will not receive any harmful effects. The potential dual role of microalge in phytoremedation and energy production has made it widely explored for its capability. The interest of microalgae in various application has motivated a new focus in green technologies. Considering the rapid population growth with the continuous increase on the global demand and the application of biomass in diverse field, significant upgrades have been performed to accommodate green technological advancement. In the past decade, noteworthy advancement has been made on the technology involving the diverse application of microalgae biomass. This review aims to explore on the application of microalgae and the development of green technology in various application for microalgae biomass. There is great prospects for researchers in this field to delve into other potential utilization of microalgae biomass not only for bioremediation process but also to generate revenues from microalgae by incorporating clean and green technology for long-term sustainability and environmental benefits.
Collapse
Affiliation(s)
- Jiunn Kwok Yap
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | | | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu, 610005, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
Esquivel-Hernández DA, Pennacchio A, Torres-Acosta MA, Parra-Saldívar R, de Souza Vandenberghe LP, Faraco V. Multi-product biorefinery from Arthrospira platensis biomass as feedstock for bioethanol and lactic acid production. Sci Rep 2021; 11:19309. [PMID: 34588465 PMCID: PMC8481326 DOI: 10.1038/s41598-021-97803-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
With the aim to reach the maximum recovery of bulk and specialty bioproducts while minimizing waste generation, a multi-product biorefinery for ethanol and lactic acid production from the biomass of cyanobacterium Arthrospira platensis was investigated. Therefore, the residual biomass resulting from different pretreatments consisting of supercritical fluid extraction (SF) and microwave assisted extraction with non-polar (MN) and polar solvents (MP), previously applied on A. platensis to extract bioactive metabolites, was further valorized. In particular, it was used as a substrate for fermentation with Saccharomyces cerevisiae LPB-287 and Lactobacillus acidophilus ATCC 43121 to produce bioethanol (BE) and lactic acid (LA), respectively. The maximum concentrations achieved were 3.02 ± 0.07 g/L of BE by the MN process at 120 rpm 30 °C, and 9.67 ± 0.05 g/L of LA by the SF process at 120 rpm 37 °C. An economic analysis of BE and LA production was carried out to elucidate the impact of fermentation scale, fermenter costs, production titer, fermentation time and cyanobacterial biomass production cost. The results indicated that the critical variables are fermenter scale, equipment cost, and product titer; time process was analyzed but was not critical. As scale increased, costs tended to stabilize, but also more product was generated, which causes production costs per unit of product to sharply decrease. The median value of production cost was US$ 1.27 and US$ 0.39, for BE and LA, respectively, supporting the concept of cyanobacterium biomass being used for fermentation and subsequent extraction to obtain ethanol and lactic acid as end products from A. platensis.
Collapse
Affiliation(s)
- Diego A. Esquivel-Hernández
- grid.419886.a0000 0001 2203 4701Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico ,grid.9486.30000 0001 2159 0001Present Address: Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Ave. Universidad 2001, 62210 Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Present Address: Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, 04510 Mexico City, Mexico
| | - Anna Pennacchio
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Mario A. Torres-Acosta
- grid.83440.3b0000000121901201Department of Biochemical Engineering, The Advance Centre for Biochemical Engineering, University College London, London, WC1E 6BT UK
| | - Roberto Parra-Saldívar
- grid.419886.a0000 0001 2203 4701Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - Luciana Porto de Souza Vandenberghe
- grid.20736.300000 0001 1941 472XDepartment of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 210, Curitiba, 81531-980 Brazil
| | - Vincenza Faraco
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
33
|
Marchão L, Fernandes JR, Sampaio A, Peres JA, Tavares PB, Lucas MS. Microalgae and immobilized TiO 2/UV-A LEDs as a sustainable alternative for winery wastewater treatment. WATER RESEARCH 2021; 203:117464. [PMID: 34371233 DOI: 10.1016/j.watres.2021.117464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 05/28/2023]
Abstract
This work intends to promote the growth of microalgae biomass with simultaneous remediation of an agro-industrial wastewater. Winery wastewater (WW) was used as growth media for the cyanobacteria Arthrospira maxima and the green microalgae Scenedesmus obliquus, Auxenochlorella protothecoides and Chlorella vulgaris, under mixotrophic and heterotrophic conditions. The latter species stands out under mixotrophic conditions, with removals of TOC and TN above 90%. Biomass production and pollutant removal were influenced by the initial WW concentration. Maximum removal values within 8 days of incubation were 92, 91, 49 and 40% for COD, TN, polyphenols and P-PO4, respectively, and 147.5 mg L-1 d-1 of biomass productivity. C. vulgaris biomass showed higher carotenoid content (maximum of 8.7 mg/g) when grown in WW, compared to autotrophic conditions (6.5 mg/g), making the bioremediation process more viable with the production of valuable by-products such as pigments. As the pollutant load removed by the microalgae does not allow reach the legal limits of release treated waters in natural water courses, a tertiary treatment process was applied. A post-treatment by photocatalysis in a UV LEDs photoreactor with TiO2-supported in Raschig rings was proposed for the removal of COD and polyphenols from a high loaded WW. The heterogeneous photocatalytic process was efficient in removing 80% of total polyphenols and 40% of COD, allowing the release of the treated water in superficial water courses since complies with the legal limits (COD below 150 mg L-1).
Collapse
Affiliation(s)
- Leonilde Marchão
- Chemistry Centre, Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - José R Fernandes
- Chemistry Centre, Vila Real (CQVR) and Department of Physics, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Sampaio
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - José A Peres
- Chemistry Centre, Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Pedro B Tavares
- Chemistry Centre, Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Marco S Lucas
- Chemistry Centre, Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.
| |
Collapse
|
34
|
Insights into the technology utilized to cultivate microalgae in dairy effluents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Ayre JM, Mickan BS, Jenkins SN, Moheimani NR. Batch cultivation of microalgae in anaerobic digestate exhibits functional changes in bacterial communities impacting nitrogen removal and wastewater treatment. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Wang Y, Li B, Li Y, Chen X. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145136. [PMID: 33609842 DOI: 10.1016/j.scitotenv.2021.145136] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic nitrogen removal process has great potential to be applied to the biological removal of nitrogen from wastewater, but its application is hindered by its unstable operation under adverse environmental conditions, such as those presented by low temperatures, high organic matter concentrations, or the presence of toxic substances. Granules and microbial entrapment technology can effectively retain and enrich microbial assemblages in reactors to improve operating efficiency and reactor stability. The carriers can also protect the reactor's internal microorganisms from interference from the external environment. This article critically reviews the existing literature on autotrophic nitrogen removal systems using immobilization technology. We focus our discussion on the natural aggregation process (granulation) and entrapment technology. The selection of carrier materials and entrapment methods are identified and described in detail and the mechanisms through which entrapment technology protects microorganisms are analyzed. This review will provide a better understanding of the mechanisms through which immobilization operates and the prospects for immobilization technology to be applied in autotrophic nitrogen removal systems.
Collapse
Affiliation(s)
- Yue Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
37
|
Ronan P, Kroukamp O, Liss SN, Wolfaardt G. Interaction between CO2-consuming autotrophy and CO2-producing heterotrophy in non-axenic phototrophic biofilms. PLoS One 2021; 16:e0253224. [PMID: 34129611 PMCID: PMC8205120 DOI: 10.1371/journal.pone.0253224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
As the effects of climate change become increasingly evident, the need for effective CO2 management is clear. Microalgae are well-suited for CO2 sequestration, given their ability to rapidly uptake and fix CO2. They also readily assimilate inorganic nutrients and produce a biomass with inherent commercial value, leading to a paradigm in which CO2-sequestration, enhanced wastewater treatment, and biomass generation could be effectively combined. Natural non-axenic phototrophic cultures comprising both autotrophic and heterotrophic fractions are particularly attractive in this endeavour, given their increased robustness and innate O2-CO2 exchange. In this study, the interplay between CO2-consuming autotrophy and CO2-producing heterotrophy in a non-axenic phototrophic biofilm was examined. When the biofilm was cultivated under autotrophic conditions (i.e. no organic carbon), it grew autotrophically and exhibited CO2 uptake. After amending its growth medium with organic carbon (0.25 g/L glucose and 0.28 g/L sodium acetate), the biofilm rapidly toggled from net-autotrophic to net-heterotrophic growth, reaching a CO2 production rate of 60 μmol/h after 31 hours. When the organic carbon sources were provided at a lower concentration (0.125 g/L glucose and 0.14 g/L sodium acetate), the biofilm exhibited distinct, longitudinally discrete regions of heterotrophic and autotrophic metabolism in the proximal and distal halves of the biofilm respectively, within 4 hours of carbon amendment. Interestingly, this upstream and downstream partitioning of heterotrophic and autotrophic metabolism appeared to be reversible, as the position of these regions began to flip once the direction of medium flow (and hence nutrient availability) was reversed. The insight generated here can inform new and important research questions and contribute to efforts aimed at scaling and industrializing algal growth systems, where the ability to understand, predict, and optimize biofilm growth and activity is critical.
Collapse
Affiliation(s)
- Patrick Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Steven N. Liss
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| |
Collapse
|
38
|
Xie Z, Lin W, Luo J. Co-cultivation of microalga and xylanolytic bacterium by a continuous two-step strategy to enhance algal lipid production. BIORESOURCE TECHNOLOGY 2021; 330:124953. [PMID: 33725519 DOI: 10.1016/j.biortech.2021.124953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
To enhance microalgal lipid production, canonical two-step cultivation strategy that by transferring the microalgal cells grown in nutrient-replete medium to nutrient-depleted medium is widely used. However, the harvesting step during the transfer raises the production cost. To avoid the harvesting step, this study developed a continuous two-step (CTS) cultivation strategy. In the strategy, Chlorella sacchrarophila was grown in bioreactor while a xylanolytic bacterium Cellvibrio pealriver grown in an inner bag that embedded in the bioreactor; after the first-step co-cultivation, the inner bag is removed which then start the second-step cultivation of C. sacchrarophila. Based on the strategy, the lipid production was determined as 825.34-929.79 mg·L-1, which were 1.7-1.9 times higher than that of cultivation in canonical two-step strategy using glucose as feedstock. During the CTS strategy, the co-cultivation using xylan as feedstock promotes the microalgal growth and the removal of inner bag produces nutrient-depleted condition for enhancing microalgal lipid production.
Collapse
Affiliation(s)
- Zhangzhang Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Science, Guangzhou 510650, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
39
|
Biswas T, Bhushan S, Prajapati SK, Ray Chaudhuri S. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112196. [PMID: 33639423 DOI: 10.1016/j.jenvman.2021.112196] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The present study attempts to integrate phyco-remediation and enhanced lipid productivity using microalgae-bacterial consortium enriched from wastewater fed aquaculture pond. Metagenomic analyses and microscopic images of the consortium revealed the presence of Chlorella variabilis, Parachlorella kessleri, Thermosynechococcus elongatus, Chlamydomonas, Phaeodactylum tricornutum, Oscillatoriales, Synechocystis sp., Microcystis aeruginosa, Nostocales, Naviculales, Stramenopiles, other members of Chlorophyceae, Trebouxiophyceae, and Chroococcales along with potential bacterial bioremediants. During a 30 days trial run (15 days stabilization and 14 days remediation studies) for phyco-remediation drastic reduction in the nutrient and COD content from the tested wastewater samples was seen. There was up to 93% and 87.2% reduction in chemical oxygen demand (COD) and ammonium concentration, respectively. Further, almost 100% removal of nitrates and phosphates from the dairy wastewater upon 48 h of treatment with polyculture under ambient temperature (25 ± 2 °C) with 6309 lux illumination and mild aeration, was observed for all the seven cycles. Interestingly, the nutrient and COD concentrations in the treated water were below the discharge standards as per Central Pollution Control Board (CPCB) norms. In additions, biomass (reported as dry cell weight) was enhanced by 67% upon treatment with ammonia-rich dairy wastewater exhibiting 42% lipid, 55% carbohydrate, and 18.6% protein content enhancement. The polyculture mainly grown as attached biofilm to the surface, offered an easy harvesting and separation of grown biomass from the treated wastewater. Overall, dairy wastewater was found to be a potential nutrient source for microalgae-bacteria cultivation thereby making the treatment process sustainable and eco-friendly.
Collapse
Affiliation(s)
- Tethi Biswas
- Department of Microbiology, Tripura University, Suryamaninagar, Tripura West, 799022, India; Centre of Excellence in Environmental Technology and Management, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, 741249, India
| | - Shashi Bhushan
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India; Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shaon Ray Chaudhuri
- Department of Microbiology, Tripura University, Suryamaninagar, Tripura West, 799022, India.
| |
Collapse
|
40
|
Ampicillin used in aseptic processing influences the production of pigments and fatty acids in Chlorella sorokiniana. World J Microbiol Biotechnol 2021; 37:3. [PMID: 33392872 DOI: 10.1007/s11274-020-02985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/20/2020] [Indexed: 11/27/2022]
Abstract
Ampicillin sodium salt (AMP) is commonly and effectively used to prevent bacterial infection in algal culture, but the response of algal strains to AMP has not been investigated. In this study, Chlorella sorokiniana was selected to evaluate the influence of AMP on algae. AMP enhanced the contents of chlorophyll and two fatty acids, myristic acid (C22:1N9) and tetracosanoic acid (C6:0), but inhibited the growth, carotenoid production, and contents of 16 fatty acids in C. sorokiniana. A global transcriptome analysis from experimental data identified 3 825 upregulated and 1 432 downregulated differentially expressed genes (DEGs) in C. sorokiniana. The upregulated DEGs, such as hemB/alaD, mmaB/pduO, cox15/ctaA, fxN, cpoX/hemF, and earS/gltX, were enriched in the porphyrin and chlorophyll metabolism pathways, whereas the downregulated DEGs, including lcyB (crtL1), crtY (lcyE, crtL2), lut1 (CYP97C1), z-isO, crtZ and crtisO (crtH), were enriched in the carotenoid biosynthesis pathway, and the downregulated DEGs, abH, fadD, fabF, acsL, fabG, and accD were enriched in the fatty acid biosynthesis pathway. Thus, the use of AMP to obtain an axenic strain revealed that AMP might affect the regulatory dynamics and the results of the metabolic process in C. sorokiniana. The data obtained in the study provide foundational information for algal purification and aseptic processing.
Collapse
|
41
|
El-Gendy NS, Nassar HN. Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. J Appl Microbiol 2021; 131:1621-1638. [PMID: 33386652 DOI: 10.1111/jam.14989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
The discharge of the toxic phenol-polluted petro-industrial effluents (PPPIE) has severe environmental negative impacts, thus it is mandatory to be treated before its discharge. The objective of this review was to discuss the sustainable application of microalgae in phenols degradation, with a special emphasis on the enzymes involved in this bioprocess and the factors affecting the success of PPPIE phycoremediation. Moreover, it confers the microalgae bioenergetic strategies to degrade different forms of phenols in PPPIE. It also points out the advantages of the latest application of bacteria, fungi and microalgae as microbial consortia in phenols biodegradation. Briefly, phycoremediation of PPPIE consumes carbon dioxide emitted from petro-industries for; valorization of the polluted water to be reused and production of algal biomass which can act as a source of energy for such integrated bioprocess. Besides, the harvested algal biomass can feasibly produce; third-generation biofuels, biorefineries, bioplastics, fish and animal feed, food supplements, natural dyes, antioxidants and many other valuable products. Consequently, this review precisely confirms that the phycoremediation of PPPIE is a win-win process for a green environment and a sustainable future. Thus, to achieve the three pillars of sustainability; social, environmental and economic; it is recommendable to integrate PPPIE treatment with algal cultivation. This integrated process would overcome the problem of greenhouse gas emissions, global warming and climate change, solve the problem of water-scarce, and protect the environment from the harmful negative impacts of PPPIE.
Collapse
Affiliation(s)
- N Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| | - H N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| |
Collapse
|
42
|
Flores-Salgado G, Thalasso F, Buitrón G, Vital-Jácome M, Quijano G. Kinetic characterization of microalgal-bacterial systems: Contributions of microalgae and heterotrophic bacteria to the oxygen balance in wastewater treatment. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Purnima M, Arul Manikandan N, Pakshirajan K, Pugazhenthi G. Recovery of microalgae from its broth solution using kaolin based tubular ceramic membranes prepared with different binders. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Bolatkhan K, Sadvakasova AK, Zayadan BK, Kakimova AB, Sarsekeyeva FK, Kossalbayev BD, Bozieva AM, Alwasel S, Allakhverdiev SI. Prospects for the creation of a waste-free technology for wastewater treatment and utilization of carbon dioxide based on cyanobacteria for biodiesel production. J Biotechnol 2020; 324:162-170. [PMID: 33049355 DOI: 10.1016/j.jbiotec.2020.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Current fresh water and energy shortage determines the need to study the possibilities of using living objects in bioenergy and environmental purification technologies. The development of waste-free technologies allows waste recycling, which saves raw materials and energy, in turn, reducing waste generation. The effect of different carbon dioxide concentrations and wastewater from households on the growth of cyanobacteria was studied in order to determine their capabilities in the purification processes. It was found that the optimal CO2 concentration for the cultivation of cyanobacteria Cyanobacterium sp. IPPAS B-1200 and Desertifilum sp. IPPAS B-1220 was 10 %, and for the Cyanobacterium aponinum IPPAS B-1201 - 5%. It was revealed that the cultivation of the cyanobacterium Cyanobacterium sp. IPPASB-1200 on wastewater from the water storage reduces the concentration of organic pollutants and, accordingly, improves the physicochemical properties of water. The cleaning percentage for selected pollutants was 68-100 %. It was shown that the most optimal ratio of wastewater to nutrient media for cyanobacteria cultivation were 25:75 and 50:50. The lipid content (%/dry weight) in the biomass of the studied strains of cyanobacteria ranges from 15 to 22% after cultivation in wastewater. It was determined that the strains of Cyanobacterium genus were the most suitable for the production of biodiesel according to their fatty acids composition. It was determined that lipids were composed of only saturated and monounsaturated fatty acids. As a result of the studies, the optimal conditions for the growth of Cyanobacterium sp. IPPAS B-1200 were determined. This microorganism has a good potential to produce biodiesel as a producer of saturated and monounsaturated middle-chain-length fatty acids.
Collapse
Affiliation(s)
- Kenzhegul Bolatkhan
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan
| | - Assem K Sadvakasova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan
| | - Bolatkhan K Zayadan
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan.
| | - Ardak B Kakimova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan
| | - Fariza K Sarsekeyeva
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan
| | - Bekzhan D Kossalbayev
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan
| | - Ayshat M Bozieva
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Suleyman I Allakhverdiev
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan; Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Zoology Department, College of Science, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
45
|
Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, Valdez-Ojeda R, Toledano-Thompson T, Tovar-Gálvez LR, López-Adrián S, Chairez I. Efficient production of fatty acid methyl esters by a wastewater-isolated microalgae-yeast co-culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28490-28499. [PMID: 31845266 DOI: 10.1007/s11356-019-07286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Improving the competitiveness of biodiesel production by microalgae cultures requires the application of several strategies to obtain a high content of lipids, rapid biomass growth and a capacity to adapt to different kinds of environment, with the aim of using non-renewable nutrient sources. Therefore, the use of an individual indigenous microalgae strain or a consortium from natural or anthropogenic sites is now considered an alternative for biofuel production. This study examined the temporal behaviour of secondary metabolites produced by a native microalgae and yeast consortium isolated from wastewater, which was characterized by a genetic identification method based on the MiSeq system. The predominant species in the consortium was Scenedesmus obliquus, representing 68% of the organisms. In addition, the consortium contained a number of yeast species, including Candida pimensis (43%), Arthroderma vanbreuseghemii (23%), Diaporthe aspalathi/Diaporthe meridionalis (25%) and Hericium americanum (3%). This indigenous co-culture of microalgae and yeast showed biomass productivity of 0.06 g l-1 day-1, with a content of 30% (w/w) carbohydrates, 4% (w/w) proteins and 55% (w/w) lipids. Transesterification of the extracted lipids produced fatty acid methyl esters (FAMEs), which were analysed by gas chromatography (GC). The FAMEs included methyl pentadecanoate (1.90%), cis-10-pentanedecanoic acid methyl ester (1.36%), methyl palmitate (2.64%), methyl palmitoleate (21.36%), methyl oleate (64.95%), methyl linolenate (3.83%) and methyl linolelaidate (3.95%). This composition was relevant for biodiesel production based on the co-culture of indigenous microalgae and yeast consortia.
Collapse
Affiliation(s)
- Jessica K Suastes-Rivas
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico
| | - Raúl Hernández-Altamirano
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico.
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico.
| | - Violeta Y Mena-Cervantes
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico
| | - Ruby Valdez-Ojeda
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C, Merida, Yucatán, Mexico
| | - Tanit Toledano-Thompson
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C, Merida, Yucatán, Mexico
| | - Luis R Tovar-Gálvez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), 30 de junio de 1520 s/n, La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Silvia López-Adrián
- Facultad de Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Merida, Yucatán, Mexico
| | - Isaac Chairez
- Departamento de Bioprocesos, Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
| |
Collapse
|
46
|
Ji B, Zhang M, Gu J, Ma Y, Liu Y. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. WATER RESEARCH 2020; 179:115884. [PMID: 32388049 DOI: 10.1016/j.watres.2020.115884] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/11/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Globally increasing concerns have been raised on the high energy consumption and greenhouse gas emissions in conventional municipal wastewater treatment processes over the past decades. In this study, a self-sustaining synergetic microalgal-bacterial granular sludge process was thus developed to address these challenges. The results showed that the microalgal-bacterial granular sludge process was capable of removing 92.69%, 96.84% and 87.16% of influent organics, ammonia and phosphorus under non-aeration conditions over a short time of 6 h. The effluent could meet the increasingly stringent discharge standards in many countries worldwide. A tight synergetic interrelationship effect between microalgae and bacteria in granules was essential for such excellent process performance. The stoichiometric and functional genes analyses further revealed that most of organic matter and nutrients were removed through microalgal and bacterial assimilations. Moreover, it was found that there existed a desirable distribution of functional species of microalgae and bacteria in microalgal-bacterial granules, which appeared to be essential for the self-sustaining synergetic reactions and stability of microalgal-bacterial granules. Consequently, this work may offer a promising engineering alternative with great potential to achieve energy-efficient and environmentally sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
47
|
Cheng P, Chen D, Liu W, Cobb K, Zhou N, Liu Y, Liu H, Wang Q, Chen P, Zhou C, Ruan R. Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138263. [PMID: 32304959 DOI: 10.1016/j.scitotenv.2020.138263] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
It is recognized coupling microalgae, which is rich in lipids or protein with wastewater treatment offers extra economic benefits that can potentially make microalgal production feasible by reducing production costs and providing environmental benefits. However, the pretreatment of high concentration nutrients such as ammonia nitrogen (NH3-N), total phosphorus (TP) and chemical oxygen demand (COD) in swine wastewater is the premise of application for microalgae in wastewater treatment. This study two auto-flocculation microalgae Tribonema sp. and Synechocystis sp. were selected for evaluation; they were cultivated in diluted swine wastewater together after it was pretreated with titanium dioxide (TiO2) plus intense pulsed light (T-IPL). The results showed that the growth of the two strains in the wastewater pretreated with T-IPL grew better than when grown without the pretreatment. The content of lipid in the two algae, cultured in the pretreated wastewater, was also higher than the lipid content from the un-pretreated wastewater; but protein content was lower. Overall, the removal efficiencies of pollutants NH3-N, TP, and COD by the two microalgae in anaerobic digestion of swine wastewater (ADSW) with T-IPL pretreatment, were higher than the removal efficiencies without pretreatment. This research also indicates that these two auto-flocculation microalgae have the potential to reduce harvesting costs. And, using T-IPL to pretreat wastewater could provide a promising method for the pretreatment of wastewater.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Dongjie Chen
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China
| | - Kirk Cobb
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Nan Zhou
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yuhuan Liu
- MOE Biomass Engineering Research Center, Nanchang University, Nanchang 330000, China
| | - Hui Liu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Paul Chen
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
48
|
Marella TK, López-Pacheco IY, Parra-Saldívar R, Dixit S, Tiwari A. Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137960. [PMID: 32408422 DOI: 10.1016/j.scitotenv.2020.137960] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Diatoms are a type of microalgae with diverse capabilities which make them useful for multiple applications. The abundance of diatoms in water bodies facilitates the removal of pollutants from wastewater originating from different industries, such as agriculture and other anthropogenic sources. The unique photosynthetic, cellular and metabolic characteristics of diatoms allows them to utilize pollutants like nitrate, iron, phosphate, molybdenum, silica, and heavy metals, such as copper, cadmium, chromium, lead, etc., which make diatoms a good option for wastewater treatment. In addition, the biomass produced by diatoms growth on wastewaters has diverse applications and can, therefore, be valuable. This review focusses on the unique capabilities of diatoms for wastewater remediation and the capture of carbon dioxide, concomitant with the generation of valuable products. Diatom biorefinery can be a sustainable solution to wastewater management, and the biomass obtained from treatment can be turned into biofuels, biofertilizers, nutritional supplements for animal production, and used for pharmaceutical applications containing bioactive compounds like EPA, DHA and pigments such as fucoxanthin.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru 502 324, Telangana State, India
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Sreenath Dixit
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru 502 324, Telangana State, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201 313, India.
| |
Collapse
|
49
|
Couto E, Calijuri ML, Assemany P. Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138104. [PMID: 32408433 DOI: 10.1016/j.scitotenv.2020.138104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Against the worldwide energy crisis and climate change, new forms of energy generation have been investigated. Among the possibilities, microalgae are considered potential feedstock for biofuels production. However, there are still important challenges to overcome. In this context, the integration of biomass cultivation and the treatment of different types of wastewater can represent a source of nutrients and water, with the additional benefit of reducing the discharge of pollutant loads into water bodies. The wastewater grown biomass is composed by a microorganism consortium. These microorganisms can develop important symbiotic relationships for the optimization of biomass production. However, the success of algal biomass cultivation in effluents also involves the development of efficient reactors, which ranges from design criteria to operational parameters. High rate ponds are the most suitable reactors for such a purpose, within the context of a wastewater treatment plant. In this reactor, the addition of CO2 is an important parameter for pH control and, consequently, will influence nutrient assimilation. Another relevant operational parameter is the pond depth, which will have a major role in radiation availability along the water column. With respect to the energy use of the biomass, hydrothermal liquefaction (HTL) represents an interesting alternative for wastewater grown biomass, since the process does not require complete drying of the biomass, its bio-oil production efficiency is not necessarily attached to the lipid content and may present a positive energy balance. In addition, the possibility of using the HTL by-products, especially the water soluble products, in the context of a biorefinery, represents a route for nutrient recycling, residue minimization, and cost reduction.
Collapse
Affiliation(s)
- Eduardo Couto
- Federal Universityof Itajubá, Campus Itabira (Universidade Federal de Itajubá, Campus Itabira/Unifei), Intitute of Applied and Pure Sciences, Rua Irmã Ivone Drumond, 200, 35903-087 Itabira, MG, Brazil.
| | - Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Environmental Engineering Group - nPA, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Paula Assemany
- Federal University of Lavras (Universidade Federal de Lavras/UFLA), Department of Water Resources and Sanitation, Campus Universitário, 37200-000 Lavras, MG, Brazil.
| |
Collapse
|
50
|
Sánchez-Zurano A, Gómez-Serrano C, Acién-Fernández F, Fernández-Sevilla J, Molina-Grima E. A novel photo-respirometry method to characterize consortia in microalgae-related wastewater treatment processes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|