1
|
Shi W, Liu D, Feng W, Chen Y, Wang Y, Nie Z, Liu Y, Zhang H. Nanoengineering of Phosphate/Phosphonate Drugs via Competitive Replacement with Metal-Phenolic Networks to Overcome Breast Tumor with Lung and Bone Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2413201. [PMID: 39555815 DOI: 10.1002/advs.202413201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/31/2024] [Indexed: 11/19/2024]
Abstract
Phosphate and phosphonate drugs are vital in building organisms, regulating physiological processes, and exhibiting diverse biological activities, including antiviral, antibacterial, antineoplastic, and enzyme-inhibitory effects. However, their therapeutic potential is limited by the lack of advanced nanoengineering technologies. Herein, a competitive coordination strategy for nanoengineering phosphate/phosphonate drugs is introduced. By leveraging the difference in coordination capabilities between polyphenols and phosphates/phosphonates with metal ions, various phosphate/phosphonate-based nanodrugs using metal-phenolic networks (MPNs) as templates and phosphate/phosphonate drugs as competitive agents are constructed. The dynamic nature of these coordination bonds imparts stimuli-responsiveness to the nanodrugs, allowing for targeted release and therapy. As a proof of concept, Fe3+ and galangin are used to form the MPN template, zoledronic acid and cGAMP as competitive agents, and DOX as the loaded drug to construct DOX@Fe-galangin@Fe-zoledronic acid-cGAMP nanodrugs. The results demonstrate that, by triggering pyroptosis and activating the cGAS-STING pathway, the nanodrugs exhibit potent cytotoxicity and accurate selectivity in eradicating orthotopic breast tumors, and activate an antitumor immune response against lung and bone metastases. Because the competitive coordination strategy is applicable to a variety of phosphate/phosphonate agents, it holds significant potential for enhancing the clinical efficacy of phosphate/phosphonate drugs and advancing nanodrug development for complex therapeutic applications.
Collapse
Affiliation(s)
- Wanrui Shi
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dashuai Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenjie Feng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Yang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yonggang Wang
- Department of Cardiovascular Centre, The First Hospital of Jilin University, Changchun, 130012, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yi Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hao Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
- Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
3
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Peng X, Fang J, Lou C, Yang L, Shan S, Wang Z, Chen Y, Li H, Li X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm Sin B 2024; 14:3432-3456. [PMID: 39220871 PMCID: PMC11365410 DOI: 10.1016/j.apsb.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of cancer immunotherapy has imparted a transformative impact on cancer treatment paradigms by harnessing the power of the immune system. However, the challenge of practical and precise targeting of malignant cells persists. To address this, engineered nanoparticles (NPs) have emerged as a promising solution for enhancing targeted drug delivery in immunotherapeutic interventions, owing to their small size, low immunogenicity, and ease of surface modification. This comprehensive review delves into contemporary research at the nexus of NP engineering and immunotherapy, encompassing an extensive spectrum of NP morphologies and strategies tailored toward optimizing tumor targeting and augmenting therapeutic effectiveness. Moreover, it underscores the mechanisms that NPs leverage to bypass the numerous obstacles encountered in immunotherapeutic regimens and probes into the combined potential of NPs when co-administered with both established and novel immunotherapeutic modalities. Finally, the review evaluates the existing limitations of NPs as drug delivery platforms in immunotherapy, which could shape the path for future advancements in this promising field.
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Chuyuan Lou
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 10050, China
| | - Zixian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yutong Chen
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-17177, Sweden
| |
Collapse
|
5
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
6
|
Assiri AA, Glover K, Mishra D, Waite D, Vora LK, Thakur RRS. Block copolymer micelles as ocular drug delivery systems. Drug Discov Today 2024; 29:104098. [PMID: 38997002 DOI: 10.1016/j.drudis.2024.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Block copolymer micelles, formed by the self-assembly of amphiphilic polymers, address formulation challenges, such as poor drug solubility and permeability. These micelles offer advantages including a smaller size, easier preparation, sterilization, and superior solubilization, compared with other nanocarriers. Preclinical studies have shown promising results, advancing them toward clinical trials. Their mucoadhesive properties enhance and prolong contact with the ocular surface, and their small size allows deeper penetration through tissues, such as the cornea. Additionally, copolymeric micelles improve the solubility and stability of hydrophobic drugs, sustain drug release, and allow for surface modifications to enhance biocompatibility. Despite these benefits, long-term stability remains a challenge. In this review, we highlight the preclinical performance, structural frameworks, preparation techniques, physicochemical properties, current developments, and prospects of block copolymer micelles as ocular drug delivery systems.
Collapse
Affiliation(s)
- Ahmad A Assiri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK; Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - David Waite
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| | | |
Collapse
|
7
|
Ozsoy F, Mohammed M, Jan N, Lulek E, Ertas YN. T Cell and Natural Killer Cell Membrane-Camouflaged Nanoparticles for Cancer and Viral Therapies. ACS APPLIED BIO MATERIALS 2024; 7:2637-2659. [PMID: 38687958 PMCID: PMC11110059 DOI: 10.1021/acsabm.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Extensive research has been conducted on the application of nanoparticles in the treatment of cancer and infectious diseases. Due to their exceptional characteristics and flexible structure, they are classified as highly efficient drug delivery systems, ensuring both safety and targeted delivery. Nevertheless, nanoparticles still encounter obstacles, such as biological instability, absence of selectivity, recognition as unfamiliar elements, and quick elimination, which restrict their remedial capacity. To surmount these drawbacks, biomimetic nanotechnology has been developed that utilizes T cell and natural killer (NK) cell membrane-encased nanoparticles as sophisticated methods of administering drugs. These nanoparticles can extend the duration of drug circulation and avoid immune system clearance. During the membrane extraction and coating procedure, the surface proteins of immunological cells are transferred to the biomimetic nanoparticles. Such proteins present on the surface of cells confer several benefits to nanoparticles, including prolonged circulation, enhanced targeting, controlled release, specific cellular contact, and reduced in vivo toxicity. This review focuses on biomimetic nanosystems that are derived from the membranes of T cells and NK cells and their comprehensive extraction procedure, manufacture, and applications in cancer treatment and viral infections. Furthermore, potential applications, prospects, and existing challenges in their medical implementation are highlighted.
Collapse
Affiliation(s)
- Fatma Ozsoy
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Mahir Mohammed
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
| | - Nasrullah Jan
- Department
of Pharmacy, The University of Chenab, Gujrat, Punjab 50700, Pakistan
| | - Elif Lulek
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Yavuz Nuri Ertas
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- UNAM−National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
8
|
Zhao L, Arias SL, Zipfel W, Brito IL, Yeo J. Coarse-grained modeling and dynamics tracking of nanoparticles diffusion in human gut mucus. Int J Biol Macromol 2024; 267:131434. [PMID: 38614182 DOI: 10.1016/j.ijbiomac.2024.131434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
The gastrointestinal (GI) tract's mucus layer serves as a critical barrier and a mediator in drug nanoparticle delivery. The mucus layer's diverse molecular structures and spatial complexity complicates the mechanistic study of the diffusion dynamics of particulate materials. In response, we developed a bi-component coarse-grained mucus model, specifically tailored for the colorectal cancer environment, that contained the two most abundant glycoproteins in GI mucus: Muc2 and Muc5AC. This model demonstrated the effects of molecular composition and concentration on mucus pore size, a key determinant in the permeability of nanoparticles. Using this computational model, we investigated the diffusion rate of polyethylene glycol (PEG) coated nanoparticles, a widely used muco-penetrating nanoparticle. We validated our model with experimentally characterized mucus pore sizes and the diffusional coefficients of PEG-coated nanoparticles in the mucus collected from cultured human colorectal goblet cells. Machine learning fingerprints were then employed to provide a mechanistic understanding of nanoparticle diffusional behavior. We found that larger nanoparticles tended to be trapped in mucus over longer durations but exhibited more ballistic diffusion over shorter time spans. Through these discoveries, our model provides a promising platform to study pharmacokinetics in the GI mucus layer.
Collapse
Affiliation(s)
- Liming Zhao
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Sandra L Arias
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Warren Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
9
|
Boucetta H, Zhang L, Sosnik A, He W. Pulmonary arterial hypertension nanotherapeutics: New pharmacological targets and drug delivery strategies. J Control Release 2024; 365:236-258. [PMID: 37972767 DOI: 10.1016/j.jconrel.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, serious, and incurable disease characterized by high lung pressure. PAH-approved drugs based on conventional pathways are still not exhibiting favorable therapeutic outcomes. Drawbacks like short half-lives, toxicity, and teratogenicity hamper effectiveness, clinical conventionality, and long-term safety. Hence, approaches like repurposing drugs targeting various and new pharmacological cascades and/or loaded in non-toxic/efficient nanocarrier systems are being investigated lately. This review summarizes the status of conventional, repurposed, either in vitro, in vivo, and/or in clinical trials of PAH treatment. In-depth description, discussion, and classification of the new pharmacological targets and nanomedicine strategies with a description of all the nanocarriers that showed promising efficiency in delivering drugs are discussed. Ultimately, an illustration of the different nucleic acids tailored and nanoencapsulated within different types of nanocarriers to restore the pathways affected by this disease is presented.
Collapse
Affiliation(s)
- Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
10
|
Pourjavadi A, Kashani FB, Doroudian M, Amin SS. Synthesis and characterization of stimuli responsive micelles from chitosan, starch, and alginate based on graft copolymers with polylactide-poly(methacrylic acid) and polylactide- poly[2(dimethyl amino)ethyl methacrylate] side chains. Int J Biol Macromol 2023; 253:127170. [PMID: 37783250 DOI: 10.1016/j.ijbiomac.2023.127170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The primary objective of this paper is to serve as a comprehensive study on the synthesis of stimulus-sensitive micelles based on polysaccharides. In pursuit of this goal, functionalization with polylactide (PLA) was used as the water-resistance part and poly[2(Dimethyl amino)ethyl methacrylate] (PDMAEMA) or poly(methacrylic acid) (PMA) were employed as the stimulus-sensitive part to create micelles with a simple structure. FTIR and 1HNMR measurements were utilized to characterize the functionalized polysaccharides. Fluorescence spectroscopy was used to determine the critical micelle concentration. The average micelles' diameter, as observed in SEM and TEM pictures, ranges from 50 to 200 nm. To gain a better understanding of the potential of theses micelles for delivering drugs in a stimulus-sensitive manner, drug release tests were conducted. The cytotoxicity of these nano-vehicles was examined using the MTT assay. Utilizing MCF7 cells stained with DAPI and Mito Tracker, cellular uptake studies were also investigated. The results indicate that the behavior of the micelles is nearly same even though they used polysaccharides with various charge densities or different stimulus sensitive polymers. This approach, therefore, demonstrates that a broad range of micelle production is possible by employing diverse polysaccharides functionalized with PLA and polymethacrylates.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran.
| | - Fatemeh Bolori Kashani
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| | - Mohadeseh Doroudian
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| | - Shiva Sadat Amin
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| |
Collapse
|
11
|
Azhar F, Naureen H, Shahnaz G, Hamdani SDA, Kiani MH, Khattak S, Manna MK, Babar MM, Rajadas J, Rahdar A, Díez-Pascual AM. Development of chitosan based β-carotene mucoadhesive formulation for skin cancer treatment. Int J Biol Macromol 2023; 253:126659. [PMID: 37660856 DOI: 10.1016/j.ijbiomac.2023.126659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Mucopermeating nanoformulations can enhance mucosal penetration of poorly soluble drugs at their target site. In this work, thiolated chitosan (TCS)-lithocholic acid (LA) nanomicelles loaded with β-carotene, a safe phytochemical with anticancer properties, were designed to improve the pharmaceutical and pharmacological drug profile. The TCS-LA nanomicelles were characterized by FTIR to confirm the presence of the thiol group that favors skin adhesion, and to corroborate the conjugation of hydrophobic LA with hydrophilic CS to form an amphiphilic polymer derivative. Their crystalline nature and thermal behavior were investigated by XRD and DSC analyses, respectively. According to DLS and TEM, their average size was <300 nm, and their surface charge was +27.0 mV. β-carotene entrapment and loading efficiencies were 64 % and 58 %, respectively. In vitro mucoadhesion and ex vivo mucopenetration analyses further corroborated the potential of the nanoformulation to deliver the drug in a sustained manner under conditions mimicking cancer micro-environment. Anticancer studies in mice demonstrated that the loaded nanomicelles delayed skin cancer growth, as revealed by both morphological and biochemical parameters. Based on the results obtained herein, it can be concluded that drug-loaded TCS-LA is a novel, stable, effective and safe mucoadhesive formulation of β-carotene for the potential treatment of skin cancer.
Collapse
Affiliation(s)
- Farah Azhar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan; Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Humaira Naureen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan.
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | | | - Shahana Khattak
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Manoj Kumar Manna
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mustafeez Mujtaba Babar
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | - Jayakumar Rajadas
- Stanford Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
12
|
Shreiber-Livne I, Sulimani L, Shapira A, Procaccia S, Meiri D, Sosnik A. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles as a platform for the improved oral delivery of cannabidiol. Drug Deliv Transl Res 2023; 13:3192-3203. [PMID: 37341881 DOI: 10.1007/s13346-023-01380-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Cannabidiol (CBD), a non-psychoactive constituent of Cannabis, has proven neuroprotective, anti-inflammatory and antioxidant properties though his therapeutic use, especially by the oral route, is still challenged by the poor aqueous solubility that results in low oral bioavailability. In this work, we investigate the encapsulation of CBD within nanoparticles of a highly hydrophobic poly(ethylene glycol)-b-poly(epsilon-caprolactone) block copolymer produced by a simple and reproducible nanoprecipitation method. The encapsulation efficiency is ~ 100% and the CBD loading 11% w/w (high performance liquid chromatography). CBD-loaded nanoparticles show a monomodal size distribution with sizes of up to 100 nm (dynamic light scattering), a spherical morphology, and the absence of CBD crystals (high resolution-scanning electron microscopy and cryogenic-transmission electron microscopy) which is in line with a very efficient nanoencapsulation. Then, the CBD release profile from the nanoparticles is assessed under gastric- and intestine-like conditions. At pH 1.2, only 10% of the payload is released after 1 h. Conversely, at pH 6.8, a release of 80% is recorded after 2 h. Finally, the oral pharmacokinetics is investigated in rats and compared to a free CBD suspension. CBD-loaded nanoparticles lead to a statistically significant ~ 20-fold increase of the maximum drug concentration in plasma (Cmax) and a shortening of the time to the Cmax (tmax) from 4 to 0.3 h, indicating a more complete and faster absorption than in free form. Moreover, the area-under-the-curve (AUC), a measure of oral bioavailability, increased by 14 times. Overall results highlight the promise of this simple, reproducible, and scalable nanotechnology strategy to improve the oral performance of CBD with respect to common oily formulations and/or lipid-based drug delivery systems associated with systemic adverse effects.
Collapse
Affiliation(s)
- Inbar Shreiber-Livne
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa, 320003, Israel
- Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Liron Sulimani
- The Kleifeld Laboratory, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- CannaSoul Analytics, Caesarea, 3099109, Israel
| | - Anna Shapira
- Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shiri Procaccia
- Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - David Meiri
- Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa, 320003, Israel.
| |
Collapse
|
13
|
Motsoene F, Abrahamse H, Dhilip Kumar SS. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review. Adv Colloid Interface Sci 2023; 321:103002. [PMID: 37804662 DOI: 10.1016/j.cis.2023.103002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Wound healing primarily involves preventing severe infections, accelerating healing, and reducing pain and scarring. Therefore, the multifunctional application of lipid-based nanoparticles (LBNs) has received considerable attention in drug discovery due to their solid or liquid lipid core, which increases their ability to provide prolonged drug release, reduce treatment costs, and improve patient compliance. LBNs have also been used in medical and cosmetic practices and formulated for various products based on skin type, disease conditions, administration product costs, efficiency, stability, and toxicity; therefore, understanding their interaction with biological systems is very important. Therefore, it is necessary to perform an in-depth analysis of the results from a comprehensive characterization process to produce lipid-based drug delivery systems with desired properties. This review will provide detailed information on the different types of LBNs, their formulation methods, characterisation, antimicrobial activity, and application in various wound models (both in vitro and in vivo studies). Also, the clinical and commercial applications of LBNs are summarized.
Collapse
Affiliation(s)
- Fezile Motsoene
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
14
|
Negut I, Bita B. Polymeric Micellar Systems-A Special Emphasis on "Smart" Drug Delivery. Pharmaceutics 2023; 15:976. [PMID: 36986837 PMCID: PMC10056703 DOI: 10.3390/pharmaceutics15030976] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Concurrent developments in anticancer nanotechnological treatments have been observed as the burden of cancer increases every year. The 21st century has seen a transformation in the study of medicine thanks to the advancement in the field of material science and nanomedicine. Improved drug delivery systems with proven efficacy and fewer side effects have been made possible. Nanoformulations with varied functions are being created using lipids, polymers, and inorganic and peptide-based nanomedicines. Therefore, thorough knowledge of these intelligent nanomedicines is crucial for developing very promising drug delivery systems. Polymeric micelles are often simple to make and have high solubilization characteristics; as a result, they seem to be a promising alternative to other nanosystems. Even though recent studies have provided an overview of polymeric micelles, here we included a discussion on the "intelligent" drug delivery from these systems. We also summarized the state-of-the-art and the most recent developments of polymeric micellar systems with respect to cancer treatments. Additionally, we gave significant attention to the clinical translation potential of polymeric micellar systems in the treatment of various cancers.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| |
Collapse
|
15
|
Yusuf V, Malek NI, Kailasa SK. Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS OMEGA 2022; 7:44507-44531. [PMID: 36530292 PMCID: PMC9753116 DOI: 10.1021/acsomega.2c05310] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 05/31/2023]
Abstract
Metal ions or clusters that have been bonded with organic linkers to create one- or more-dimensional structures are referred to as metal-organic frameworks (MOFs). Reticular synthesis also forms MOFs with properly designated components that can result in crystals with high porosities and great chemical and thermal stability. Due to the wider surface area, huge pore size, crystalline nature, and tunability, numerous MOFs have been shown to be potential candidates in various fields like gas storage and delivery, energy storage, catalysis, and chemical/biosensing. This study provides a quick overview of the current MOF synthesis techniques in order to familiarize newcomers in the chemical sciences field with the fast-growing MOF research. Beginning with the classification and nomenclature of MOFs, synthesis approaches of MOFs have been demonstrated. We also emphasize the potential applications of MOFs in numerous fields such as gas storage, drug delivery, rechargeable batteries, supercapacitors, and separation membranes. Lastly, the future scope is discussed along with prospective opportunities for the synthesis and application of nano-MOFs, which will help promote their uses in multidisciplinary research.
Collapse
Affiliation(s)
- Vadia
Foziya Yusuf
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Naved I. Malek
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| |
Collapse
|
16
|
El-Far M, Essam A, El-Senduny FF, Abd El-Azim AO, Yahia S, El-Sherbiny IM. Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022; 14:pharmaceutics14112498. [PMID: 36432688 PMCID: PMC9698844 DOI: 10.3390/pharmaceutics14112498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Fluorescent organic nanoparticles (FONs) are a large family of nanostructures constituted by organic components that emit light in different spectral regions upon excitation, due to the presence of organic fluorophores. FONs are of great interest for numerous biological and medical applications, due to their high tunability in terms of composition, morphology, surface functionalization, and optical properties. Multifunctional FONs combine several functionalities in a single nanostructure (emission of light, carriers for drug-delivery, functionalization with targeting ligands, etc.), opening the possibility of using the same nanoparticle for diagnosis and therapy. The preparation, characterization, and application of these multifunctional FONs require a multidisciplinary approach. In this review, we present FONs following a tutorial approach, with the aim of providing a general overview of the different aspects of the design, preparation, and characterization of FONs. The review encompasses the most common FONs developed to date, the description of the most important features of fluorophores that determine the optical properties of FONs, an overview of the preparation methods and of the optical characterization techniques, and the description of the theoretical approaches that are currently adopted for modeling FONs. The last part of the review is devoted to a non-exhaustive selection of some recent biomedical applications of FONs.
Collapse
|
18
|
Wang S, Cheng K, Chen K, Xu C, Ma P, Dang G, Yang Y, Lei Q, Huang H, Yu Y, Fang Y, Tang Q, Jiang N, Miao H, Liu F, Zhao X, Li N. Nanoparticle-based medicines in clinical cancer therapy. NANO TODAY 2022; 45:101512. [DOI: 10.1016/j.nantod.2022.101512] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
|
19
|
Ghezzi M, Ferraboschi I, Delledonne A, Pescina S, Padula C, Santi P, Sissa C, Terenziani F, Nicoli S. Cyclosporine-loaded micelles for ocular delivery: Investigating the penetration mechanisms. J Control Release 2022; 349:744-755. [PMID: 35901859 DOI: 10.1016/j.jconrel.2022.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Cyclosporine is an immunomodulatory drug commonly used for the treatment of mild-to-severe dry eye syndrome as well as intermediate and posterior segment diseases as uveitis. The ocular administration is however hampered by its relatively high molecular weight and poor permeability across biological barriers. The aim of this work was to identify a micellar formulation with the ability to solubilize a considerable amount of cyclosporine and promote its transport across ocular barriers. Non-ionic amphiphilic polymers used for micelles preparation were tocopherol polyethylene glycol 1000 succinate (TPGS) and Solutol® HS15. Furthermore, the addition of alpha-linolenic acid was assessed. A second aim was to evaluate micelles fate in the ocular tissues (cornea and sclera) to shed light on penetration mechanisms. This was possible by extracting and quantifying both drug and polymer in the tissues, by studying TPGS hydrolysis in a bio-relevant environment and by following micelles penetration with two-photon microscopy. Furthermore, TPGS role as permeation enhancer on the cornea, with possible irreversible modifications of tissue permeability, was analyzed. Results showed that TPGS micelles (approx. 13 nm in size), loaded with 5 mg/ml of cyclosporine, promoted drug retention in both the cornea and the sclera. Data demonstrated that micelles behavior strictly depends on the tissue: micelles disruption occurs in contact with the cornea, while intact micelles diffuse in the interfibrillar pores of the sclera and form a reservoir that can sustain over time drug delivery to the deeper tissues. Finally, cornea quickly restore the barrier properties after TPGS removal from the tissue, demonstrating its potential good tolerability for ocular application.
Collapse
Affiliation(s)
- Martina Ghezzi
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ilaria Ferraboschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Delledonne
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Padula
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Patrizia Santi
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Francesca Terenziani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
20
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|
21
|
Naki T, Aderibigbe BA. Efficacy of Polymer-Based Nanomedicine for the Treatment of Brain Cancer. Pharmaceutics 2022; 14:1048. [PMID: 35631634 PMCID: PMC9145018 DOI: 10.3390/pharmaceutics14051048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumor is a life-threatening disease with a low survival rate. The therapies available for the treatment of brain tumor is limited by poor uptake via the blood-brain barrier. The challenges with the chemotherapeutics used for the treatment of brain tumors are poor distribution, drug toxicity, and their inability to pass via the blood-brain barrier, etc. Several researchers have investigated the potential of nanomedicines for the treatment of brain cancer. Nanomedicines are designed with nanosize particle sizes with a large surface area and are loaded with bioactive agents via encapsulation, immersion, conjugation, etc. Some nanomedicines have been approved for clinical use. The most crucial part of nanomedicine is that they promote drug delivery across the blood-brain barrier, display excellent specificity, reduce drug toxicity, enhance drug bioavailability, and promote targeted drug release mechanisms. The aforementioned features make them promising therapeutics for brain targeting. This review reports the in vitro and in vivo results of nanomedicines designed for the treatment of brain cancers.
Collapse
Affiliation(s)
- Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| | | |
Collapse
|
22
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
23
|
Tran HT, Vong LB, Nishikawa Y, Nagasaki Y. Sorafenib-loaded silica-containing redox nanoparticles for oral anti-liver fibrosis therapy. J Control Release 2022; 345:880-891. [PMID: 35395328 DOI: 10.1016/j.jconrel.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Liver fibrosis is a chronic disease resulting from repetitive or prolonged liver injury with limited treatment options. Sorafenib has been reported to be a potential antifibrotic agent; however, its therapeutic effect is restricted because of its low bioavailability and severe adverse effects in the gastrointestinal (GI) tract. In this study, we developed sorafenib-loaded silica-containing redox nanoparticles (sora@siRNP) as an oral nanomedicine to treat liver fibrosis. The designed siRNP were prepared by self-assembly of amphiphilic block copolymers, which possess antioxidant nitroxide radicals as a side chain of the hydrophobic segment and porous silica particles in the nanoparticle core. The silica moieties in the core formed a crosslink between the self-assembling block copolymers to afford stable drug absorption, which could be useful in harsh GI conditions after oral drug administration. Based on in vitro evaluation, sora@siRNP exerted antiproliferative and antifibrotic effects against hepatic stellate cells (HSCs) and low toxicity against normal endothelial cells. A pharmacokinetic study showed that siRNP significantly improved the bioavailability and distribution of sorafenib in the liver. In an in vivo study using a mouse model of CCl4-induced liver fibrosis, oral administration of sora@siRNP significantly suppressed the fibrotic area in comparison to free sorafenib administration. In mice with CCl4-induced fibrosis, free sorafenib administration did not suppress the expression of α-smooth muscle actin; however, mice treated with sora@siRNP showed significantly suppressed expression of α-smooth muscle actin, indicating the inhibition of HSC activation, which was confirmed by in vitro experiments. Moreover, oral administration of free sorafenib induced severe intestinal damage and increased leakage into the gut, which can be attributed to the generation of reactive oxygen species (ROS). Our antioxidant nanocarriers, siRNP, reduced the adverse effects of local ROS scavenging in the GI tract. Our results suggest that sora@siRNP could serve as a promising oral nanomedicine for liver fibrosis.
Collapse
Affiliation(s)
- Hao Thi Tran
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Long Binh Vong
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan; School of Biomedical Engineering, International University, Ho Chi Minh 703000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 703000, Viet Nam
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 079-8501, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan; Department of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
24
|
Kaur J, Gulati M, Kumar Jha N, Disouza J, Patravale V, Dua K, Kumar Singh S. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discov Today 2022; 27:1495-1512. [DOI: 10.1016/j.drudis.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
|
25
|
Bahman F, Butt AM, Ashi L, Mohd Amin MCI, Greish K. Polymeric micelles for oral drug delivery. POLYMERIC MICELLES FOR DRUG DELIVERY 2022:89-113. [DOI: 10.1016/b978-0-323-89868-3.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Kulkarni B, Qutub S, Ladelta V, Khashab NM, Hadjichristidis N. AIE-Based Fluorescent Triblock Copolymer Micelles for Simultaneous Drug Delivery and Intracellular Imaging. Biomacromolecules 2021; 22:5243-5255. [PMID: 34852198 DOI: 10.1021/acs.biomac.1c01165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent drug delivery systems have received increasing attention in cancer therapy because they combine drug delivery and bioimaging into a single platform. For example, polymers with aggregation-induced emission (AIE) fluorophores, such as tetraphenylethylene (TPE), have emerged as an elegant choice for drug delivery/bioimaging applications. In this work, we report one-pot sequential organocatalytic ring-opening polymerization of ε-caprolactone (CL) and ethylene oxide (EO) using TPE-(OH)2 as a difunctional initiator, in the presence of a t-BuP2/TEB Lewis pair (catalyst), in THF at room temperature. Two well-defined triblock copolymers with inverse block sequences, TPE-(PCL-b-PEO)2 and TPE-(PEO-b-PCL)2, were synthesized by altering the sequential addition of CL and EO. The physicochemical properties, including hydrodynamic diameter, morphology, and AIE properties of the synthesized amphiphilic triblock copolymers were investigated in aqueous media. The block copolymer micelles were loaded with anticancer drugs doxorubicin and curcumin to serve as drug delivery vehicles. In vitro studies revealed the accelerated drug release at lower pH (5.5), which mimics the tumor microenvironment, different from the physiological pH (7.4). In vitro cytotoxicity studies demonstrated that the neat block copolymer micelles are biocompatible, while drug-loaded micelles exhibited a significant cytotoxic effect in cancer cells. Cellular uptake, examined by confocal laser scanning microscopy, showed that the block copolymer micelles were rapidly internalized by the cells with simultaneous emission of TPE fluorophore. These results suggest that these triblock copolymers can be utilized for intracellular bioimaging.
Collapse
Affiliation(s)
- Bhagyashree Kulkarni
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
27
|
Cannabidiol-Loaded Mixed Polymeric Micelles of Chitosan/Poly(Vinyl Alcohol) and Poly(Methyl Methacrylate) for Trans-Corneal Delivery. Pharmaceutics 2021; 13:pharmaceutics13122142. [PMID: 34959427 PMCID: PMC8703866 DOI: 10.3390/pharmaceutics13122142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Ocular drug delivery is challenging due to the very short drug residence time and low permeability. In this work, we produce and characterize mucoadhesive mixed polymeric micelles (PMs) made of chitosan (CS) and poly(vinyl alcohol) backbones graft-hydrophobized with short poly(methyl methacrylate) blocks and use them to encapsulate cannabidiol (CBD), an anti-inflammatory cannabinoid. CBD-loaded mixed PMs are physically stabilized by ionotropic crosslinking of the CS domains with sodium tripolyphoshate and spray-drying. These mixed PMs display CBD loading capacity of 20% w/w and sizes of 100-200 nm, and spherical morphology (cryogenic-transmission electron microscopy). The good compatibility of the unloaded and CBD-loaded PMs is assessed in a human corneal epithelial cell line. Then, we confirm the permeability of CBD-free PMs and nanoencapsulated CBD in human corneal epithelial cell monolayers under liquid-liquid and air-liquid conditions. Overall, our results highlight the potential of these polymeric nanocarriers for ocular drug delivery.
Collapse
|
28
|
Toscanini MA, Limeres MJ, Garrido AV, Cagel M, Bernabeu E, Moretton MA, Chiappetta DA, Cuestas ML. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Rashwan AK, Karim N, Xu Y, Xie J, Cui H, Mozafari MR, Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34661483 DOI: 10.1080/10408398.2021.1987858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACNs) are notable hydrophilic compounds that belong to the flavonoid family, which are available in plants. They have excellent antioxidants, anti-obesity, anti-diabetic, anti-inflammatory, anticancer activity, and so on. Furthermore, ACNs can be used as a natural dye in the food industry (food colorant). On the other hand, the stability of ACNs can be affected by processing and storage conditions, for example, pH, temperature, light, oxygen, enzymes, and so on. These factors further reduce the bioavailability (BA) and biological efficacy of ACNs, as well as limit ACNs application in both food and pharmaceutics field. The stability and BA of ACNs can be improved via loading them in encapsulation systems including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nanogel, complex coacervates, and tocosomes. Among all systems, biopolymer-based nanoparticles, nanohydrogels, and complex coacervates are comparatively suitable for improving the stability and BA of ACNs. These three systems have excellent functional properties such as high encapsulation efficiency and well-stable against unfavorable conditions. Furthermore, these carrier systems can be used for coating of other encapsulation systems (such as liposome). Additionally, tocosomes are a new system that can be used for encapsulating ACNs. ACNs-loaded encapsulation systems can improve the stability and BA of ACNs. However, further studies regarding stability, BA, and in vivo work of ACNs-loaded micro/nano-encapsulation systems could shed a light to evaluate the therapeutic efficacy including physicochemical stability, target mechanisms, cellular internalization, and release kinetics.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Haoxin Cui
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, Australia
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Li Z, Liu M, Ke L, Wang LJ, Wu C, Li C, Li Z, Wu YL. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. NANOSCALE ADVANCES 2021; 3:5240-5254. [PMID: 36132623 PMCID: PMC9417891 DOI: 10.1039/d1na00596k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
The eye is a complex structure with a variety of anatomical barriers and clearance mechanisms, so the provision of safe and effective ophthalmic drug delivery technology is a major challenge. In the past few decades, a number of reports have shown that nano-delivery platforms based on polymeric micelles are of great interest, because of their hydrophobic core that encapsulates lipid-soluble drugs and small size with high penetration, allowing long-term drug retention and posterior penetration in the eye. Furthermore, as an ocular delivery platform, polymeric micelles not only cover the single micellar drug delivery system formed by poloxamer, chitosan or other polymers, but also include composite drug delivery systems like micelle-encapsulated hydrogels and micelle-embedded contact lenses. In this review, a number of ophthalmic micelles that have emerged in the last three years will be systematically reviewed, with a summary of and discussion on their unique advantages or unique drug delivery performance. Last but not least, the current challenges of polymeric micelle formulations in potential clinical ophthalmic therapeutic applications will also be proposed, which might be helpful for future design of ocular drug delivery formulations.
Collapse
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Li-Juan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
32
|
Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals. Foods 2021; 10:foods10061362. [PMID: 34208328 PMCID: PMC8231213 DOI: 10.3390/foods10061362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The conventional oral administration of many nutraceuticals exhibits poor oral bioavailability due to the harsh gastric conditions and first-pass metabolism. Oral mucosa has been recognized as a potential site for the delivery of therapeutic compounds. The mucoadhesive formulation can adhere to the mucosal membrane through various interaction mechanisms and enhance the retention and permeability of bioactive compounds. Absorption of bioactive compounds from the mucosa can improve bioavailability, as this route bypasses the hepatic first-pass metabolism and transit through the gastrointestinal tract. The mucosal administration is convenient, simple to access, and reported for increasing the bioactive concentration in plasma. Many mucoadhesive polymers, emulsifiers, thickeners used for the pharmaceutical formulation are accepted in the food sector. Introducing mucoadhesive formulations specific to the nutraceutical sector will be a game-changer as we are still looking for different ways to improve the bioavailability of many bioactive compounds. This article describes the overview of buccal mucosa, the concept of mucoadhesion and related theories, and different techniques of mucoadhesive formulations. Finally, the classification of mucoadhesive polymers and the mucoadhesive systems designed for the effective delivery of bioactive compounds are presented.
Collapse
|
33
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
34
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
35
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
36
|
Wang Y, Wang C, Li K, Song X, Yan X, Yu L, He Z. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021; 330:618-640. [PMID: 33417985 DOI: 10.1016/j.jconrel.2021.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by the presence of chronic hyperglycemia driven by insulin deficiency or resistance, imposing a significant global burden affecting 463 million people worldwide in 2019. This review has comprehensively summarized the application of nanomedicine with accurate, patient-friendly, real-time properties in the field of diabetes diagnosis and monitoring, and emphatically discussed the unique potential of various nanomedicine carriers (e.g., polymeric nanoparticles, liposomes, micelles, microparticles, microneedles, etc.) in the management of diabetes and complications. Novel delivery systems have been developed with improved pharmacokinetics and pharmacodynamics, excellent drug biodistribution, biocompatibility, and therapeutic efficacy, long-term action safety, as well as the improved production methods. Furthermore, the effective nanomedicine for the treatment of several major diabetic complications with significantly improved life qualities of diabetic patients were discussed in detail. Going through the literature review, several critical issues of the nanomedicine-based strategies applications need to be addressed such as stabilities and long-term safety effects in vivo, the deficiency of standard for formulation administration, feasibility of scale-up, etc. Overall, the review provides an insight into the design, advantages and limitations of novel nanomedicine application in the diagnostics, monitoring, and therapeutics of DM.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Chunhui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Keyang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| |
Collapse
|
37
|
|
38
|
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2020; 169:103-121. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
One of the most promising pharmaceutical research areas is developing advanced delivery systems for controlled and sustained drug release. The drug delivery system (DDS) can be designed to strengthen the pharmacological and therapeutic characteristics of different medicines. Natural polymers have resolved numerous commencing hurdles, which hindered the clinical implementation of traditional DDS. The naturally derived polymers furnish various advantages such as biodegradability, biocompatibility, inexpensiveness, easy availability, and biologically identifiable moieties, which endorse cellular activity in contrast to synthetic polymers. Among them, chitosan has recently been in the spotlight for devising safe and efficient DDSs due to its superior properties such as minimal toxicity, bio-adhesion, stability, biodegradability, and biocompatibility. The primary amino group in chitosan shows exceptional qualities such as the rate of drug release, anti-microbial properties, the ability to cross-link with various polymers, and macrophage activation. This review intends to provide a glimpse into different practical utilization of chitosan as a drug carrier. The first segment of the review will give cognizance into the source of extraction and chitosan's remarkable properties. Further, we have endeavored to provide recent literature pertaining to chitosan applications in various drug delivery systems via different administration routes along with current patented chitosan formulations.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India; Department of Polymeric Medical Devices, Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India.
| | - Vaishnavi Sali
- C.U. Shah College of Pharmacy, SNDT Women's University, Sir Vithaldas Thakersay, Santacruz West, Juhu, Mumbai, Maharashtra 400049, India
| |
Collapse
|
39
|
Indomethacin loaded dextran stearate polymeric micelles improve adjuvant-induced arthritis in rats: design and in vivo evaluation. Inflammopharmacology 2020; 29:107-121. [PMID: 33179175 DOI: 10.1007/s10787-020-00776-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that can effectively control the pain and inflammation caused by rheumatoid arthritis (RA), but its usage is limited due to severe adverse effects. For this reason, making more specific formulations of this drug can be considered. The aim of the present study was designing a novel nano-sized indomethacin delivery system. MATERIALS AND METHODS Indomethacin-loaded dextran stearate polymeric micelles were prepared by dialysis method. Particle size and zeta potential of micelles were measured by a zeta sizer instrument. Drug release from micelles was investigated in phosphate buffer medium pH 7.4 and then the best formulation regarding physical properties and drug release was selected for animal studies. Arthritis was induced by complete Freund's adjuvant injection in rats. Then, the animals were randomly assigned into the model, the indomethacin solution and the polymeric micelles groups. The clinical effects of polymeric micelle formulation were assessed by measuring arthritis index, animal paw edema and measuring biochemical parameters including myeloperoxidase (MPO) activity, lipid peroxidation (LPO), glutathione (GSH), total antioxidant capacity (TAC), TNF-α, IL-17 and IL-1β. RESULTS Paw edema was attenuated following the administration of indomethacin-loaded polymeric micelles. Based on the findings of the present study, the use of indomethacin-loaded polymeric micelles could improve inflammatory symptoms, decrease arthritis index and decrease the diameter of the paw in arthritic rats in a significant manner (p ≤ 0.05). In addition, the use of polymeric micelles like indomethacin solution significantly reduced (p ≤ 0.05) the activity of MPO, LPO, TNF-α, IL-17 and IL-1β, and made a significant increase (p ≤ 0.05) in glutathione and TAC content and ameliorated structural changes in the paw tissue compared to the control group. CONCLUSION Our findings demonstrated that indomethacin-loaded dextran stearate polymeric micelles can provide more effective therapeutic effects in control of inflammation in arthritis in rat.
Collapse
|
40
|
Charlie-Silva I, Feitosa NM, Gomes JMM, Hoyos DCDM, Mattioli CC, Eto SF, Fernandes DC, Belo MADA, Silva JDO, de Barros ALB, Corrêa Junior JD, de Menezes GB, Fukushima HCS, Castro TFD, Borra RC, Pierezan F, de Melo NFS, Fraceto LF. Potential of mucoadhesive nanocapsules in drug release and toxicology in zebrafish. PLoS One 2020; 15:e0238823. [PMID: 32970684 PMCID: PMC7514080 DOI: 10.1371/journal.pone.0238823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
Mucoadhesive polymeric nanocapsules have attracted interest of researchers from different fields from natural sciences because of their ability to interact with the mucosa and increase drug permeation. Anesthesia by immersion causes absorption through the skin and gills of fish, so it is important to evaluate the exposure of these organs to drug nanosystems. Benzocaine (BENZ) is one of the most popular anesthetic agents used in fish anesthesia, but it has drawbacks because of its low bioavailability, resulting in weak absorption after immersion. Here we describe method developed for preparing and characterizing chitosan-coated PLGA mucoadhesive nanoparticles containing BENZ (NPMAs) for zebrafish immersion anesthesia. We determined the lowest effective concentration, characterized the interaction of the mucoadhesive system with fish, measured the anesthetic efficacy, and evaluated possible toxic effects in embryos and adults exposed to the nanoformulations. This study opens perspectives for using nanoformulations prepared with BENZ in aquaculture, allowing reduction of dosage as well as promoting more effective anesthesia and improved interaction with the mucoadhesive system of fish.
Collapse
Affiliation(s)
- Ives Charlie-Silva
- Department of Pharmacology at University of São Paulo-ICB/USP, São Paulo-SP, Brazil
| | - Natália Martins Feitosa
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ)- Macaé, RJ, Brazil
| | | | | | | | - Silas Fernandes Eto
- Department of Postgraduate in Health Sciences—PROCISA, Federal University of Roraima (UFRR), Boa Vista, Brazil
| | | | - Marco Antonio de Andrade Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, Jaboticabal-SP, Brazil
- Laboratory of Animal Pharmacology and Toxicology, Brasil University, Descalvado/SP, Brazil
| | - Juliana de Oliveira Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy-UFMG, Belo Horizonte-MG, Brazil
| | | | | | | | | | | | - Ricardo Carneiro Borra
- Laboratory of Applied Immunology, Federal University of São Carlos, São Carlos-SP, Brazil
| | - Felipe Pierezan
- School of Veterinary Medicine, Department of Clinic and Veterinary Surgery, UFMG, Belo Horizonte-MG, Brazil
| | | | | |
Collapse
|
41
|
Sato H, Kaneko Y, Yamada K, Ristroph KD, Lu HD, Seto Y, Chan HK, Prud’homme RK, Onoue S. Polymeric Nanocarriers With Mucus-Diffusive and Mucus-Adhesive Properties to Control Pharmacokinetic Behavior of Orally Dosed Cyclosporine A. J Pharm Sci 2020; 109:1079-1085. [DOI: 10.1016/j.xphs.2019.10.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
42
|
Xiang Z, Qi Y, Lu Y, Hu Z, Wang X, Jia W, Hu J, Ji J, Lu W. MOF-derived novel porous Fe3O4@C nanocomposites as smart nanomedical platforms for combined cancer therapy: magnetic-triggered synergistic hyperthermia and chemotherapy. J Mater Chem B 2020; 8:8671-8683. [DOI: 10.1039/d0tb01021a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Smart Fe3O4@C-PVP@DOX nanomedical platforms hold great potential application in the precise treatments of clinical cancer.
Collapse
Affiliation(s)
- Zhen Xiang
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Yiyao Qi
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Yusheng Lu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Zhenrong Hu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Xiao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Wenwen Jia
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University
- Lishui
- China
| | - Wei Lu
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| |
Collapse
|
43
|
Luo Z, Fan S, Gu C, Liu W, Chen J, Li B, Liu J. Metal-Organic Framework (MOF)-based Nanomaterials for Biomedical Applications. Curr Med Chem 2019; 26:3341-3369. [PMID: 29446726 DOI: 10.2174/0929867325666180214123500] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Metal-organic frameworks (MOFs), as a new class of porous organic-inorganic crystalline hybrid materials that governed by the self-assembled of metal atoms and organic struts have attracted tremendous attention because of their special properties. Recently, some more documents have reported different types of nanoscale metal-organic frameworks (NMOFs) as biodegradable and physiological pH-responsive systems for photothermal therapy and radiation therapy in the body. DISCUSSION In this review paper aims at describing the benefits of using MOF nanoparticles in the field of biomedicine, and putting into perspective their properties in the context of the ones of other NPs. The first section briefly reviews the biomaterial scaffolds of MOFs. The second section presents the main types of stimuli-responsive mechanisms and strategies from two categories: intrinsic (pH, redox state) and extrinsic (temperature, light irradiation and magnetic field) ones. The combinations of photothermal therapy and radiation therapy have been concluded in detail. Finally, clinical applications of MOFs, future challenges and perspectives are also mentioned. CONCLUSION This review outlines the most recent advances MOFs design and biomedical applications, from different synthesis to their use as smart drug delivery systems, bioimaging technology or a combination of both.
Collapse
Affiliation(s)
- Zhidong Luo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Shuran Fan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Chuying Gu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Weicong Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Baohong Li
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
44
|
Self-assembly and nanostructure of poly(vinyl alcohol)-graft-poly(methyl methacrylate) amphiphilic nanoparticles. J Colloid Interface Sci 2019; 553:512-523. [DOI: 10.1016/j.jcis.2019.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/08/2023]
|
45
|
Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. Int J Biol Macromol 2019; 133:647-655. [DOI: 10.1016/j.ijbiomac.2019.04.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
|
46
|
Schlachet I, Sosnik A. Mixed Mucoadhesive Amphiphilic Polymeric Nanoparticles Cross a Model of Nasal Septum Epithelium in Vitro. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21360-21371. [PMID: 31124655 DOI: 10.1021/acsami.9b04766] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intranasal administration of nano-drug-delivery systems emerged as an appealing strategy to surpass the blood-brain barrier and thus increase drug bioavailability in the central nervous system. However, a systematic study of the effect of the structural properties of the nanoparticles on the nose-to-brain transport is missing. In this work, we synthesized and characterized mixed amphiphilic polymeric nanoparticles combining two mucoadhesive graft copolymers, namely, chitosan- g-poly(methyl methacrylate) and poly(vinyl alcohol)- g-poly(methyl methacrylate), for the first time. Chitosan enables the physical stabilization of the nanoparticles by ionotropic cross-linking with tripolyphosphate and confers mucoadhesiveness, while poly(vinyl alcohol) is also mucoadhesive and, owing to its nonionic nature, it improves nanoparticle compatibility in nasal epithelial cells by reducing the surface charge of the nanoparticles. After a thorough characterization of the mixed nanoparticles by dynamic light scattering and nanoparticle tracking analysis, we investigated the cell uptake by fluorescence light and confocal microscopy and imaging flow cytometry. Mixed nanoparticles were readily internalized at 37 °C, while the uptake was inhibited almost completely at 4 °C, indicating the involvement of energy-dependent mechanisms. Finally, we assessed the nanoparticle permeability across liquid-liquid and air-liquid monolayers of a nasal septum epithelial cell line and studied the effect of nanoparticle concentration and temperature on the apparent permeability. Overall, our findings demonstrate that these novel amphiphilic nanoparticles cross this in vitro model of intranasal epithelium mainly by a passive (paracellular) pathway involving the opening of epithelial tight junctions.
Collapse
Affiliation(s)
- Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Technion City, Haifa 3200003 , Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Technion City, Haifa 3200003 , Israel
| |
Collapse
|
47
|
Chen N, Niu J, Li Q, Li J, chen X, Ren Y, Wu G, Liu Y, Shi Y. Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Zhang J, Chen L, Shen B, Chen L, Mo J, Feng J. Dual-Sensitive Graphene Oxide Loaded with Proapoptotic Peptides and Anticancer Drugs for Cancer Synergetic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6120-6128. [PMID: 30983368 DOI: 10.1021/acs.langmuir.9b00611] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A dual-sensitive drug delivery system (DDS) based on graphene oxide (GO) which is simultaneously loaded with proapoptotic peptides and anticancer drugs was rationally designed and fabricated for cancer synergetic therapy. Specifically, a kind of cell apoptosis peptide (KLAKLAK)2 (KLA) was anchored on the surface of GO via a disulfide bond to obtain GO-SS-KLA. Then, the aromatic anticancer drug doxorubicin (DOX) was loaded on GO through π-π conjugation and hydrogen bonding interactions. Finally, bovine serum albumin (BSA) was used to coat the GO carrier to obtain a biological medium-stable GO-based DDS, DOX@GO-SS-KLA/BSA. The results show that KLA and DOX can be released responding to the reductive and pH stimulus inside the cells, respectively, and achieve a synergetic therapy for cancer. Moreover, the results of stability studies show that DOX@GO-SS-KLA/BSA could be stably dispersed in water for more than 8 days and in 10% fetal bovine serum for at least 6 days. The constructed DOX@GO-SS-KLA/BSA exhibits great potential as a drug carrier for co-delivery of various therapeutic agents.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Liqun Chen
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Biao Shen
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Lingdong Chen
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Jiaying Mo
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Jie Feng
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| |
Collapse
|
49
|
Lima VS, Guimarães ATB, da Costa Araújo AP, Estrela FN, da Silva IC, de Melo NFS, Fraceto LF, Malafaia G. Depression, anxiety-like behavior, and memory impairment in mice exposed to chitosan-coated zein nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10641-10650. [PMID: 30771127 DOI: 10.1007/s11356-019-04536-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The advent of biotechnology provided the synthesis of nanoproducts with diverse applications in the field of medicine, agriculture, food, among others. However, the toxicity of many nanoparticles (NP) currently used, which can penetrate natural systems and impact organisms, is not known. Thus, in this study, we evaluated whether the short exposure (5 days) to low concentrations of chitosan-coated zein nanoparticles (ZNP-CS) (0.2 ng/kg, 40 ng/kg, and 400.00 ng/kg) was capable of causing behavioral alterations compatible with cognitive deficit, as well as anxiety and depression-like behavior in Swiss mice. However, we observed an anxiogenic effect in the animals exposed to the highest ZNP-CS concentration (400.00 ng/kg), without locomotor alterations suggestive of sedation or hyperactivity in the elevated plus maze (EPM) test. We also observed that the ZNP-CS caused depressive-like behavior, indicated by the longer immobile time in the tail suspension test and the animals exposed to ZNP-CS presented deficit in recognition of the new object, not related to locomotor alteration in this test. To the best of our knowledge, this is the first report of the neurotoxicity of ZNP in a mammal animal model, contributing to the biological safety assessment of these nanocomposites.
Collapse
Affiliation(s)
- Vinícius Silva Lima
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Instituto Federal Goiano-Urutaí Campus, Urutai, GO, Brazil
| | | | - Amanda Pereira da Costa Araújo
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Instituto Federal Goiano-Urutaí Campus, Urutai, GO, Brazil
| | - Fernanda Neves Estrela
- Post-graduation Program in Biotechnology and Biodiversity, Universidade Federal de Goiás, Goiania, GO, Brazil
| | | | | | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba, SP, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Instituto Federal Goiano-Urutaí Campus, Urutai, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil.
| |
Collapse
|
50
|
Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019; 11:E129. [PMID: 30893852 PMCID: PMC6471246 DOI: 10.3390/pharmaceutics11030129] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Routes of drug administration and the corresponding physicochemical characteristics of a given route play significant roles in therapeutic efficacy and short term/long term biological effects. Each delivery method has favorable aspects and limitations, each requiring a specific delivery vehicles design. Among various routes, oral delivery has been recognized as the most attractive method, mainly due to its potential for solid formulations with long shelf life, sustained delivery, ease of administration and intensified immune response. At the same time, a few challenges exist in oral delivery, which have been the main research focus in the field in the past few years. The present work concisely reviews different administration routes as well as the advantages and disadvantages of each method, highlighting why oral delivery is currently the most promising approach. Subsequently, the present work discusses the main obstacles for oral systems and explains the most recent solutions proposed to deal with each issue.
Collapse
Affiliation(s)
- Bahman Homayun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Xueting Lin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|